用户名: 密码: 验证码:
全方位移动操作机器人及其运动规划与导航研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动操作臂是集行走和操作功能于一体的复杂机器人系统,是机器人研究领域的一个热点,该机构有较好的操作灵活性和工作空间的广阔性。它和单个系统相比有广阔的应用前景,同时有着重要的理论研究意义。而目前在移动操作机器人的研究中存在定位不准确,无法建立移动操作机器人精确的动力学模型、难以找到有效的移动平台与机械臂间动力耦合辨识方法、难以得到一个较优的冗余度机器人运动规划方法等诸多不足。为解决移动操作机器人面临的难题,本文研制了全方位移动操作机器人(ODMM)及超声波绝对定位系统,并开展ODMM运动学动力学分析、全方位移动平台与操作臂协调运动规划、避障导航、路径规划等研究。
     首先,将全方位移动平台与操作臂结合,研制的ODMM具有全方位移动和可零半径回转的功能;为解决其定位精度难题,针对超声波传播的特点进行信息融合,提出基于冗余超声波信息融合的超声波绝对定位方法,提高超声波绝对定位的精度,并配合超声波避障模块与数字罗盘技术,实现ODMM的避障导航功能。本文提出了2种避障导航算法:一种为基于超声波绝对定位的ODMM导航算法,这个算法有避障与奔向目标这两个策略;另一个为基于超声波绝对定位的模糊避障导航算法。后一种避障导航算法中,模糊规则是根据人驾车的先验知识建立的,该避障导航算法提高了ODMM的环境适应能力与避障导航能力,仿真及实验证明避障导航算法的有效性和可行性。
     接着,研究ODMM运动学,并进行正逆运动学分析。由于ODMM是7-DOF冗余度机器人,在运动学逆解时,仅能得到一些量的约束关系而无法得到有效解。为获得有效解,必须添加一些约束方程或优化指标,这为后续运动规划及控制奠定了基础。并采用拉格朗日方法建立ODMM动力学模型,进行动力学仿真,在仿真中研究ODMM的运动速度、加速度与耦合力间的关系。
     然后对ODMM的全方位移动平台进行运动模式分析,并重点研究ODMM的全方位移动平台与操作臂协调运动的功能。针对ODMM的全方位移动平台与操作臂协调运动提出了2种运动规划方法:其一为基于绝对定位的实时运动规划与控制,该运动规划是在ODMM运动学逆解时,添加一项约束得到有效解;另一种采用种群范围自调整遗传算法,来优化ODMM关节角变化的协调运动规划,该方法很好地解决了冗余度机器人逆运动学求解问题,并充分利用冗余度机器人的运动灵活性进行运动优化。改进遗传算法在ODMM关节角变化优化的效率比传统的遗传算法高,仿真实验证明该协调运动规划方法的正确性与高效性。同时在基于改进遗传算法的协调运动规划的基础上研究了轨迹运动规划问题,并进行ODMM末端空间曲线圆运动规划仿真,仿真结果表明该协调运动规划方法是正确有效的。
     再次ODMM的路径规划也为本文研究的一个关键技术,它通常分为全局路径规划与局部路径规划。针对局部路径规划中人工势场法存在的不足,提出了基于遗传算法优化改进人工势场法的全方位移动操作机器人路径规划方法。该方法比传统的人工势场法的路径规划精度更好、更合理,随后的仿真实验结果证明该路径规划方法的有效性与合理性。
     最后,建立ODMM的硬件实验系统,进行ODMM典型轨迹运动实验与运动精度实验,全方位移动平台与操作臂协调运动规划实验,ODMM基于绝对定位的糊避障导航实验。实验结果证明了ODMM设计的合理性,验证了ODMM绝对定位的有效性,运动规划的合理性,避障导航算法的有效性。在结尾处指出了本文研究的不足之处,并对后续的工作作出了展望。
     本文研制ODMM及超声波绝对定位系统,建立ODMM运动学动力学模型,发展了ODMM定位、导航、运动规划和路径规划技术,为进一步深入研究ODMM和使ODMM进入实际应用奠定了基础。
Mobile manipulator was a complex robot system which integrated the functions of walking and operation, now it is a hot subject in the robot research area. This mechanism had better operation flexibility and expands mobile robots working space. Compared with individual system, it has a relatively wide application prospect. Meanwhile it is very important for theory studies. However, there were some shortages: such as imprecise position, unable to set up accurate dynamics analysis model, efficient method to identify mobile manipulator and dynamic coupling, the difficulty in getting a motion planning method of redundant robot. In order to solve the problems which the mobile manipulator faced at present the subject group has developed omni-directional mobile manipulator(ODMM) and ultrasonic absolute positioning(UAP) system and developed the research of some key technology such as ODMM kinematics and dynamics analysis, omni-directional mobile platform and manipulator coordination motion plan, obstacle avoidance navigation, path planning. In summary, the goal of this thesis is to solve the following problems.
