用户名: 密码: 验证码:
非球面拼接测量中偏置误差作用机理与拼接方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大口径非球面光学元件是空间光学系统中起支撑作用的关键部件,对大口径非球面面型的精确测量则直接关系到大口径非球面的精密制造与有效应用。然而目前测量大口径非球面面型的普遍方法——接触式扫描法和零检测技术,由于受到测量范围、效率、成本的限制,制约了大口径非球面精密测量的进一步发展,因此迫切需要一种更快、更精确的测量手段解决上述问题。
     课题“非球面拼接测量中偏置误差影响机理与拼接方法研究”的目的是:研究采用子孔径拼接干涉测量技术对大口径非球面面型进行精确测量,着重探讨一种实现大口径非球面面型精确拼接测量的拼接方法,通过分析三方向调整误差和拼接定位机构的偏置误差在子孔径干涉测量中的作用表现形式,完善了非球面的拼接干涉测量模型,提高了单次拼接测量的精度。本课题为大口径非球面的精密测量提供了一种技术方案,为最终实现大口径非球面的高精度拼接测量奠定理论基础。
     本文首先基于波前像差理论,分析了三方向调整误差对干涉测量非球面影响机理及作用表现形式,结果表明,三方向调整误差使被测非球面波前分布各阶分量都发生变化,不仅包含低阶倾斜与二次离焦,而且还产生了三阶纵向球差、彗差等高阶偏差。因而在利用标准平面波前或球面波前干涉测量非球面时,目前传统三方向调整误差修正拼接法,由于在拼接过程中未修正高阶系统像差分量而产生残余误差累积,因此不适用于精确测量非球面面型。
     为实现拼接测量中装调误差的分离,建立了拼接定位机构偏置误差与各运动自由度之间的函数关系模型。该模型的建立是以二次曲面为测量对象,通过分析拼接测量定位机构的空间复合运动机理,用量化的数学表达式完整地描述了拼接定位机构偏置误差对干涉测量结果的影响,该模型为拼接测量非球面的机构设计提供一定的理论分析基础。
     基于三方向调整误差与拼接定位机构偏置误差对干涉测量非球面的作用表现形式,提出了系统像差修正的拼接测量非球面方法和技术。该方法通过建立系统像差修正模型实现拼接,为实现拼接,采用了求解多元线性回归方程来获得拼接系数,并利用统计分布的方法来评定子孔径重叠区的相位拟合精度与系统的拼接精度。仿真与对比实验表明,利用该拼接测量方法,其子孔径重叠区相位拟合精度与系统拼接精度均高于目前传统的三方向调整误差修正拼接测量法。
     最后,对本文所研究的拼接方法进行了实验验证,主要内容有:1)平面的拼接测量实验,拼接结果与全孔径测量结果相比较,其PV值差值小于λ/10,RMS值差值小于λ/50,初步证明了所搭建的实验系统与开发的拼接测量软件的有效性;2)为验证所提系统像差修正拼接方法的优越性,进行了非球面拼接测量对比实验,实验结果表明,同传统三方向调整误差修正拼接测量法相比,本文方法明显提高了单次拼接的精确度;3)最后对子孔径拼接干涉测量系统的测量结果的不确定度进行了系统的分析。
Large aperture aspheric optical elements have become key parts in the area of space optics. Accurate measurements of large aperture aspheric surfaces associate with precise manufacture and effective application. However, The current aspheric surface testing methods, such as contact scanning testing method and null testing method are restricted by measurement range, efficiency and cost, which restricts the further development of accurate measurement of large aspheric surfaces. For this reason, it is urgent to find a faster and more accurate measurement method to solve the above key technology.
     The subject,“study on the effect mechanism of structure bias error and the stitching method in the stitching interferometric measurement of aspheric surfaces”, which aims to research on measuring large aperture aspheric surfaces accurately using the stitching method. The paper mainly focuses on studying the realization of a stitching method for large aperture aspheric surface measurement. Both stitching interferometric measurement model of aspheric surface and the single stitching measurement precision have been improved according to analyzing the behavior of three-direction adjustment errors and stitching structure bias error in the sub-aperture interferometric measurement of aspheric surface. These researches offer a technology scheme for testing large aperture aspheric surface precisely, and settle the theoretical foundation ultimately for implementing the precise testing large aperture aspheric surface.
