用户名: 密码: 验证码:
基于新一代GPS的功能公差设计理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家自然科学基金项目“基于新一代GPS标准体系的计算机辅助功能公差设计理论与方法(50775204)”、“基于GPS的三维公差建模方法与技术研究(50505046)”,就公差建模与表示、功能公差方案规范设计、功能公差分析与综合以及面向可装配性的公差分析等技术开展了研究,提出了“基于新一代GPS的功能公差设计理论与方法的研究”的博士论文。
     第1章:论述了新一代GPS的制定和跟踪研究情况,综述了计算机辅助公差设计的发展历史和研究现状,讨论了本课题的研究背景和意义;最后,给出了本论文的主要研究内容、总体框架及创新点。
     第2章:结合新一代GPS标准,给出了产品几何的一些基本定义,分析了几何尺寸与公差(GD&T)的信息构成、公差项目分类、公差原则等;应用与ISO/TC213-GPS一致的TTRS、MGRE、SDT等研究了三维公差域参数化建模理论,并针对几种常见的恒定类表面进行了实例研究。
     第3章:基于恒定类研究了装配体定位接点的分类及其优先次序的确定原则,对现有装配有向图进行了改进,增加了装配定位约束的表达;研究了几何功能需求的表达与分解方法,基于改进装配有向图研究了零件-零件之间分界面的公差规范设计技术;给出了公差域恒定度的定义和标识,研究了基于拓扑的基准参考框架的验证规则;提出了一种几何功能需求-几何规范的功能公差方案设计过程和方法;给出了一个简单装配体实例及其公差方案设计结果。
     第4章:在公差建模的基础上,以齐次坐标变换来描述装配体中的几何变动传播,建立了包含零件公差信息和装配间隙信息的装配公差分析矩阵模型,构建了公差回路的矩阵表达式,用实例说明了面向功能性和可装配性的公差分析过程。
     第5章:提出了一种基于变动量SDT表达的功能公差综合方案;在公差域-偏差域映射的基础上,研究了公差-成本模型到偏差-成本模型的映射,给出了几何功能需求约束、装配连接约束的SDT表达;并用一个简单实例说明公差综合优化过程。
     第6章:将CAD模型中零件模型及其特征用点集形式表示;采用齐次坐标变换来描述工艺系统各组成部分的空间关系,建立了工艺系统各组件的几何误差累积模型;将制造过程看作是刀具轨迹形成的点集更新被加工零件点集的过程,可生成表达加工后零件的点集矩阵;用实例进行了Monte-Carlo仿真分析,从而在公差设计阶段就考虑了制造几何变动,实现公差并行设计。
     第7章:在理论研究的基础上,进行了计算机辅助功能公差设计(CAFT)原型系统初步开发;给出了CAFT原型系统各个模块的功能,结合实例分析了该原型系统的工作流程。
     第8章:概括了全文的主要研究内容,并对计算机辅助公差设计研究进行了展望。
Based on the research of National Nature Science Fund Project "Research on Theories and Methods of Computer Aided Functional Tolerancing based on new generation GPS (No. 50775204)" and "Research on 3D Tolerance Modeling based on GPS (No. 50505046)", tolerance modeling and representation, functional tolerance specification, functional tolerance analysis and synthesis, manufacturing oriented tolerance analysis, etc. are studied.
     In chapter 1, the enactment and tracking study of new generation GPS are expounded, the State-of-the-arts of computer aided tolerancing (CAT) are summarized and the research background and significance of this project are discussed. Finally, the main contents, the overall frame and innovation points of this dissertation are given.
     In chapter 2, some basic definitions consistent with new generation GPS standard of geometric product are presented. The information composing of geometric dimensioning and tolerancing (GD&T), tolerance type, tolerance principle, etc are analyzed. The theory of 3D tolerance parameterized modeling is studied based on the concept of TTRS, MGRE and SDT, etc. And, case study of tolerance modeling of several familiar features belong to some invariance class are done.
     In chapter 3, the classification of positioning joints of part assembling based on the definition of invariance class and the principle of ascertaining its preponderance order are studied. The assembly oriented graph (AOG) which is already in existence has been improved and the expression of assembly poisoning constraint is added in AOG. The methods of representing and decomposing of functional geometrical requirement are studied. Then, the tolerance specification technology of interface between part-part based on the improved AOG is studied. The definition of invariant DOF and mark of tolerance zone are given. General rules for validating datum reference frame are studied. The functional tolerancing process and method of geometrical functional requirement-geometrical specification are given. Lastly, a simple assembly example and functional tolerance specification result are presented.