     First, combining omni-directional mobile part with manipulator, and developing ODMM to make ODMM have omni-directional mobile ability, since the turning radius of ODMM was zero, ODMM was able to move freely and flexibly when it work at narrow or crowded places; to solve the problem of position, the fusion method for information was used according to the spreading feature of ultrasound, and the UAP method based on the fusion method for redundancy ultrasonic information was suggested, accuracy of UAP was developed. At the same time, ultrasonic obstacles avoidance module and digital compass information added reliability to navigation. Obstacle avoidance navigation was the key technique in ODMM research. Two obstacle avoidance navigation algorithms were offered in the paper. One was ODMM navigation algorithm based on UAP, whick had two tactics avoiding obstacles and heading for the object. The other was fuzzy obstacle avoidance navigation algorithm based on UAP. Fuzzy rules set up according to one’s driving experience. The obstacle avoidance navigation algorithm improves the adoption and obstacle avoidance ability of the omni-directional mobile manipulator. The simulation and experiment has proved the validity and feasibility of obstacle avoidance algorithm.
     Next, the ODMM kinematics was studied. The forward and inverse kinematics were analyzed. The unique solution of the inverse kinematics for mobile manipulator could not be obtained due to ODMM was a 7-DOF redundant robot, thus only constraint relationships to some variables could be given, and not unique solution. To get effective solution, some constraint equations and optimization parameters were added based on these constraint relationships and the working conditions, then the satisfactory solution was obtained. The study results described above offer important technique foundations for the following motion planning designs. Meanwhile, ODMM modeling dynamics was set up with Lagrange approach, and research was done on dynamic coupling between omni-directional-motion model. The relationship for rate, acceleration and coupling was achieved via many simulation experiments under different conditions, the dynamics based on the relationship for ADAMS moving along elliptical track and sinusoid track were simulated.
     Then, different motion modules of omni-directional mobile platform were analyzed. To realize the function of motion coordination between omni-directional mobile platform and manipulator of ODMM, two motion planning methods were given in this paper: one was timing motion planning and control based on absolute position with an additive constraint equation to get control parameter in ODMM inverse value of the kinematics. The other was the improving Genetic Algorithm to optimize coordination motion planning of the change of ODMM joint angle. This method well solves the problem of redundant robot inverse kinematics, and makes full use of the motion flexibility of redundant robot to do motion optimization.
     The efficiency of improving Genetic Algorithm in ODMM joint angle change optimization was higher than traditional Genetic Algorithm. Simulation experiment proved the correctness and rationality of this coordination motion planning method. At the same time, trajectory tracking and control was analyzed based on improving Genetic Algorithm optimization ODMM joint angle change coordination motion planning. In trajectory tracking planning, the improving Genetic algorithm was used in order to optimize ODMM joint angle change coordination motion planning. The trajectory of 3D circle tracking and control were simulated. The simulation results proved that the coordination motion planning of optimizing ODMM joint angle change based on the improving Genetic Algorithm was correct and efficient.
     ODMM path planning was the key technique of this subject. It included complete path planning and partial path planning. Understanding the shortage of artificial potential field in partial path planning, the improving artificial potential field path planning method based on Genetic Algorithm optimization in complex environment was set up in the paper. This method was more accurate and rational than traditional artificial potential field path planning. The results of the following simulation experiments have proved the efficiency and rationality of this path planning method.
