用户名: 密码: 验证码:
反复粘贴压敏胶与阀口袋用聚氨酯胶的制备应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
便事贴产品中使用的压敏胶是一类具有特殊微球结构且能反复粘贴的胶粘剂,目前国内产业化的报导很少不能满足生产与市场的要求。本文采用悬浮聚合法制备了反复粘贴微球型丙烯酸压敏胶。以丙烯酸异辛酯(2-EHA)为软单体、三烯丙基异三聚氰酸酯(TAIC)为交联剂、在含有分散剂的水相中采用悬浮聚合的方法制备了粒径为10~100μm粘性聚合物微球。使用这种微球富集相按照一定比例调配自制的乳液,增稠剂及其他添加剂制得的压敏胶液用线棒涂布器涂布于纸等基材上烘干得具有良好再剥离性的反复粘贴压敏胶。其具体性能指标为:平均粒径:53μm;初粘:6号球;剥离强度:1.21 N/25mm;100次粘贴剥离强度:1.06N/25mm; 2 kg重压一周后仍能轻易剥离而不损伤纸面。样品适用于各种表面的粘贴,可以作为便事贴、各种难粘表面的表面保护膜、医用压敏胶使用。
     在研究中发现:在有机相中添加一定量的单体A,无需在复杂的工艺条件下便能显著减小微球的粒径并使单分散性上升,比较合适的用量为单体质量的3%;通过实验确定了最适宜的工艺参数为:分散剂PVA的用量不大于1%、油水比1:3、搅拌速度为400-500r/min、水相pH值稳定在7~8。
     通过剥离强度测试以及再剥离性能的测试,获得了微球粒径大小与此类胶粘剂性能的关系。并通过弹性力学中相关知识模拟推导了随时间和在重压下不同粒径大小的微球压敏胶剥离强度的增长情况,与实验结果印证一致。本文认为经过同样的时间和重压下,小粒径微球剥离强度增长幅度较之大粒径微球来的大,其性质更接近乳液压敏胶。
     本文对阀口袋用双组份聚氨酯胶粘剂小试与中试工艺进行了研究,讨论了软段分子量对剥离强度以及胶液粘度、软段结构的规整性对胶粘剂结晶性能、催化剂的使用对固化过程、增粘剂的使用对胶粘剂性能的影响,以及在实际施胶过程中出现的一些问题如溶剂挥发速度的影响因素等。结果表明,使用分子量为2000的结晶性聚己二酸-1,4-丁二醇酯多元醇(PBA),配以部分非结晶性聚酯多元醇,TDI与MDI的异氰酸根指数R值范围为0.95~0.98,硬段含量Ch值范围12%~20%,采用一步法本体聚合制备出的聚氨酯胶粘剂胶粒,经乙酸乙酯溶解后加入固化剂与增粘剂,得到的胶液具有良好的综合性能。在15%固含的乙酸乙酯溶剂中胶液粘度为21s(涂四杯);固化24h后剥离强度为32.5N/25mm;经过破坏性实验时PE膜破坏。根据该配方和工艺要求,我们自行设计了年产一千吨中试生产线,在一企业进行了中试生产,成功生产出合格产品,产品质量与实验室小试完全一致,并在日产8万条阀口袋全自动生产线上应用成功,获得了企业的认可。目前生产出的产品较之国内外产品价格更为低廉,性能优良,正逐渐走上市场,以取代国内外公司同类产品。
     实际生产使用中发现胶粘剂因PBA类聚酯二元醇较高的结晶性会产生一些缺陷,如:胶膜过于致密影响溶剂的挥发和初粘性过大在机器涂布生产线上容易发生粘连的事故等。本文通过加入非结晶性聚酯多元醇共混的做法减少胶粘剂的结晶性,并运用DSC曲线图表征了样品的结晶性,通过积分峰面积计算出了结晶度的变化。用偏光显微镜观察了纯PBA样品和共混样品的结晶情况,证实了其结晶性的降低和结晶速度的下降。结果表明添加10%~30%质量比的非结晶性聚酯多元醇便可使干燥时间从原本的5~7d缩短至2d以内,并且剥离强度没有明显的减少。
     研究了在胶液调配时添加0.1%的T-12催化剂对固化进程的影响,通过观察添加催化剂的量对胶粘剂剥离强度变化情况,发现T-12能显著加速双组份聚氨酯胶粘剂的固化,能使固化达标时间从2-3d缩短至1d以内。并且通过红外图谱分析了双组份聚氨酯胶粘剂的一些结构特征,通过-NCO的特征峰高度的变化情况进一步验证了T-12的催化效果。
     研究了增粘剂对胶粘剂表干时间,固化时间,固化后剥离强度的影响。通过实验确定了最适合的增粘剂添加量,结果表明在调配时添加占胶液质量5%左右的增粘剂能有效的增加胶粘剂的剥离强度,能将未添加前的21.3N/25mm的剥离强度提升至32.5N/25mm。
The pressure-sensitive adhesive (PSA) used in POST ITTM products has special microspherical structure and repositionable.There are few reports of industrialization at present, and these peoducts can not meet the requirement of market. A series of acrylic PSA microspheres were prepared by suspension polymerization in this paper. Based on acrylic monomers, an initiator, a polymeric stabilizer, wherein the reaction occurs in water to yield a microsphere adhesive. The copolymer microspheres are having diameters in the range of about 10-100μm. By mixing the cream(the microsphere-rich phase) with certain percentage of the emulsion, thickeners and other additives, then coated it through a 100μm gap mayer bar onto the paper, after drying that have good repositionable PSA. In accordance with the detection of patents, the performance of PSA was similar to products abroad. The specific performance indicators were:average particle size:53μm, tack:6# Ball, peel strength:1.21 N/25mm,100 times paste peel strength:1.16 N/25mm; with 2 kg's pressure during a week it can be easily peeled without injury stripping paper. This adhesive can be used as Post-it self-stick notes or the surface protective film adhesive and even for medical use.