     The behavior of three-direction adjustment errors and stitching structure bias error in the sub-aperture interferometric measurement of aspheric surface have been analyzed based on wavefront aberration theory. The analysis results show that all the components of aspheric surface wavefront distribution under test have been changed by three direction adjustment errors; these changes not only include the low order tilts and the second order defocus but produce the high order bias such as the third order longitudinal spherical, comatic aberration and so on. Therefore, the traditional correcting method of three direction adjustment errors will make the residual errors accumulated due to the high order aberrations uncorrected during the stitching process of interferometric measurement, and hence is not suitable for aspheric surface precise testing when using the standard planar and spherical wavefront in the interferometric measurement of aspheric surface.
     In order to separate the adjustment errors in the stitching measurement, functional relationship model between the bias error of stitching positioning mechanism and corresponding movement freedom is established. The presented model with quadratic surface as its testing object, describes integrally how the stitching positioning mechanism affects the interferometric measurement results with quantified mathematical expression by analyzing the spatial combined motion mechanism of stitching positioning structure. Moreover, the model provides the basis of theoretical analysis for the mechanism design of the stitching interferometric measurement of aspheric surface.
     Aberration correction method and technology for stitching measurement of aspheric surfaces have been proposed based on the influences of three-direction adjustment errors and the bias error of stitching positioning mechanism on interferometric measurement of aspheric surfaces. In this method, the stitching measurement has been successfully accomplished by established mathematical model of aberration correction. In order to implement stitching, the multiple linear regression equation has been solved to obtain the stitching coefficients, and phase fitting precision of overlapping area of sub-apertures and stitching precision of the measurement system are evaluated utilizing the statistical distribution method. The simulations and comparable experimental results show that both phase fitting precision of overlapping area of sub-apertures and stitching precision of the measurement system are higher than the current stitching measurement method based on three-direction adjustment error correction by using this proposed stitching measurement method. At last, the proposed stitching method has been validated by experiments: 1)
     For the stitching interferometric measurement of plane surfaces, the difference of PV values is less thanλ/10, and the difference of RMS values is less thanλ/50 comparing with full-aperture measurement results, which preliminarily verifies the validity of the experimental system and the developed software for stitching interferometric measurement. 2) A contrast experiment has been implemented to validate the superiority of the presented aberration correction stitching method. The experimental results show the single stitching measurement precision has been obviously improved by the proposed method comparing with the stitching measurement method of three-direction adjustment error correction. 3) The uncertainty of sub-aperture stitching interferometric measurement results is analyzed systematically in the last chapter of this thesis.
引文
1陈培堃.世界天文台巡礼.安徽科学技术出版技术社.安徽,1999
    2 Hogan W J.Progress in the title I design of the national ignition facility. UCRL-JC-123560,1996
    3 Paisner J A. The National ignition facility for inertial confinement fusion. UCRL-JC-1ZS6S9,1997
    4苏毅,万敏.高能激光系统.北京:国防工业出版社,2004,1~18
    5 Michael H. Freeman. Wide-field aspheric optics for visual applications. Proceedings of SPIE. August 1996, 2774:468~478
    6 Nissim Asida, Baruch Ben-Menachem. Latest advances in the design and manufacture of large-diameter diffractive and aspheric silicon elements for IR lens assemblies. Proceedings of SPIE Infrared Technology and Applications XXVIII. January 2003, 4820: 780~789.
    7 Roland Geyl,Francois Houbre. Large aspheric optics for high-power, high-energy laser. Proceedings of SPIE. December 2001, 4451: 114~117
    8 Jay Kumler ,Designing and specifying aspheres for manufacture ability Proceedings of SPIE. Aug 2005, 5874(25):390~397
    9 ZHANG X J. Recent progress on asphere manufacturing and testing at CIOM. SPIE. 2000,4231:24~31
    10陈耀龙.非球面光学元件的制造技术.光电工程. 2002,29(12):5~9
    11杨力.《先进光学制造技术》.科学出版社.北京,2001 246~324
    12 Hans J. Tiziani, Stephan Reichelt, Christof Pruss, Testing of aspheric surfaces. Proceedings of SPIE. November 2001,4440 109~119
