用户名: 密码: 验证码:
基于UG力学模拟分析的大型特种车车体焊接翻转机设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
特种装甲车车体,具有体积大、质量大、焊缝质量要求高、整车装配精度高等特点,给车体整体焊接工序带来一定的难度,因其生产批量一般为中小批,如完全引进全自动生产线,成本和造价太高,在经济性上不可取;另一方面,如果完全依靠人工去完成相应操作,又存在工人劳动强度大、车体装配精度差、生产效率低等诸多问题。因而必须设计出一套工作装置来解决问题。该工作装置必须具备良好的经济性、现实的可行性、较高的实用性、绝对的可靠性和安全性。综合以上设计要求,笔者草拟出两套方案,并用Auto CAD作出了两套工作装置的总装配图作为概念设计的原始雏形。并从经济性、可行性、实用性、可靠性和安全性方面对两套方案作比较,最后选择方案一(即驱动轮方案)作为工厂最终的设计和制造方案。
     过去,大型复杂的工装设计,采用传统的经验设计、实验校核的方法,由于结构的复杂性,力学分布的不均衡,在设计过程中往往无法知道局部及总体强度等是否满足设计要求,只能靠一轮又一轮的设计实验来改进,需要很长的设计周期及很高的设计试制费用,已很难适应市场的需求。这种方法不仅费用大、试制周期长、而且也不可能对多种方案进行评价。现代结构设计已发展到包括有限元法、优化、动态设计等在内的计算机分析、预测和模拟阶段,采用CAE技术,在工作装置概念设计的同时,进行静态动态分析,随着设计图纸的进一步完善,翻转工作装置结构的有限元模型也进一步细化,使分析计算的结果更趋于准确。这样,在最终图纸完备后,就能使整套装置的强度、寿命指标得到控制,大大地减少了样品的制作和实验时间。
     以CAD绘制的总装图作为蓝本,运用Unigraphics(UG)软件进行车体的3D造型,为避免翻转过程中车体重心与驱动轮中心不重合而引起的侧倾,需运用其质量分析模块,测得车体的重量体积以及质心位置,并以这些数据,作为后续驱动轮造型和有限元分析的必要依据。
     在得到车体质心位置后,以质心为中心,均布两个构造完全相同的驱动轮,这样就保证了两个驱动轮每时每刻处于同样的工作环境和应力状态,这样便将整个工装的强度分析问题转化为求解单个驱动轮强度问题。
     选取UG+Nastran组合作为有限元分析的软件,分析了该方案的优越性,对运用Nastran进行应力分析的过程及步骤作了介绍,得到不同工况下的驱动轮应力状态图,该应力图真实可信、直观易懂,以此判别当前选用的材料能否满足使用要求,为解决问题提供了强有力的工具和手段。
     由概念设计所设定的初始尺寸,得到最终的驱动轮应力图谱表明选取的材料(45钢)强度有足够的盈余,有必要进行优化设计,即进入驱动轮轻量化设计的过程。
     对驱动轮主要部件选用的材料规格优化选型和板料厚度减少之后,得到轻量化的驱动轮结构,通过不同工况条件下的模拟分析,最终表明:适量的轻量化设计处理后,驱动轮的强度依然满足使用要求。在满足使用要求的前提下,实现了性价比最佳的设计方案,解决了工程实际问题。
As we know,the car body of Special vehicle have feature as follows:first,it is large in size and heavy in Weight. Second,it is strict in quality control of the welding line on the car body .third,the precision of finished Automobile must be accurate.All this make it difficult to do welding on the car body. Special vehicle is in limited quantities, it is not suited to bring in production line from overseas,which will increase costs of making the product.On the other hand,if we do it by manpower,we can’t come up to the criterion and that will burden worker’s intensity of labour.what’s worth we can’t meet meet the qualification.So we must design a working device to solve the problem. This device must have good economical and practical feasibility and high practicability, absolute reliability and safety.
     Considering of all those requirements above, we sketch out two design proposal, and made two sets of the total work device assembly as the initial concept design using the software of Auto CAD. And do coMParison of two schemes from the aspects of feasibility, practicability of economy, safety, reliability .In the end ,we take finally options (namely driving wheel factory) as the final design and manufacturing solutions.