     The amount of monomer A, the amount of dispersant, oil and water ratio, stirring speed, pH value of aqueous phase were studied in the paper. The results showed that the using of monomer A can significantly reduce the size of microspheres and improve the monodispersity without the complicated process conditions. The appropriate amount was about 3% of the monomer mass. Under laboratory conditions the most appropriate value of this experiment were: the amount of dispersant PVA:less than 1%, oil-water ratio of 1:3, stirring speed: 400-500r/min, pH values of aqueous phase stabilized at 7-8.
     By the testing of peel strength and repositionability, we have found the influence of microsphere size on adhesive properties. And also derivate the increase of peel strength over time and under pressure of different sizes of microspheres by using the theory of elasticity, which was confirmed by the experimental results.
     The pilot scale process of two-component polyurethane adhesive for valve bag was also studied in this paper. The factors such as the molecular weight of soft segment, the structure of soft segment, the using of catalyst and tackifiers were disscused. The results showed that the adhesive had the good integration performance including solvent:ethyl acetate, solids content: 15%, viscosity:21s (measured by TU-4 cup viscometer), curing time:24h, peel strength: 32.5N/25mm, destructive experiments:PE film damage, when crystalline PBA2000 and non crystalline polyester polyol were used as main material. The isocyanate index was 0.95-0.98, hard segment content was 12~20% through one-step bulk polymerization. According to the formula and process we have designed a production line which can output 1 thousand tons per year, and have produced the qualified products during pilot scale production, and running smoothly in the automated production line. Our products have excellent performance and lower price and which is gradually into the market to replace the products at home and abroad.
     Some defects was found in actual production such as slow solvent evaporation and excessive tack because of the high crystalline of PBA. By blending the non-crystalline polyester polyol, we had reduced the crystallinity of adhesive. DSC was used to characterize the crystallinity of the sample and then observed the crystallization conditions by polarizing microscope. The results showed that the addition of 10%-30% ratio of non-crystalline polyester polyol can reduce the drying time from 5-7d to less than 2d, and there was no significant reduction in peel strength.
     The effect of the catalyst T-12 on curing process was studied. By testing the peel strength of adhesive over time we had found that the T-12 could significantly speed up the curing of two-component polyurethane adhesive, which can shorten the curing time from 2-3d to less than 1d. Structural characteristics of infrared spectra for two-component polyurethane adhesive were analyzed to verify the catalytic effect of T-12 such as the changing of NCO peak.
     The effect of the tackifier on dry time, curing time, the impact peel strength after curing were also studied in this paper. The most appropriate amount of tackifier was about 5% of glue. The result showed that it can improve the peel strength from 21.3N/25mm to 32.5N/25mm.
引文
[1]杨晨,邢帆.一种可反复粘贴的压敏胶粘带[J].广州化工,1995,23(4):7-9.