     Finally, hardware experiment system of ODMM was set up to do the coordination motion planning between omni-directional-mobile platform and manipulator experiment, ODMM fuzzy obstacle avoidance navigation experiment and ODMM path planning experiment which was based on improving artificial potential field. The result of the experiment had proved the efficiency of motion mobile manipulator absolute positioning, rationality of motion planning, and the efficiency of obstacle avoidance navigation algorithm and route planning algorithm. The shortage of this research is pointed out at the end of the article and the article looks into the follow-up work.
     This article had studied ODMM and ultrasonic absolute positioning system, set up ODMM kinematics dynamics analysis model, and developed the technology of ODMM positioning, navigation, motion planning and route planning, which has laid the foundation for further research on ODMM and ODMM entry into practical application.
引文
1 D. Olaf, B. Aparna, B. Glen, P. Johan, T. Sylvester. Improved Mecanum Wheel Design for Omini-directional Robots. IEEE International Conference on Robotics and Automation. Auckland, New Zealand, 2002:117-121
    2 P. F. Muir, C. P. Neuman. Kinematic Modeling for Feedback Control of an Omnidirectional Wheeled Mobile Robot. Proceedings of the 1987 IEEE International Conference On Robotics and Automation. New York, USA, 1987:1772 - 1778
    3 H. Bohumil. Inverse Kinematics and Control of the Assistive Robot for Disable. Syroco2003. 2003:1-4
    4 D. A. Raffaelle. The Cornell Robotcup Robot Soccer Team:1999-2003. 2003:551-561
    5 A. Hajime, S. Masatoshi, B. Luca, et al. Development of an Omni- directional Mobile Robot with 3 DOF Decoupting Drive Mechanism. IEEE international conference on robotics and automation. Philadelphia, USA, 1995:1925-1930
    6 S. B. Kyung, J. K. Sung, B. S. Jae. Design of Continuous Alternate Wheels for Omnodirectional Mobile Robots. Proceedings of 2001 IEEE international conference on robotics&automation, Seoul, Korea, May 2001:21-26
    7 F. G. Pin, S. M. Killough. A New Family of Omnidirectional and Holonomic Wheeled Platforms for Mobile Robots. IEEE Transactions on Robotics and Automation, 1994,10(4):480-489
    8 M. Robert. Control System Design for the RoboRoos, University of Queensland, October 2001:35-40
    9 M. West, H. H. Asada. Desigh and Control of Ball Wheel Omnidirectional Vehicles. Proceedings of the 1995 IEEE International Conference on Robotics and Automation, 1995:1931-1938
    10 K. A. Tahboub, H. H. Asada. Dynamics Analysis and Control of aHolonomic Vehicle with a Continuously Variable Trasmission. ASM Ejournal of Dynamic Systems, Measurement and Control, 2002,124(3): 118-126
    11 H. H. Asada, M. Wada. The Superchair:a Holinomic Omnidirectional Wheelchair with a Variable Footprint Mechanism. Progress Report, Total Home Automation and Health/Elderly Care Consortium, March 31,1998: 1-24