    13 H.Philip,Stahl. Aspheric surface testing techniques. SPIE. 1996,1332:66~76.
    14 [苏]普里亚耶夫.光学非球面检验[M].杨力.北京:科学出版社,1982.25~245
    15 [墨西哥]马拉卡拉,(王国强等译).光学车间检测.机械工业出版社. 1988:443~460
    16杨志文等,《光学测量》.北京理工大学出版社.北京. 1995,236~297
    17 J. Thunen,O. Kwon. Full aperture testing with subaperture test optics Wavefront sensing. Proceedings of the Conference, San Diego, CA, August 1982. 351:19~27
    18 W. Chow,G. Lawrence,Method for subaperture testing interferogram reduction,Optics Letters. 1983, 8(3):468~470
    19贾立德,郑子文,李圣怡,等.光学非球面坐标测量中位姿误差的分离与优化.光学精密工程. 2007,15(8):1229~1235
    20程灏波.精研磨阶段非球面面形接触式测量误差补偿技术.机械工程学报.2005,41(8):228~232.
    21张星祥,任建岳.非球面镜检测误差的逆向求解法.航空精密制造技术.2003,39(6):26~30.
    22 Qian Shinan,Li Haizhang,Peter Z.Takacs. Penta-Prism Long Trace Profiler (PPLTP) for measurement. Optical Engineering.1995,34(2):108~114
    23倪颖,余景池,郭培基等.接触式非球面轮廓测量的数据处理模型光学精密工程. 2003,11(6):612~617
    24 Steve Irick. Long trace profiler survey results. Proc.SPIE,1999,3728:275~282
    25 Shinan Qian,Peter Takacs. Precise Angle Monitor Based on the Concept of Pencil-Beam Interferometry. Proc. SPIE. 1999,3773:158~166
    26李直.同步辐射用大型非球面光学表面轮廓测量系统的研究:[博士学位论文].北京:光学工程,2001
    27 Bruning J H. Digital wavefront measurement interferometrer for testing optical surfaces and lenses. Applied Optics. 1974, 13: 2693~2730.
    28 0C. Pruss, H.J. Tiziani. Dynamic null lens for aspheric testing using a membrane mirror. Optics Communications, 2004, 233: 15~19
    29 Jeng-dang Kuang. TheTesting of a general rotationally symmetrical aspherical surface by using a null lens in a zygo interferometer. Meaurment ,1994, 13:85~90
    30张忠玉.用补偿器测量非球面的研究.光学精密工程.1999,7(1):125~129
    31 J.E. Greivenkamp,Sub-Nyquist interferometery. Appl. Opt. 1987,26:5245~5258
    32 A.E.Lowan,J.E.Greivenkamp,Modeling an interferometer for non-null testing of aspheres. Proceeding of SPIE.1995,2536:139~147
    33 P. E. Murphy,Interferometric Metrology of Aspheric Surface. Degree Doctor of Philosophy of University of Rochester, NY. 2000
    34 R. O. Gappinger,Non-Null Interferometer for Measurement of Transmitted Aspheric Wavefronts. Doctor of Philosophy of University of Arizona. 2001.
    35郭培基,余景池.设计非球面检测用补偿器应注意的几个问题.光学技术. 2006,32(1):118~121
    36伍凡,大口径透镜凸面零检验的补偿器设计.应用光学.1996,17(5):511~515,
    37 Jeng-dang Kuang , The Testing of a general rotationally symmetrical aspherical surface by using a null lens in a zygo interferometer Meaurment. 1994, (13): 85~90
    38伍凡,陈强. F/1.3抛物面零检验补偿器设计.光电工程,2004.31(1):12~15.
    39 WU Fan,CHEN Qiang. Design of a null testing compensator for F/1.3 paraboloid mirror. Opto-Electronic Engineering. 2004,31(1):12~15.