    [2]Pietsoh H, Hoeffl A. Verfanhren zur herstellung von dispersions-selbstklebemassen[P]:DE,2407494. 1975-08-21.
    [3]Azuma T, Sakurada A, Hattori T, Kanekawa M. Removable Adhesive Mass Composition[P]:JP, S57-087481.1980-11-20.
    [4]Azuma T, Sakurada A,Hattori T, Kanekawa M.Acrylic Repeelable Adhesive[P]:JP, S57-070162. 1980-10-20.
    [5]Harry E. Activatable Adhesive Sheets with Peaked Areas of Lesser Potential Adhesive Tenacity[P]: US3386846.1986-06-04
    [6]穆锐,邓爱民.用悬浮聚合法制造再剥离性压敏胶的研究[J].中国胶粘剂,6(6):10-13.
    [7]Terrence E, Michael D, James E. Partially Crosslinked Microspheres[P]:US, RE37563E1.1999-11-08.
    [8]Spencer S. Acrylate Copolymer Micropheres[P]:US,3691140.1972-09-12.
    [9]William B, Warren K D. Tacky Polymeric Microspheres[P]:US,4166152.1979-08-28.
    [10]Philip H. Low Tack Microsphere Glue[P]:US,4495318.1985-01-22.
    [11]Philip H.Low Tack Cationic Microsphere Glue[P]:US,4598112.1986-07-01.
    [12]Bernd B. Process for the Preparation of Tacky Polymeric Microspheres[P]:US,4786696.1988-11-22.
    [13]Chang H, Wei I-Chien. US,5109083[P].1992-04-28.
    [14]Joaquin D. Hollow Acid-free Acrylate Polymeric Microspheres Having Multiple Small Voids[P]: EP,444354.1991-09-04.
    [15]潘祖仁.高分子化学丛书——悬浮聚合[M].化学工业出版社,1997.
    [16]LU Y Y, Kelly S. Microsphere Pressure Sensitive Adhesive Composition[P]:US, WO2009079582A1. 2007-12-18.
    [17]庄儒彬,高保娇.悬浮聚合法制备PGMA-MMA-EGDMA共聚物交联微球[J].过程工程学报,2008,8(5):1013-1017.
    [18]甘宏宇,周锦鑫,顾顺超.单分散性高分子微球制备工艺的研究[J].材料导报:纳米与新材料专辑,2008,3:301-303.
    [19]穆锐,王桂萍,尾见信三.用SPG膜乳化法制造再剥离性压敏胶的研究[J].精细化工,2002,19(3):165-168.
    [20]C.E席尔奈希.聚合过程[M].化学工业出版社,1984.
    [21]陈中,等.悬浮聚合的转化率和粒子尺寸分布[J].石油化工,1999,28(9):595.
    [22]Jong-Shing Guo,Sharon D.Trembley.Process for Forming Sold Pressure Sensitive Adhesive Polymer Microspheres [P]美国,US2005154162A1.2005-01-25.
    [23]穆锐,邓爱民.一种具有重复粘贴特性的微球状压敏胶[J].化学与粘合,1997,4.
    [24]穆锐,邓爱民,尾见信三.用SPG膜乳化法合成单分散性高分子微粒子[J].高分子材料科学与工程,2003,19(4):82-85.
    [25]Joaquin D. Hollow Acrylate Polymer Microspheres[P]:EP,0371635.1990-06-06.
    [26]Joaquin D. Hollow Acid-free Acrylate Polymeric Microspheres Having Multiple Small Voids[P]:EP, 444354.1991-09-04.
    [27]Kim J W, Joe Y G, Suh K D. Colloid Polym. Sci.,1999,277:252-256.
    [28]Ono K, Sakurai Y, Kishimoto Y. Removable Adhesive Material[P]:JP, S62-143988.1985-12-18.
    [29]Bernd B, Daniel S. Aqueous, Repositionable, High Peel Strength Pressure Sensitive Adhesives[P]:EP, 0439941.1991-08-07.
    [30]Spencer S, Roger L. Pressure Sensitive Adhesive Comprising Tacky Microspheres and Macromonomer-containing Binder Copolymer[P]:EP,0454365.1991-10-30.
    [31]Bernd B, Roger L. Pressure-sensitive Adhesive Comprising Hollow Tacky Microspheres and Macromonomer-containing Binder Copolymer[P]:US,4994322.1991-02-19.
    [32]李绍雄,刘益军.聚氨酯胶粘剂[M].北京:化学工业出版社,2003:93.