     In chapter 4, based on the tolerance modeling of feature, the propagation and accumulation of geometrical variation in assembly are described using HTM (homogeneous transformation matrix), and the tolerance accumulation model including tolerance information of part and gap information of part-part are established. Then, tolerance loop and matrix equation is established. Several examples are used to explain the tolerance analysis process oriented to assembly feasibility and functionality.
     In chapter 5, a tolerance synthesis scheme is put forward. On the base of mapping of tolerance zone to deviation space, the mapping of cost-tolerace model to cost-deviation model is studied. The small displacement torsor representation of geometric requirement constaints, assembly connection constaints are studied, and a simple example is used to demonstrate the tolerance synthesis process.
     In chapter 6, CAD model of part and its feature are represented by a group of points. The space relations of each component in process system are described by homogeneous transformation, and then stack-up model of geometric error of process system is established. Machining process can be regarded as the points-group of tool path updating the points-group of part. The manufacturing geometric variation of feature/surface of part is analyzed by Monte-Carlo simulation. Thereby, manufacturing geometric variation can be considered in tolerance design stage and concurrent tolerance design is actualized.
     In chapter 7, the prototype system for Computer Aided Functional Tolerancing(CAFT) is preliminary developed. The function of each module and workflow of CAFT system are analyzed
     In chapter 8, the main content of the dissertation research is summarized, and the prospect of Computer Aided Tolerancing research is presented.
引文
[1]Business Plan of ISO/TC213 Dimensional and geometrical product specifications and verification./isotc213.ds.dk/.
    [2]ISO/TR 14638:1995,Geometrical product specification(GPS)—Masterplan.
    [3]Bials,S.,Partyka,Z..From "Jiont Harmonisation Group" to the new Technical Committee ISO/TC 213.Normalizacja;1997.
    [4]张琳娜,赵凤霞,李晓沛,崔风喜.现代产品几何技术规范(GPS)体系及应用分析.机械强度.2004,26(4):400-404.
    [5]蒋向前.现代产品几何技术规范(GPS)国际标准体系.机械工程学报.2004,40(12):133-138.
    [6]马利民.新一代几何产品技术规范及认证(GPS)理论体系与关键技术研究[博士学位论文].武汉:华中科技大学,2006.
    [7]ISO member bodies participating in ISO/TC 213,//isotc213.ds.dk/.
    [8]Srinivasan,V.An integrated view of geometrical product specification and verification.In Proceedings of 7th CIRP Seminars on Computer Aided Tolerancing.France,2001:7-18.
    [9]Srinivasan,V.A geometrical product specification language based on a classification of symmetry groups.Computer-Aided Design.1999,31(11):659-668.
    [10]Dantan,J.Y.,Bruyere,J.,Baudouin,C.,et al.Geometrical Specification Model for Gear-Expression,Metrology and Analysis.CIRP Annals-Manufacturing Technology.2007,56(1):517-520.
    [11]Hunter,R.,Perez,J.,Marquez,J.,et al.Modeling the integration between technological product specifications and inspection process.Journal of Materials Processing Technology.2007,191(1-3):34-38.
    [12]Jerome Bruyere,J.-Y.D.,Regis Bigot,Patrick Martin.Statistical tolerance analysis of bevel gear by tooth contact analysis and Monte Carlo simulation.Mechanism and Machine Theory.2007,42(10):1326-1351.
    [13]Hunter,R.,Perez,J.,Marquez,J.,Hernandez,J.C..Modeling the integration between technological product specifications and inspection process.Journal of Materials Processing Technology.2007,191(1-3,1):34-38.
    [14]Dantan,J.Y.,Ballu,A.,Mathieu,L.Geometrical product specifications—model for product life cycle.Computer-Aided Design.2008,40(4):493-501.
    [15]BS 8888:2000,Technical product documentation(TPD)-Specification,specifying and graphically representing procucts.
    [16]PD 8888:2001,Technical product documentation(TPD)-An interim report.