    40 John E. Greivenkamp, Daniel G. Smith, Robert O. Gappinger, and Gregory A. Williby. Aspheric metrology with a Shack-Hartmann wavefront sensor. Proceedings of SPIE. 2005, 4419:1~4
    41 Ho-Soon Yang, Yun-Woo Lee, Jae-Bong Song, and In-Won Lee Null Hartmann test for the fabrication process of large aspheric surfaces Optics Express. 2002, (13)6:1839~1847
    42 Daniel R. Neal, Paul Pulaski, Thomas D. Raymond, and David A. Neal Testing highly aberrated large optics with a Shack-Hartmann wavefront sensor. Proceedings of SPIE. December 2003, 5162: 129~138
    43 J. Burge. Applications of computer-generated holograms for interferometric measurement of large asphericoptics. Proc SPIE 1995, 2576: 258~269
    44常军李凤友等用计算全息法检测大口径凸非球面的研究.光学学报.2003,10, 23(10):1266~1268
    45 F. Pan, J. Burge. Efficient Testing of Segmented Aspherical Mirrors by Use of Reference Plate and Computer-Generated Holograms. I. Theory andSystem Optimization. Appl. Opt. 2004, 4: 5303~5312
    46 Feenix Y. Pan and Jim Burge. Efficient Testing of Segmented Aspherical Mirrors by Use of Reference Plate and Computer-Generated Holograms. I. Theory and System Optimization. Appl. Opt. October 2004, 43(28): 5303~5312
    47 XIE Y J, LU ZH W, LI F Y. Lithographic fabrication of large curved hologram by laser writer .Opt . Express, 2004, 12(9) :1180~1184
    48卢振武,刘华,李凤有.利用曲面计算全息进行非球面检测.光学精密工程. 2004,12(6):555~560
    49 J.E.Greivenkamp,A.E.Lowman,R.J.Palum. Sub-Nyquist interferometry: implementation and measurement capability. Optical Engineering 1996,35:2962~2969
    50李月强,杜玲.双波长全息干涉术在测量非球面中的应用.光电子激光,1996,7(4):224~225
    51 J.C.Wyant. Testing aspheric using two-wavelength holography. Applied Optics. 1971,10:2113~2118
    52 Y.Y.Cheng , J.C.Wyant. Two-wavelength phase shifting interferometry. Applied Optics. 1984,23:4539~4543
    53 K.Creath, Y.Y. Cheng , J.C.Wyant. Coutouring aspheric surface using two-wavelength phase-shifting interferometry. Optica Acta. 1985, 32: 1455~1464
    54 M. Otsubo, K. Okada, and J Tsujiuchi,Measurement of large plane surface shapes by connecting small-aperture interferograms. Optical Engineering. 1994,33:608~613
    55 B.Catanzaro,J.A.Thomas al. Optical metology for testing an all-composite 2-meter diameter mirror. Proc.SPIE. 2001,4444: 207~223
    56 P. Murphy, et al. Stitching interferometry: a flexible solution for surface metrology. Optics and Photonics News. 2003, 14: 38~43.
    57 George W. Jones. Unified mirror surface profile using sub-aperture testing. SPIE.1994,273~279
    58张蓉竹,杨春林,许乔.使用子孔径拼接法检测大口径光学元件[J].光学技术.2001,27(6):516~517.
    59 C J.Kim Polynomial fit of interferograms. Appl.Opt.1982 , 21(24) :4521~4525.
    60 J.G.Thunen,O.Y.Kwon. Full Aperture Testing with Subaperture Test Optics. Proc. Soc. Photo-Opt. Instrum. Eng.1983,351(19):19~27