    [33]乔吉超,胡小玲,管萍.聚氨酯胶粘剂的研究进展[J].2006,21(5):44-48.
    [34]王孟钟,黄应昌.胶粘剂应用手册[M].北京:化学工业出版社,1987.
    [35]程时远,陈正国.胶粘剂生产与应用手册[M].北京:化学工业出版社,2003:23-25.
    [36]王恩清,王杨勇.无游离异氰酸酯聚氨酯胶粘剂的研制[J].聚氨酯工业,2005,5(3):206-209.
    [37]赵雨花,亢茂青,王心葵.高性能水性聚氨酯胶粘剂[J].化工新型材料,2005,33(9):25-27.
    [38]张丽华,李学娟.室温快固型双组分胶粘剂配方研究[J].化工时刊,2004,18(3):47-49.
    [39]佘红梅,刘荣杏,张洪林.纳米氧化物在胶粘剂和涂料中的应研究进展[J].化学与黏合,2005,27(5):289-293.
    [40]黄德君,杨代贵.低粘度高固含量聚氨酯胶粘剂的研制[J].重庆工商大学学报,2003,20(3):35-36.
    [41]杜郢,苟天舒.环保型高固含量低粘度聚氨酯复膜胶的研究[J].中国胶粘剂,2005,14(6):9-13.
    [42]叶青萱.软包装复合膜用PU胶粘剂的进展简况[J].聚氨酯工业,2005,20(1):1-4.
    [43]沈娜,唐君.一种新型耐蒸煮性聚氨酯胶粘剂[J].中国胶粘剂,2010,19(4):68.
    [44]胡艳秋.耐蒸煮的双组份聚氨酯复膜胶[J].中国胶粘剂,200,15(10):27.
    [45]邓德纯,陈大俊.一种耐蒸煮聚氨酯胶粘剂及其制备方法:CN,1629245[P],2005-06-22.
    [46]陈晓东,周南桥,张海.耐蒸煮软包装用聚氨酯胶黏剂的研制[J].化学与黏合,2009,31(2):67-69.
    [47]庄严.高温蒸煮复合包装袋用聚氨酯胶粘剂的研究[J].粘接,2005年26(3):24-26.
    [48]Sasano S, Yamazaki K. Polyurethane Adhesive Compositions[P]:US,5478897,1995-12-26.
    [49]Yamazaki K, Hori T. Polyurethane Adhesive of Epoxy Resin, Polyisocyanate, Phosphorus Oxy Acid, and Carboxylic Acid[P]:US,5096980,1992-03-17.
    [50]沈峰.食品软包装用水性聚氨酯复合粘合剂[J].塑料包装,2009,19(4):16-18.
    [51]张辉,傅和青,陈焕钦.包装用BA/St改性水性聚氨酯及其粘接性能的研究[J].中国胶粘剂,2009,18(5):12-16.
    [52]钟树良,蔡炳照.环保型水性聚氨酯复膜胶的开发及其在软包装中的应用[J].中国胶粘剂,2009,18(5):39-42.
    [53]黄志虹.软包装干式复合水性胶粘剂及其制备方法[P]:CN,1888001,2007-01-03.
    [54]郭文杰,傅和青,黄洪.包装复合膜用松香改性水性聚氨酯胶粘剂[J].包装工程,2007,28(1):33-34.
    [55]丁莉,杲云.水性聚氨酯胶粘剂结构与性能的研究[J].功能高分子学报,2001,14(1):95-99.
    [56]郭琦,钱文浩,朱吕民.双组分水性聚氨酯胶粘剂的合成与应用[J].聚氨酯工业,2002,17(1):12-1.
    [57]谭美军,王正祥,汤建新.聚氨酯胶粘剂在软包装复合薄膜中的应用研究[J].包装工程,2003,24(5):44-46.
    [58]张彪,纪学顺,李俊梅,许戈文.环保型聚氨酯胶粘剂的研究进展[J].涂料技术与文摘,2010,10:12-16.
    [59]李银松.一种醇溶性聚氨酯双组份粘合剂[P]:CN,101735761A,2010-06-11.
    [60]邹友思.一种醇溶性双组分聚氨酯复膜胶的制备方法[P]:CN,101407709,2009-04-15.
    [61]许戈文,谢伟.一种溶于水的醇溶型聚氨酯及其制备方法[P]:CN,101230125A,2008-02-29.