     In the past, we do design of large-scale complex tooling, we used to use the traditional design experience, experimental test method, due to the complexity of the structure, mechanical unbalanced distribution of structure,usually we cannot know local and overall strength in the design process, so we have to do optimize design by doing experiments many a time, it need for a long period and high cost, the design has been trial-produced struggled to adapt to the demand of the market. This method not only high-cost and long-period, but also trial-manufacture of multiple solutions may not be evaluated. Modern structural design has developed to include finite element method, the dynamic design optimization, the computer, the forecast and analysis and simulation stage, the CAE technology and equipment in the concept design for static and dynamic analysis, along with the further improvement of drawings, flip work device structure finite element model is further refinement, makes analysis and calculation results tend to be more accurate. When drawings completed, we can make whole after the device control strength, life index, greatly reduce the samples and time.
     The assembly drawing with CAD, using Unigraphics (UG) figure as software of 3D modeling, in order to avoid the reverse process of body gravity and the drive wheels center not overlap and lateral, we have to use its quality analyse module, and the weight of the hull size, and with the centroid position as a follow-up data, driving wheel of the finite element analysis model and necessary basis.
     After we get the centroid of bodywork, we can lay out two tectonic identical drive wheels, so that the two driving wheel yould at the same work environment and stress state, thus the tooling strength analysis problem is transformed into solving a problem to analyze one driving wheel strength.
     At last,we choose UG and Nastran combination as the software to do finite element analysis, analyses the superiority of the scheme, to use Nastran to stress analysis process and procedure is introduced, the drive wheels under different working conditions, GaiYing stress state to authentic, straightforward, judging the selection of material can meet the requirements for solving problems, and provides a powerful tools and methods.
     The initial set by the concept design for the ultimate size, when we take 45 steel as the material of driving wheels ,that stress map shows its strength is enough, strength of materials is superfluous. It is necessary to optimize design, namely into the drive wheels lightweighting design process.
     After reduce cross-section of driving wheels ,Main component selection for driving wheel of material selection and optimal specification sheet thickness after reducing, lightweight driving wheel structure, through different operating conditions, the simulation analysis shows that: moderate lightweighting design after treatment, the intensity is still driving wheel meets the requirement. Meet the demands on the premise, that ensure us to get the best product with minimum price.
引文
[1]李汶龙.基于三维CAD的计算机辅助工装设计与管理信息系统研究与开发[D].西安:西北工业大学2005,3.
    [2]叶勇,朱若艳.基于有限元分析的结构优化设计方法[J].重型机械科技,2004,(4):5-7.
    [3] Bumett, David S. Finite element analysis[J]. Addison-Wesley Pub.1987,(3):12-14.
    [4] Frederie Dieu. Structural Optimization of A Vehiele Using Finite Element Techniques[M], SAE,2001.
    [5] Finite Element Application to Vehiele Design[J].Intenational Conference on Vehiele Struetural Meehanies,2008,(5):2-3.
    [6]唐明晶.某复杂机械系统有限元分析和结构轻量化研究[D].南京:南京理工大学,2007.
    [7]刘争利.某发射筒工装动态特性分析及其结构优化[D].西安:西安电子科技大学,2007,6.
    [8] K.L.BatheandD.VWilson. Numerical Methods in Finite Element Analysis[M]. Prentice-Hall, EnglewoodClifs, NewJersey.1976:239-308.
    [9]毛昌明.基于现代设计方法的液压支架研究[D].太原:太原理工大学,2006,5.
    [10]郑立斌,陈全园.基于Unigraphics机械零件有限单元法的静态分析[J].科学技术与工程,2005,(12):13.
    [11]曾向阳,谢国明,王学平著. UG NX基础及应用教程[M].北京:电子工业出版社,2003,1.
    [12] Yijun Liu.Introduction to the Finite Element Method[J].CAE Research Laboratory Mechanical Engineering Department University of Cincinnati,2003,(5):23-24.
    [13]王世忠.结构力学与有限元法[M].哈尔滨:哈尔滨工业大学出版社, 2003,4.
    [14]屈钧利,韩江水主编.工程结构的有限元方法[M].西安:西北工业大学出版社, 2004,9.