    61 W.W.Chow, Lawrence G.N. Method for subaperture testing interferogram reduction. Opt.Lett, 1983, 8:468~470.
    62 C.R.De Hainault, A.Erteza. Numerical Processing of Dynamic Subaperture Testing Measurements. APPL.OPT. 1986,25:503~509
    63 Stuhlinger T.W., Subaperture optical testing: experimental verification,In Con-temporary Optical Instrument Design, Fabrication,and Testing, Proc.SPIE 1986,656:118~127
    64 G. N. Lawrence,R. D. Day,Interferometric characterization of full spheres: data reduction techniques. Appl. Opt.1987,26:4875~4882
    65 M. Otsubo, K. Okada, J Tsujiuchi. Measurement of large plane surface shapes by connecting small-aperture interferomgrams. Optical Engineering. 1994,33:608~613
    66 Chow W.W.,and Lawrence G.N.Method for subaperture testing interferogram reduction.Opt.Lett., 1983,8:468~470
    67 Jensen S.C., Chow W.W., and Lawrence G.N. Subaperture testing approaches: a comparison. Appl.Opt, 1984, 23:740~745
    68 Stuhlinger T.W. Subaperture optical testing: experimental verification. In Con-temporary Optical Instrument Design, Fabrication, and Testing, Proc.SPIE 1986,656:118~127
    69 Chen M.Y., Cheng W.M., and Wang C.W. Multiaperture overlap-scanning tech-nique for large-aperture test. In:Laser Interferometry IV:Computer-Aided Inter-ferometry, Proc.SPIE 1991,1553:626~635
    70王孝坤,王丽辉,郑立功.子孔径拼接技术在大口径高陡度非球面检测中的应用.强激光与粒子束. 2007,19(7):1144~1149
    71 Dumas P.R.,Fleig J.,and Forbes G.W.,et al.Flexible polishing and metrology solutions for free-form optics.In:Proc.ASPE Winter Meeting on Free-Form Optics: Design,Fabrication, Metrology, Assembly, 2004:39~44
    72 Tricard M., Dumas P., Forbes G. Sub-aperture approaches for asphere polishing and metrology.I n:Optical Design and Testing II, Proc. SPIE, 2005, 5638: 284~299
    73 Tricard M., and Murphy P.E. Subaperture stitching for large aspheric surfaces. Talk for NASA Tech Day 2004
    74 Chen J.B., Song D.Z., and Zhu R.H.et.al. Large-aperture high-accuracy phase-shifting digital flat interferometer. In: Proc. SPIE(Interferometry VI), 1993, 2003: 367~375
    75 Wang Q., Chen J.B., and Zhu R.H.et.al. A New technique for testing large optical flat. In: Proc. SPIE(Interferometry VI), 2003: 389~397
    76 Bray M.Stitching interferometer for large plano optics using a standard interferom- eter.In: Optical Manufacturing and Testing II, Proc. SPIE, 1997, 3134: 39~50
    77 Tang S.H.Stitching: high-spatial-resolution microsurface measurements over large areas. In: Laser Interferometry IX: Applications, Proc. SPIE, 1998, 3479: 43~49.
    78 Wyant J.C.,and Schmit J.Large Field of View,High Spatial Resolution,Surface Measurements.Intl.J.of Machine Tools and Manufacture,1998,38:691~698
    79 Schmucker M.A.,and Schmit J.Selection process for sequentially combining multiple sets of overlapping surface profile interferometric data to produce a continuous composite map.US Patent#5,991,461;Veeco Corporation, Nov. 23, 1999
    80 Chen M.Y., Guo H.W., Yu Y.J., and He H.T. Recent developments of multi-aperture overlap-scanning technique. In:Optical Manufacturing and Testing V, Proc. SPIE, 2003, 5180: 393~401
    81何海涛,郭红卫,于嬴洁,陈明仪.基于虚拟圆柱的曲面拼接方法.光学学报,2004,24(7):978~982
    82 Bray M.Stitching interferometer for large optics: recent developments of a system. In:Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion,Proc.SPIE, 1999, 3492: 946~955
    83 Dumas P.R.,Fleig J.,and Forbes G.W.,et al.Flexible polishing and metrology solutions for free-form optics. In:Proc. ASPE Winter Meeting on Free-Form Optics:Design, Fabrication, Metrology, Assembly, 2004:39~44
    84 Iterative algorithm for subaperture stitching test with sphericalinterferometers. Journal of the Optical Society of America A, 2006(5):1219~1226.