    12 W. Masayoshi, H. A. Haruhiko. A Holonomic Omnidirectional Vehicle with a Reconfigurable Footprint Mechanism and its Application to Wheelchairs. ICRA, 1998:774-780
    13 R. Holmberg, O. Khatib. Development and Control of a Holonomic Mobile Robor for Mobile Manipulation Tasks. Interational Journal or Robotics Research, 2000,19(11):1066-1074
    14 T. B. Park, H. LeeJ, B. J. Yi,et al. Optimal Design and Actuator Sizing of Redundantly Actuated Omni-Directional Mobile Robots. Proceedings of the 2002 IEEE, IEEE International Conference on Robotics and Automation, San Francisco, 2002:732-737
    15 K. L. Moore, N. S. Flann. A Six-Wheeled Omnidirectional Autonomous Mobile Robort. IEEE Cotrol Sytem Magazin, 2000,20(6):53-56
    16 H. Robert, K. Oussama. Development and Control of a Holonomic Mobile Robot for Mobile Manipulation Tasks. The International Journal of Robotics Research, 2000,19(11):1066-1074
    17 T. Kenjiro, T. Riichiro, H. Shigeo. Omni-Directional Mobile Robot with Step-Climbing capability:“VmaxCarrier2”. IEEE 2004:95-96
    18 T. Zielinska, H. John. Mechanical Design of Multifunctional Quadruped. Mechanism and Machine Theory, 2003, 38: 463-478
    19 J. Balaram. Kinematic State Estimation for a Mars Rover. Robotica, 2000, 18:251-262
    20 B. K. Muirhead. Mars Rovers, Past and Future. 2004 IEEE Aerospace Conference Proceedings, 2004:128-134
    21 T. Huntsberger, H. Aghazarian, E. Baumgartner, P. S. Schenker. Behavior- Dased Control Systems for Planetary Autonomous Robot. 2002 IEEEAerospace Conference Proceedings, 2002:679-686
    22 E. Young, E. Coyle, K. Sullivan, A Toner. Novel Implementation of an Adaptive Control 2004, University of Bath, UK, September 2004:1-5
    23张海洪,谈士力,龚振邦.全方位越障机构的设计.机械设计与制造工程. 2005,29,(3):12-13
    24马全军,陈振华,邓寅泽.全方位行走AGV轮系的研究.机电工程. 2002,19(1):45-47
    25熊蓉,张翮,褚健等.四轮全方位移动机器人的建模和最优控制.控制理论与应用. 2006,23(1):93-98
    26高春能.基于DSP的全方位移动机器人运动小车设计与实现.江南大学硕士学位论文. 2006:12-16
    27张琛,曹长江,李振波,冯建智.毫米级全方位微型移动机器人的结构设计.高技术通讯. 2001,6:63-65
    28李瑞峰,孙笛生,阎国荣,刘广利.移动式作业型智能服务机器人的研制.机器人技术与应用. 2003,1:27-29
    29闫国荣,张海兵.一种新型轮式全方位移动机构.哈尔滨工业大学学报. 2001,33(6):854-857
    30周大威,高学山,王炎,徐殿国.全方位移动清扫机器人控制技术的研究.高技术通讯. 2000,6:65-67
    31赵言正,门广亮,冯海,王炎.全方位壁面移动机器人姿态控制的研究.哈尔滨工业大学学报. 1997,29,(6):116-118
    32付宜利,徐贺,王树国.具有新型轮式走行部的移动机器人及其特性研究.高技术通讯. 2004,12:73-76
    33孙汉旭,肖爱平,贾庆轩,王亮清.二驱动球形机器人的全方位运动特性分析.北京航空航天大学学报. 2005,31(7): 735-739
    34李新春,赵东斌,易建强.一种全方位移动机械手的可操作度分析.中国机械工程. 2006,17(14):1442-1447
    35林杰,芮延年,周国梁,任芸丹,陈慧萍.一种全方位球形机器人的运动学分析.苏州大学学报(工科版). 2005,25(4):71-73
    36 G. Sahar, J. M. Hollerbach. Planning of Minimum-time Trajectory for Robot Arms. The International Journal of Robotics Research, 1986, 5(3): 90-100
    37 Y. P. Li, T. Zielinska, M. H Jrang, W. Lin. Vehicle Dynamics of Redundant Mobile Robots with Powered Caster Wheels. Proceedings of the Sixteenth CISM_IFTOMM Symposium, Romansy 16, Robot Design, Dynamics and Control, 2006:221-228