    [17]EC Project,No.SMT4-CT97-2176,Calibration Standards for the Surface Topography Measuring Systems Down to Nanometric Range,Coordinate by Technische University Chemnitz,Germany.
    [18]Volk,R.,Ville,J.F.Filters for contour measurement.Wear.2008,264(5-6):469-473.
    [19]Umberto,P.,Giuseppe,G.Overview of current CAT systems.Integrated Computer-Aided Engineering.2002(9):373-387.
    [20]Srinivasan,V.Standardizing the specification,verification,and exchange of product geometry:Research,status and trends.Computer-Aided Design.In Press,Corrected Proof.
    [21]EC Project,No.SMT,No.SMT4-CT98-2209,Development of basis for 3D Surface Roughness Standard,Coordinated by University of Hudderfield,U.K.
    [22]现代产品几何规范(GPS)技术标准研究与制定(第一期)项目课题组.GPS和TPD标准化交流研讨会论文集.北京2003.
    [23]蒋向前.新一代GPS标准理论与应用.北京:高等教育出版社,2007.
    [24]王金星.新一代产品几何规范_GPS_不确定度理论及应用研究[博士学位论文].武汉:华中科技大学, 2006.
    [25]张琳娜,赵凤霞,李晓沛,常永昌,黄瑞.现代产品几何技术规范(GPS)体系的理论基础及关键技术研究.机械强度.2004,26(5):547-551.
    [26]赵则祥,路明,李学新,张济洲,高作昆.基于新一代几何产品技术规范的圆柱体直径的测量方法研究.中国机械工程.2006,17(11):1179-1182.
    [27]Hillyard,R.C.,Braid,I.C.Analysis of dimensions and tolerances in computer-aided mechanical design.Computer-Aided Design.1978,10(3):161-166.
    [28]Bjorke,O.Computer-Aided Tolerancing(2nd).New York:ASME Press,1989.
    [29]Weill,R.Tolerancing for Function.CIRP Annals-Manufacturing Technology.1988,37(2):603-610.
    [30]刘玉生,杨将新,吴昭同,等.CAD系统中公差信息建模技术综述.计算机辅助设计与图形学学报.2001,13(11):1048-1054.
    [31]刘玉生.基于数学定义的平面尺寸和形位公差建模与表示技术的研究[博士学位论文].杭州:浙江大学,2000.
    [32]刘玉生.三维CAD系统中变动孔与孔组特征的建模与实现[博士后出站报告].杭州:浙江大学,2002.
    [33]曹衍龙.基于数学定义的公差建模方法与技术研究[博士后出站报告].杭州:浙江大学,2005.
    [34]Requicha,A.A.G.Toward a theory of geometric toleraneing.International Journal of Robotics Research.1983,2(4):45-60.
    [35]Jayaraman,R.,Srinivasan,V.Geometric tolerancing Ⅰ:Virtural boundary requirement.IBM Journal of Research Development.1989,33(2):90-104.
    [36]Srinivasan,V.Geometric tolerancing Ⅱ:Conditional tolerance.IBM Journal of Research Development.1989,33(2):105-122.
    [37]Etesmi,F.A.Mathematical model for geometric tolerancing.Journal of Mechanical Design.1993,115(3):81-86.
    [38]Hoffmann,P.Analysis of tolerances and process inaccuracies in discrete part manufacturing.Computer-Aided Design.1982,14(2):83-88.
    [39]Turner,J.U.Tolerance in Computer-Aided Geometric Design[Ph.D.dissertation]:Renssetaer Polytechnic Institutes,1987.
    [40]Turner,J.U.Relative positioning of parts in assemblies using mathematical programming.Computer-Aided Design.1990,22(7):394-400.
    [41]Turner,J.U.The M-space theory of tolerances.In Proceedings of the ASME Advances in Design Automation conference.1990:217-225.
    [42]Roy,U.,Li,B.Representation and interpretation of geometric tolerances for polyhedral objects—Ⅰ.Form tolerances.Computer-Aided Design.1998,30(2):151-161.
    [43]Roy,U.,Li,B.Representation and interpretation of geometric tolerances for polyhedral objects.Ⅱ.:Size,orientation and position tolerances.Computer-Aided Design.1999,31(4):273-285.