    85 Assoufid L., Bray M., Qian J., and Shu D.M.3-D surface profile measurements of large x-ray synchrotron radiation mirrors using stitching interferometry. In: X-Ray Mirrors,Crystals,and Multilayers II, Proc. SPIE, 2002, 4782:21~28
    86 Yu Y.J., Chen M.Y. Correlative stitching interferometer and its key techniques. In: Interferometry XI: Techniques and Analysis, Proc. SPIE, 2002, 4777: 382~393
    87 Chen M.Y.,Guo H.W., Yu Y.J. Recent developments of multi-aperture overlap-scanning technique.In:Optical Manufacturing and Testing V, Proc. SPIE. 2003, 5180: 393~401
    88 Bray M. Stitching Interferometry and Absolute Surface Shape Metrology: Similarities. In: Optical Manufacturing and Testing IV, Proc. SPIE, 2001, 4501:375~383
    89 Michael Bray. Stitching interferometer of large plano optics using a standard interferometer. SPIE. 1997,3134, 39~50
    90 Michael Bray. Stitching interferometry: how and why it works. SPIE. 1999,3739:259~273
    91 Michael Bray. Stitching interferometer for large optics: Recent developments of a system. SPIE.1999,3492:946~956
    92 Bray M.Stitching Interferometry:Recent results and Absolute calibration. In:Op-ticalFabrication,Testing,and Metrology,Proc.SPIE,2004,5252:305~313
    93 Michael Bray. Stitching Interferometry and Absolute Surface Shape Metrology: Similarities. SPIE. 2001,4451(40):375~383
    94 S.Tang. Stitching: high-spatial-resolution microsurface measurements over large areas. Proc. SPIE. 1998,3479:43~49
    95 T. H?nsel, A. Nickel,A.Schindler. Stitching interferometry of aspherical surfaces. Proceedings of SPIE. 2001,4449:265~275
    96 P. Murphy, et al. Stitching interferometry: a flexible solution for surface metrology. Optics and Photonics News. May 2003,14:38~43
    97 J. Fleig, P. Dumas, P. E. Murphy, G. W. Forbes. An automated subaperture stitching interferometer workstation for spherical and aspherical surfaces. Proc. SPIE. 2003, 5188: 296~307
    98 Jon Fleig, Paul Dumas. An automated subaperture stitching interferometer workstation for spherical and aspherical surfaces. Proc of SPIE. 2003, 5188: 296~307
    99 Jon Fleig, Paul Dumas, Paul E. Murphy, and Greg W. Forbes An automated subaperture stitching interferometer workstation for spherical and aspherical surfaces. Proceedings of SPIE. November 2003, 5188: 296~307
    100 Greg Forbes and Marc Tricard. Subaperture approaches to finishing and testing astronomical optics. Proceedings of SPIE. 2004,5382: 440~448
    101 Paul E. Murphy, Jon Fleig, Greg Forbes, Marc Tricard. High precision metrology of domes and aspheric optics. Proc SPIE. 2005, 5786: 112~121
    102 http://www.gedrnrf.com/
    103 Neil Gardner, Timothy Randolph, and Angela Daviesb. Self-Calibration for Micro-Refractive Lens Measurements. Proceedings of SPIE. 2003, 5180: 244~252
    104 Paul E. Murphy, Jon Fleig, Greg Forbes, Paul Dumas. Novel method for computing reference wave error in optical surface metrology. Proc. SPIE. 2003, TD02: 138~140
    105 Stephen O’Donohue, Paul Murphy, Greg Forbes, Jon Fleig, and Paul Dumas. Calibrating interferometric imaging distortion using subaperture stitching interferometry. Proc. SPIE. May 2005, TD03:746~752
    106 Marc Tricard, Greg Forbes, Paul Murphy. Subaperture metrology technologies extend capabilities in optics manufacturing. SPIE. 2005, 59650B: 1~11
    107 Chen M Y, Cheng W M, Wang C W. Multi-aperture overlap-scanning technique for large aperture test. SPIE, 1991, 1993: 626~635
    108侯溪,伍凡等.环形子孔径拼接算法的精度影响因素分析.光电工程,2005,32(3):20~24
    109 Chen M Y, Guo H W, Yu Y J, et al. Recent developments of multi-aperture overlap-scanning technique. SPIE. 2003, 5180: 393~401
    110何海涛,郭红卫,于嬴洁,陈明仪.基于虚拟圆柱的曲面拼接方法.光学学报,2004,24(7):978~982
    111张蓉竹,石琪凯,蔡邦维等.子孔径拼接干涉检测实验研究.光学技术. 2004,30(2):173~176
    112张蓉竹.ICF系统光学元件高精度波前检测技术研究:博士学位论文.成都:四川大学,2003
    113汪鸿生,空间直角坐标的变换.测绘学报. 1982,11(1):38~45
    114周维虎,兰一兵,丁叔丹等.空间坐标转换技术的分析与研究(一).理论与实践. 1999,19(4):10~12
    115叶其孝,沈永欢.实用数学手册.科学出版社.2006 597~613
    116张蓉竹,杨春林,许乔子孔径拼接干涉检测及其精度分析.光学学报.2003,23(10): 1241~1244
    117 HNSEL T, NICKEL A, SCHINDLER A. Stitching in- terferometry of aspherical surfaces. Proceedings of SPIE, 2001, 4449 : 256~275 .