    38 B. Oliver, K. Oussama. Elastic Strips:a Framework for Motion Generation in Human Enviroments. The International Journal of Robotics Research, 2002, 21(12):1-22
    39 H. Yasuhisa, K. Youhei, Z. D. Wang. Handling of a Single Object by Multiple Mobile Manipulators in Cooperation with Human Based on Virtual 3-D Caster Dynamic. JSME International Journal Series C, 2005,48(4): 613-619
    40 C. Luiz, S. Thomas, K. Vijar. An Architecture for Tightly Coupled Multi-Robbot Cooperation. IEEE International Conference on Robotics & Automation, 2001,5: 2992-2997
    41吴玉香.滑模控制理论及在移动操作机器人中的应用.华南理工大学博士学位论文. 2006: 6-12
    42 Y. Ymamaoto, X. P. Yun. Coodrinating Locomotion and Manipulation of a Mobile Manipulator. IEEE Trans.on Automatic Control, 1994,39(6):1326- 1332
    43 H..G. Tanner., K. J. KyriakoPoulos. Nohnolonomic Motion Plannig for Mobile Manipulators. Proc.of IEEE int.Conf.on Roboties and Automation, SanFrancisco, CA, USA, 2000,2:1233-1238
    44 M. Akira, F. Seiji, M. Yamamoto. Trajectory Planning of Mboile Manipulator with End-Effetor’s Specified Path. Proc.of IEEE/RSJInt. Conf. on Inielligent Robosts and Systems, Maui, Hawan, USA, 2001,4:2264-2269
    45 Q. Hunag, K. Tanie, S. Sugano. Coordinated Motion Planning for a Mobile Manipulator Considering Stability and Manipulation. International Jomual of Roboties Reseacrh, 2000,19(8):732-742
    46 F. Seiji, M. Yamamoto, M. Akira. Trajectory Planning of mobile manipulator with stability consideartions.Pore.of IEEE Int.Conf.on Robotics and Automation,TaiPei,Taiwan.2003,3:3403-3408
    47 Yuxiang Wu, Yueming Hu. Kinematies, Dynamics and Motion Planning ofWheeled Mobile Manipulators. Pro of Int Conf on CSIMTA'04, Cherbourg, France, 2004:221-226
    48 L. Sheng, A. A. Goldenberg. Robust Damping Control of Mobile ManPiulators. IEEE Trans, on Systems, Mnan and Cybemetics, Part B, 2002,32(1):126-132
    49 Y. L. Jae, M. M. Suk. A Simple Active Damping Control for Compliant. Trans.on Neural Networks, 2001,12(5):1121-1133
    50 O. Yusuke, T. Tatsuya, Y. Kan, H. Shigeo. Development of Walking Manipulator with Versatile Locomotion. IEEE International Conference on Robotics and Automation, 2003: 477-483
    51 J. D. Tan, N. Xi. Unified Model Approach for Planning and Control of Mobile Manipulators. Proc of IEEE Int Conf on Roboties and Automation, Seoul, Koera, 2001,3:3145-3152
    52吴玉香,胡跃明.轮式移动操作机器人的鲁棒跟踪控制研究.计算机工程与应用. 2006:230-232
    53 W. J. Dong, Y. S. Xu, Q. Wang. On Tracking Control of Mobile Manipulators. Proc.of IEEE Int.Conf.on Robotics and Automation, San Francisco, CA, 2000,4:3455-3460
    54董文杰,徐文立.移动机械手的鲁棒控制.控制理论与应用, 2002,19(3):345-348
    55董文杰,徐文立.不确定非完整移动机械手的鲁棒控制.清华大学学报, 2002,42(9):1261-1264
    56 Wenjie Dong. On Trajectory and Force Tracking Control of Constrained Mobile Manipulators with Parameter Uncertainty. Automatica, 2002,38: 1475-1484
    57 S. Kang, K. Komoriya, K. Yokoi, et al. Reduced Inertial Effect in Dmaping-Based Posture Control of Mobile Manipulator. Proc of IEEE/RSJ Int Conf on Intelligent Robots and Systems, Maui, Hawaii, USA, 2001,1:488-493