    [44]Wang,H.,Pramanik,N.,Roy,U.,etc.A Scheme for Mapping Tolerance Specifications to Generalized Deviation Space for Use in Tolerance Synthesis and Analysis.IEEE Transactions on Automation Science and Engineering.2006,3:81-91.
    [45]Tech,T.B.,Senthil-Kumar,A.,Subramanian,V.A CAD integrated analysis of flatness in a form toelrance zone.Computer Aided-Design.2001,33:853-865.
    [46]Shah,J.J.Y.,Y.,Zhang,B-C.Dimension and tolerance modeling and transformations in feature based design and manufacturing.Journal of Intelligent Manufacturing.1998,9(5):475-488.
    [47]Mujezinovic,A.,Davidson,J.K.,Shah J.J.A new mathematical model for geometric tolerance as applied to rectangular faces. In Proceedings of DETC'01(ASME 2001 Design Engineering Technical Conference). Pittsburgh, 2001.
    [48] Davidson, J. K., Mujezinovic,A.,Shah,J. A new mathematical model for geometric tolerances as applied to round faces. ASME Journal of Mechanical Design. 2002,124:609-622.
    [49] Mujezinovic, A., Davidson,J.K.,Shah J.J. A new mathematical model for geometric tolerance as applied to polygonal faces. Journal of Mechanical Design. 2004,126(3):504-518.
    [50] Ameta, G., Davidson,J.K., Shah,J.J. Using Tolerance-Maps to generate frequency distributions of clearance for tab-slot assemblies. In Preceedings of the ASME 2007 International Design Engineering Technical Conferences & Computer and Information in Engineering Conference. Las Vegad, 2007.
    [51] Ameta, G., Davidson, J. K., Shah, J. Influence of form on Tolerance-Map-generated frequency distributions for 1D clearance in design. Precision Engineering.In Press (网络出版) , Corrected Proof.
    [52] Repuicha, A. A. G., Chan,S. Representation of geometric features, tolerances and attributes in solid modelers based on constructive solid geometry. IEEE Journal of Robort & Automation. 1986,2(3): 156-165.
    [53] Johnson, R. H., etc. Dimensioning and tolerancing final report, R-84-GM-02.2 CAM-I. USA; 1985.
    
    [54] Roy, U., Liu,C.R. . Feature-based Representational scheme of a solid modeler for providing dimension and tolerancing information. Robotics and Computer Integrated Manufacturing. 1988,43(3):335-345.
    [55] Roy, U. Tolerance representation scheme in solid modeling: Parrts I&II. In Proceedings of the 15th ASME Design Automation Conference. 1989: 1-17.
    [56] Gossard, D. C. Representing dimensions, tolerances, and features in MCAE systems. IEEE Computer Graphics & Applications. 1988,22(1):51~59.
    [57] Descrocher, A., Clement,A. . A dimensioning and tolerancing assistatance model for CAD/CAM systems. Journal of Advanced Manufacturing Technology. 1994,10(9):352-362.
    [58]刘玉生,高曙明,吴昭同,等.基于特征的层次式公差信息表示模型及其实现.机械工程学报. 2003,39(3):1-7.
    [59] Gossard, D. C. Representing dimensions, tolerances, and features in MCAE systems. IEEE Computer Graphics & Applications. 1988:51-59.
    
    [60] Willhelm. Computer methods for tolerancing design. New Jersey: World Science Publishing Company, 1992.
    [61] Johnson, R. H. Dimensioning and tolerancing-Final report. R84-GM-02-2. USA, Texas,Arilington; 1985.
    [62] Ranyak, P. S., Fridshal,R. Features for tolerancing a solid model. In ASME Computer in Engineering Conference. 1988,1:262-274.
    [63] Shah, J. J., Miller,D. A structure for supporting geometric tolerances in product definition systems for CIM. Manufacturing Review. 1990,3(1).
    [64] Roy, U., Liu, C. R. Integrated CAD frameworks: Tolerance representation scheme in a solid model. Computers & Industrial Engineering. 1993,24(3):495-509.
    [65] Tsai, J. C, Wang, W. W. Development of a computer aided tolerancing system in CAD environment. In Proceedings of 6th CIRP Seminars on Computer Aided Tolerancing. 1999:47-54.
    [66] Allada, V., Huffer,N.,Anand,S. Quad and octree structures for tolerance representation in solid models. In Proceedings of 2nd Industrial Engineering Research Conference. Los Angeles, 1993.