    118 Granados Agustin F, Escobar Romeroy F, Rodriguez A C. Testing a paraboloid mirror using annular subapertures without auxiliary optics. Proc of SPIE. 2003, 4829: 442~445
    119侯溪,伍凡,吴时彬,等.使用环形子孔径拼接检测大口径非球面镜.光学技术. 2005, 31(4): 506~508
    120 Hou X , Wu F , Yand L , et al . Full aperture wavefront reconstruction from annular subaperture interferometric data by use of Zernike annular polynomials and a matrix method for testing large aspheric surfaces. Appl Opt. 2006,45 (15): 3442~3455.
    121 Schwider J, Burow T, Elssner K-E, J Grzanna, ect. Digital wavefront measuring interferometer: some synthetic error sources. Applied Optics. 1993, 22: 3421~3432
    122 Lu-Zhong Cai, Ming-Zhao He, and Qing Liu. Correction of Wave-Front Errors Caused by the Slight Tilt of a Reference Beam in Phase-Shifting Interferometry. Applied Optic. June 2004, 43(17): 3466~3471
    123 C.Evans, R.Parks, L.Shao. Calibration of Interferometer Transmission Spheres. In Optical Fabrication and Testing Workshop, OSA Technical Digest Series 12. 1998, 80~83
    124 Donald W. Philliona, Gary E. Sommargrena, Michael A. Johnsona, Todd A. Deckera,John S. Taylora. Calibration of symmetric and non-symmetric errors for interferometry of ultra-precise imaging systems. Proc. of SPIE. 2005, 5869: 58690R-1~12
    125 Marek Dobosz, TIkL Shi Ususda, Tomizo Kurosawa. Calibration of vibration pick-ups by laser interferometry. Proc, SPIE . 2000,3744:86~93
    126 Takeda M. Recent progress in phase-unwrapping techniques. Proc. SPIE. 1996, 2782: 334~343
    127 K. Creath. Phase-Measurement Interferometry Techniques in Progress in Optics. Vol. XXVI, edited by E. Wolf Elsevier Science Publishers, Amsterdam 1988, 349~393
    128 H.Zhang, M. J. Lalor, D. R. Burton. Robust, accurate seven-sample phase-shifting algorithm insensitive to nonlinear phase-shift error and second-harmonic distortion: a comparative study. Optical Engineering.1999,38:1524~1533
    129何晓群,刘文卿.应用回归分析北京中国人民大学出版社2001,15~76
    130王松桂.线性统计模型.高等教育出版社. 1999,67~125
    131程维明,林有略,陈明仪.多孔径扫描薄面恢复技术的精度评定及其影响.因素.光学学报.1993,13(8):711~716
    132杨晓洪,高必烈.子孔径拼接干涉法检测大口径光学镜面的精度分析.光学与光电技术.2005,3(3):54~57
    133张明意,李新南.子孔径拼接法检验大口径光学镜面精度分析.应用光学. 2006,27(5):446~449
    134张方仁.测量误差的统计分布和检验,中国计量出版社,1992,15~127
    135费业泰.误差理论与数据处理,机械工业出版社,1999,3~154
    136倪育才.实用测量不确定度评定,中国计量出版社,2004,35~134
    137李金海.误差理论与测量不确定度评定,中国计量出版社,2005,113~178
    138王沫然. MATLAB与科学计算,电子工业出版社,2004,21~167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700