    [62]王鑫,戴震.环氧树脂改性醇溶性聚氨酯胶粘剂的制备与性能[J].聚氨酯,2008,77:63-65.
    [63]张烈银.复合包装用聚氨酯胶粘剂现状与发展趋势[J].中国印刷物资商情,2005(7):10-13.
    [64]孙宇宏.无溶剂双组份聚氨酯复合薄膜胶粘剂开发及应用前景[J].中国包装报,2003-09-22.
    [65]田立云,沈峰.软包装用无溶剂型聚氨酯复膜胶的发展概况[J].中国胶粘,2008,17(6):41-45.
    [66]王小妹,李建明.无溶剂MDI型聚氨酯复膜胶粘剂的研究[J].粘接,2010,9:46-49.
    [67]魏克超,王玲.无溶剂快固型单组分聚氨酯密封胶的研制[J].化学推进剂与高分子材料,2001(5):30-31.
    [68]张娅,牟锦江.无溶剂聚氨酯胶粘剂的研制[J].浙江化工,2002,33(2):58-59.
    [69]张向宇.胶粘剂分析与测试技术[M].北京:化学工业出版社,2004:11-15.
    [70]刘万章,潘卫春.难粘材料胶粘剂及粘接技术研究[J].中国胶粘剂,2003,12(4):15-17.
    [71]路胜利,叶胜荣,杨慕杰.聚烯烃粘接最新研究进展[J].科技通报,2002,18(5):402-407.
    [72]于平.浅谈电晕处理在行业中的应用[J].全球软包装工业,2009,5:54-55.
    [73]Sapieha S, Cerny J, Klemberg-Sapieha J E. Corona Versus Low Pressure Plasma Treatments:Effect on
    Surface Properties and Adhesion of Polymers [J]. Journal of Adhesion,1993(42):91-102.
    [74]李笃信,贾德民.等离子体技术对高分子材料的表面改性[J].高分子材料科学与工程,1999(3):172-175.
    [75]张进.低温等离子体技术在表面改性中的应用进展[J].材料保护,1999,32(8):20-21.
    [76]Stopka P. Thin surface layer of plasma treated polyethylene[J].Strength of Materials,2008,40(1):86-89.
    [77]张丽惠,陈亚芍,刘鹏Ar/O2低温等离子体处理对高密度聚乙烯-玻璃粘接性能的影响[J].化学研究与应用,,2003,15(6):789-792.
    [78]Yang J, Garton A, Primers for Adhesive Bonding to Polyolefins[J].Journal of Applied Polymer Science,1993(48):359-370.
    [79]Horst H B, Harald B. Coating of Untreated Polypropylene with Halogen Free Aqueous Materials[J].Progress in Organic Coatings,2000(40):49-54.
    [80]钱凤珍.聚烯烃表面改性剂[J].塑料科技,1990(5):50-54.
    [81]VAKULA V L,GENEL L S, Kestelman V N. Mechanochemieal Bonding of Hard to Bond Materials[J].Advances in Polymer Technology,1993,12(1):91-98.
    [82]蒋慕红,陈秉铨,徐强.聚烯烃包装材料用聚氨酯胶粘剂的研究[J].太原工业大学学报,1989,20(1):47-53.
    [83]孟宪铎,律微波,孙长高.聚丙烯阀口袋粘接成型用聚氨酯胶粘剂的研究[J].中国胶粘剂,1999,10(1):18-22.
    [84]Adhesive Crosslinked Thermoplastic Elastomer Composition And Laminate[P]:JP,2001219511, 2001-08-14.
    [85]陈和生,杨定乔.马来酸酐与甲基丙烯酸甲酯混合改性SBS胶粘剂的研究[J],山东化工,1998(1):16-17.
    [86]张东亮,李锦春,罗士平.SBS四元接枝共聚及其产物粘合性能的研究[J],化学与粘合,2000(1):17-19.
    [87]孙燕,徐艳,孟跃中.新型塑编布一纸粘合剂[J].粘接,1996,17(1):22-27.
    [88]Johnson K L. Contact Mechanics[M].Cambridge University Press,1985.
    [89]Weij F W. Kinetics and Mechanism of Urethane Formation Catalyzed by Organotin Compounds Ⅰ.The Reaction of Phenyl Isocyanate with Methanol in Dibutyl Ether under the Action of Dibutyltin Diacetate[J].Journal of Polymer Science,PartA,1981,19 (2):381-388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700