    [15] Conle,F.A.;Chu,C.C.Fatigue analysis and the local stress–strain approach in complex vehicular structures[J].International Journal of Fatigue ,1997,(6):43-46.
    [16] S.Przemieniecki,Theory of Matrix Structural Analysis[M].MegrAWHILLBook CMPany. New york.1986.
    [17] Clough, RX,The Finite Element Method in plane Stress Analysis[J]. Proc.200 ASME Conference on Electronic Computation,Pittsburgh.1960,(9):60-63.
    [18]王慧青. BJ2027型皮卡车车架的有限元分析[D].大连:大连理工大学,2003,9.
    [19] Bathe K J and Wilson E L.Numerical Methods in Finite Element Analysis[M]. Prentice-Hall,Inc. 1976:332.
    [20]陈宝.摩托车结构建模及其有限元分析[D].重庆:重庆大学,2004,11.
    [21]廖日东,王健,左正兴,冯慧华.有限元技术在载货车辆车架分析中的应用[J].车辆与动力技术,2006,(2):23-24.
    [22]常德功,卢学玉.机床动力卡盘的UG有限元分析[J].电器技术与自动化,2005,34(1):99-101,105.
    [23]刘中华.基于NX Nastran的锅炉钢架有限元分析选型及应用[J].江西能源,2008,(3):53-56.
    [24]隋允康等. MSC.Nastran有限元动力分析与优化设计实用教程[M].北京:科学出版社,2004.
    [25]周临震,刘德仿.基于MSC/Nastran的产品结构形状优化设计[J].机械设计与制造,2006,(10):15-17.
    [26]张峰. NX NASTRAN分析指南[M].北京:清华大学出版社,2005.
    [27]朱金光,陈敏革等.基于NX MasterFEM/NX Nastran的装载机工作装置强度的有限元分析[J].农业装备与车辆工程,2007,(3):22-24.
    [28]张良成.材料力学[M],中国农业出版社,2003.
    [29]李维钺编.中外钢铁材料力学性能速查手册[M].北京:机械工业出版,2006,4.
    [30]朱颜. CAE技术在汽车轻量化设计中的应用[J].农业装备与车辆,2008(10):31-34.
    [31] S.Hemandez.Post-optimal Procedures for structural optimazation[J]. Advances Engineering software.2003,(31):401-409.
    [32]唐玫.液压支架底座强度有限元分析[J].计算机辅助工程,2006,(9):426-427.
    [33]赵强,邱黄林,柯贵喜.基于有限元的承重梁结构优化设计[J].数字技术与机械加工工艺装备,2008(10):32-33.
    [34]曾亚平,张俊荣等.不同截面横梁的受力变形有限元分析及截面优化[J].机电产品开发与创新,2008,21(5):108-111.
    [35] A.V.Fiacco,A.Ghaeml.Sensitivity Analysis of a Nonlinear structure Design Wang shaomei Sensitivity Analysis of Nonlinear Programming for Optimal Design Problem of the Crane[J]. ProceedingsoftheIntemational88 ConfereneeModeling&Simulation,1988,(11):132-135.
    [36] Su Huan Chen , Hua Dong Lian.Interval eigenvalue analysis for structures with intervalParameters[J].A Department of Mechanics,Nan Ling Campus,Jilin University,2002,(1):57-60.
    [37] Hyungyil Lee,Heon Seo,Gyung-Jin Park.Design enhancements for stress relaxation in Automotive multi-shell-structures[J].International Journal of Solids and Structures. 2003,40(20):25-27.
    [38] Hiroyuki Kuwahara,Yoji Fukui.Virtual Assessment of Motorcycle Vibrations[J].Honda R&D Co.,Ltd.-Japan.2001,(1):62-64.
    [39]汪三清,王运周.半挂车车架的有限元分析及其静弯曲强度储备问题[J].汽车工程,1991,(3):24-27.
    [40]栾丽君等.基于UG的驱动轮有限元分析[J].煤矿机械,2006,27(3):431-432.
    [41]郑雄文,靳亚维.浅析机构运动仿真分析在机构设计中的作用[J].机电工程技术,2005,34(9):52-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700