    [67] Krishna, K. K., Osama,K.E.,Jin,B. Modeling of manufacturing processes characteristics for automated tolerance analysis. International Journal of Industrial Engineering. 1997,4(3): 187-196.
    [68] Turner, J. U. A feasibility space approach for automated tolerancing. Journal of Engineering for Industry. 1993,115(3):325-341.
    [69] Rivest, L., Fortin, C., Morel, C. Tolerancing a solid model with a kinematic formulation. Computer-Aided Design.1994,26(6):465-476.
    [70]Desrochers,A.,Riviere,A.A matrix approach to the representation of tolerance zone and clearances The International Journal of Advanced Manufacturing Technology.1997,13(9):630-636.
    [71]Chase,K.W.,Magleby,S.P.A comprehensive system for computer aided tolerance analysis of 2-D and 3-D mechanical assemblies.In Proceedings of 5th CIRP Seminars on Computer Aided Tolerancing.1997:294-307.
    [72]Ciement,A.,Riviere,A.,Serre,P.A declarative information model for functional requirements.In Proceedings of 4th CIRP Seminars on Computer Aided Tolerancing.1995:1-15.
    [73]Desrochers,A.,Maranazana,R.Constrained dimensioning and assistance for mechanisms.In Proceedings of 4th CIRP Design seminar.Tokyo,1995:17-30.
    [74]Salomons,O.W.,Poerink,J.T.,Slooten,F.V.,etc.A tolerancing tool based on kinematic analogies.In Proceeding of 4th CIRP Seminar.Tokyo,1995:47-70.
    [75]Zhang,B.C.Geometric modeling of dimensioning and tolerancing[Ph.D,dissertation].Temple,Arizona:Arizona State University,1992.
    [76]Kandikjan,T.,Shah,J.J.,Davidson,J.K.A mechanism for validating dimensioning and tolerancing schemes in CAD systems.Computer-Aided Design.2001,33(10):721-737.
    [77]Salomons,O.W.Computer support in the design of mechanical products[Ph.D,dissertation].Netherlands,Twente:University of Twente,1995.
    [78]胡洁,吴昭同.面向功能的形位公差类型的自动生成.中国机械工程.2002,13(3):204-207.
    [79]胡洁,熊光楞,吴昭同.基于变动几何约束网络的公差设计研究.机械工程学报.2003,39(5):20-26.
    [80]Teissandier,D.,Couetard,Y.,Gerard,A.A computer aided tolerancing model:proportioned assembly clearance volume.Computer-Aided Design.1999,31(13):805-817.
    [81]Ansehnetti,B.Generation of functional tolerancing based on positioning features.Computer-Aided Design.2006,38(8):902-919.
    [82]Anselmetti,B.,Bourdet,P.Optimization of a workpiece considering production requirements.Computers in Industry.1993,21(1):23-34.
    [83]Anselmetti,B.,Louati,H.Generation of manufacturing tolerancing with ISO standards.International Journal of Machine Tools and Manufacture.2005,45(10):1124-1131.
    [84]Anselmetti,B.,Mejbri,H.,Mawussi,K.Coupling experimental design—digital simulation of junctions for the development of complex tolerance chains.Computers in Industry.2003,50(3):277-292.
    [85]Mejbri,H.,Anselmetti,B.,Mawussi,K.Functional tolerancing of complex mechanisms:Identification and specification of key parts.Computers & Industrial Engineering.2005,49(2):241-265.
    [86]Wang,N.,Ozsoy,T.M.Automatic generation of tolerance chains from mating relations represented in assembly models.ASME Journal of Mechanical Design.1993,115(4):757-761.
    [87]Lee,W.J.,Woo,T.C.Tolerances:their analysis and synthesis.Journal of Engineering for Industry:Transactions of the ASME.1990(112):113-121.
    [88]Chase,K.W.Tolerance analysis of 2-D and 3-D Assemblies.ADCATS,Report 1999,no 99(4).
    [89]Davidson,J.K.,Mujezinovic,A,Shah,J.J.A new mathematical model for geometric tolerance as applied to round face.//CDROM Proceeding of ASME DETC/CIE 2000:1-9.