    58 P. Ogren, M. Egerstedt, X.Hu. Reactive Mobile Manipulation Using Dynamic Trajectory Tracking. Proe of IEEE Int Conf on Robotics and Automation, San Francisco, CA, 2000,4:3473-3478
    59 C. F.Olson. Probabilistic Self-Localization for Mobile Robot. IEEE Transaction on Robot and Automation, 2000, 16: 55 - 66
    60 R. G. Brown, B. R. Donald. Mobile Robot Self-Localization Without Explicit Landmarks. Algorithmic, 2000, 26: 515 - 519
    61刘金会,郝静如.液下搅拌机器人的超声波导航定位研究.传感器技术. 2004,23(12):7-9
    62马玉秋,龙承志.沈树群.长距离移动定位技术与室内定位技术.数据通信. 2004 (5):39-41
    63王嘉晖.履带式移动机器人局部路径规划和路径跟踪.南京理工大学硕士学位论文. 2006:2-6
    64冯建农,柳明,吴捷.自主移动机器人智能导航研究进展.机器人. 1997, 19(6):468一473
    65蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题.控制与决策. 2002,17(4):385-390
    66 J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Norwell, Massachusetts, USA, 1991:48-60
    67陈春林.基于强化学习的移动机器人自主学习及导航控制.中国科学技术大学博士学位论文. 2006:6-12
    68沈猛.轮式移动机器人导航控制与路径规划研究.西北工业大学博士学位论文. 2006:42-44
    69 K. Hoff, T. Culver, J. Keyser, et al. Interactive Motion Planning Using Hardware-Accelerated Computation of Generalized Voronoi Diagarms. Procedings of IEEE International Conference on Robotics and Automation. San Francisco, CA, 2000,3:2931-2937
    70 A. Elfes. Using Occupancy Grids for Mobile Robot Perception and Navigation.Computer, 1989,22(6):46-57
    71 Y. K. Hwnag, N. Ahuja. A Potential Field Approach to Path Planning. IEEE Transactions on Roboties and Automation, 1992,8(l):23-32
    72 T. O. Ashitey, D.Hari. Mars Rover Pair Cooperatively Transporting a Long Payload. IEEE International Conference on Robotics& Automation, Washington, DC, May 2002:3136-3141
    73 M. Ronald, W. Joan. The Collaborative Information Portal and Nasa's MarsRover Mission. IEEE Computer Society. New Jersey, USA, February, 2005:20-26
    74周伯英.工业机器人设计.机械工业出版社. 1995:42-43
    75王鹏飞,尤波.基于L297/298芯片混合式步进电机驱动器的研制.哈尔滨理工大学学报. 2003, 8(04):40-43
    76李光海,刘时风.基于小波分析的声发射源定位技术.机械工程学报. 2004,40(7):136-140
    77华宏,王涌天,郭向前.超声波六自由度跟踪器设计原理及误差模型研究.自动化学报. 2000, 26(6): 840-844
    78熊春山,彭刚,黄心汉等.基于超声测距的三维精确定位系统与设计.自动化仪表. 2001,22(3): 7-10
    79周荣莲.基于微机的超声波跟踪定位系统的设计与实现.微计算机信息. 2004,20(10):47-49
    80 Tong Chiachang, J. F. Figueroa. A Method for Short or Long Range Time-of-Flight Measurements Using Phase-Detection with an Analog Circuit. IEEE Trans On Instrumentation and Measurement, 2001,50(5):1324-1328
    81陈永光,李昌锦,李修和.三站时差定位的精度分析与推算模型.电子学报. 2004,32(9):1452-1455
    82 J. M. Martín, A. R. Jiménez, F. Seco, et al. Estimating the 3D-Position from Time Delay Data of US-Waves: Experimental Analysis and a New Processing Algorithm. Sensors and Actuators, 2003,A (101):311-321
    83杨亦春,滕鹏晓,李晓东等.小孔径方阵对大气中运动声源的定位研究.声学学报. 2004,29(4):346-352
    84 F. Tong, S. k. Tso, T. Z. Xu. A High Precision Ultrasonic Docking System Used for Automatic Guided Vehicle. Sensors and Actuators, 2005,A (118):183-189
    85 A. Mahajan, F. Figueroa. An Automatic Self-Installation and Calibration Method for a 3D Position Sensing System Using Ultrasonics. Robotics and Autonomous Systems, 1999, 28:281-294
    86胡跃辉,周康源,周平,施俊.一种实时3D超声定位系统的设计.声学技术. 2004,23(1):29-32
    87蔡自兴.机器人学.清华大学出版社. 2000: 46-126
    88付京逊.机器人学.中国科学技术出版社. 1989: 61-109
    89吴玉香,胡跃明.轮式移动操作机器人的建模与仿真研究.计算机仿真. 2006,23(1):147-151
    90 Y. M. Hu, B. H. Gao. Modeling and Motion Planning of a Three-Link Wheeled Mobile Manipulator. 2004 ICARCV, Kunming,China, 2004: 993-998
    91郭丙华,胡跃明.三连杆移动操作机器人模型与运动规划.控制理论与应用. 2005,22(6):965-968
    92叶敏,肖龙翔.分析力学.天津大学出版社. 2001: 224-231
    93张劲夫,秦卫阳.高等动力学.科学出版社. 2004: 8-20
    94王振发.分析力学.科学出版社. 2002: 41-64
    95 L. Sheng, A. A. Goldenberg. Robust Damping Control of Mobile Manipulators. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 2002,32(1):126-132
    96李刚俊.基于虚拟现实的冗余度机器人运动规划及仿真研究.西南交通大学博士学位论文. 2001:31-38
    97郭立新,赵明扬,张国忠.空间冗余度机器人最小关节力矩的轨迹规划.东北大学学报(自然科学版). 2000,21(5):512-515
    98徐贺,付宜利,王树国,马玉林.面向任务的移动导航平台及相关技术研究. 2005年哈工大机电学术论坛会议论文集.哈尔滨工业大学. 2005:6-7
    99王卫忠.可重构模块化机器人系统关键技术研究.哈尔滨工业大学博士学位论文. 2007:61-73
    100 P. I. A. Corke. Robotics Toolbox for MATLAB. IEEE Robotics and Automation Magazine, 1996,3(1): 24-32
    101埃肯因(Akenine T).实时计算机图形学. 2版.普建涛译.北京:北京大学出版社. 2004:26-31
    102张建英,刘暾.基于人工势场法的ODMM最优路径规划.宇航学报. 2007,28(06):183-188
    103 A. M. Ahmad. Solving the Narrow Corridor Problem in Potential Field-Guided Autonomous Robots. Proceedings of the 2005 IEEEInternational Conference on Robotics and Automation.Sarcelona, Spain, 2005:2909-2914
    104张建英,赵志萍,刘暾.基于人工势场法的机器人路径规划.哈尔滨工业大学学报. 2006,(08):1306-1309
    105 G. Parkm, J. Jeon, C. Leem.Obstacle Avoidance for Mobile Robots Using Artificial Potential Field Approach with Simulated Annealing. IEEE International Symposium on Industrial Electronics. Pusan, South Korea, 2001,3(6):1530-1535
    106庄慧忠,杜树新,吴铁军.机器人路径规划及相关算法研究.科技通报. 2004,20(3):210-215
    107 K. C. Hsu. Variable Structure Control Design for Uncertain Dynamic Systems with Sector Nonlinearities. Automatica, 1998, 34(4):505-508.
    108卓睿,陈宗海,陈春林.基于强化学习和模糊逻辑的ODMM导航.计算机仿真, 2005,22(8):157-162
    109 Li Wei. Behavior Based Control of a Mobile Robot in Unknown Environments Using Fuzzy Logic. Control Theory and Applieations, April.1996:153-161
    110李保国,宗光华.未知环境中ODMM实时导航与避障的分层模糊控制.机器人. 2005,27(6):481-485
    111帅知春.混合智能算法在ODMM导航中的研究及应用.广东工业大学硕士学位论文. 2007:30-32
    112陈立彬,尤波.基于改进人工势场法的机器人动态追踪与避障.控制理论与应用. 2007,26(4):8-10
    113 P. Vadakkepat, K. Tan, M. L. Wang. Evolutionary Artificial Potential Fields and Their Application in Real Time Robot Path. Evolutionary Computation, 2000, Proceedings of the 2000 Congresson, 2000:256-263
    114况菲,王耀南,张辉.动态环境下基于改进人工势场的机器人实时路径规划仿真研究.计算机应用. 2005,25(10):2415-2417
    115庞明,赵杰,蔡鹤皋.基于遗传算法的三肢体功能仿生机器人步态能量优化.机械工程学报. 2006,42(s1):35-38
    116方华元,胡昌华,李瑛.基于遗传算法的威布尔分布的参数估计及MATLAB实现.战术导弹控制技术. 2006,56(01):100-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700