    [90]Bhide,S.,Ameta,G.,Davidson,J.K.,and Shah,J.J.Tolerance-Maps Applied to the Straightness and Orientation of an Axis.In 9th CIRP International Seminar on Computer-Aided Tolerancing.2005.
    [91]Whitney,D.E.,Gibert,O.L.Representation of geometric variations using matrix transforms for statisticaltolerance analysis in assemblies.IEEE International Conference on Robotics and Automation. 1993,93(2):314-321.
    [92] Gao, J., Chase, K.W., Magleby, S. P. . Generalized 3-D Tolerance Analysis of Mechanical Assemblies with Small Kinematic Adjustments. HE Transactions. 1998,30(4):367-377.
    [93] Laperriere, L., and Lafond P. Tolerance analysis and synthesis using virtual joints. In Proceedings of 6th CIRP seminar on computer aided tolerancing. Enschede, Nether lands, 1999:452-458.
    [94] Rajagopalan, S., Cutkosky,M. R. Tolerance representation for mechanism assemblies in layered manufacturing. In Proceedings of DETC98. 1998: 13-18.
    
    [95] Weber, C., Britten, W., Thome, O. Conversion of geometrical tolerances into vectorial tolerance representations-A major step towards computer aided tolerancing. In International Design Conference. Dubrovnik, 1998.
    [96] Zou, Z. H. Multi-dimensional tolerance analysis of mechanical assemblies[Ph.D. dissertation]. Charlotte: The University of North Carolina at Charlotte, 2003.
    [97] Zou, Z., Morse, E. P. A gap-based approach to capture fitting conditions for mechanical assembly. Computer-Aided Design. 2004,36(8):691-700.
    [98] Lee, S., Yi, C.,. Tolerance analysis for multi-chain assemblies with sequence and functionality constraints. In Proceedings of IEEE 1997, International Conference on robotics and automation. Albuqyerque,New Mexico, 1997.
    [99] Speckhart, F. H. Calculation of tolerance based on a minimum cost approach. Journal of Engineering for Industry. 1972(94):447-453.
    
    [100] He, J. R. Tolerancing for manufacturing via cost minimization. International Journal of Machine Tools and Manufacture. 1991,31(4):455-470.
    
    [101] 杨将新.基于装配成功率的公差优化设计系统研究[博士学位论文].杭州:浙江大学,1996.
    
    [102] Parkinson, D. B. Tolerancing of component dimensions in CAD. Computer-Aided Design. 1984.16( 1 ):25-32.
    [103] Parkinson, D. B. Assessment and optimization of dimensional tolerances. Computer-Aided Design. 1985,17(4): 191-199.
    [104] Lee, W. J., Johnson,G.E. Optimal tolerance allotment using a genetic algorithm and truncated Monte-Carlo Simulation Computer Aided-Design. 1993,25:601-611.
    [105] Chase, K. W., Greenwood,W.H.,Loosti,B.G.,etc. Least cost tolerance allocation for mechanical assemblies with antomated process selection. Manufacturing Review. 1990,3:49-59.
    
    [106] Dong, Z., Soom,A. Automatic optimal tolerance selection. Manufacturing Review. 1990(3):262-271.
    [107] Dong Z., S., A. Some applications of artifical intelligence techniques to automatic tolerance analysis and synthesis. In: Pham, D. T., ed. Artificial Intelligence in Design Springer-Verlag 1991:101-124.
    [108] Dong, Z., Wang, G.G. Automated cost modeling for tolerance synthesis using manufacturing process data, knowledge reasoning and optimization. In Proceedings of 5th CIRP Seminars on Computer Aided Tolerancing. 1997: 282-293.
    [109] Zhang, G.Simultaneous Tolerancing for design and manufacturing. International Journal of Production Research. 1996,34:3361-3382.
    [110] Roy, U., Fang, Y.-C. Optimal tolerance re-allocation for the generative process sequence. IIE Transactions. 1997,29:37-44.
    [111] Zhong, W. Modeling and optimization of quality and productivity for machining systems with different configurations. Michigan: University of Michigan, 2002.
    [112] Pramanik, N. A generic framework for design evolution: From function to form mapping to synthesis of tolerances[D]. Syracuse: Syracuse University, 2003.
    [113]Dantan,J.Y.,Anwer,N.,Mathieu,L.Integrated Tolerancing Process for conceptual design.CIRP AnnalsManufacturing Technology.2003,52(1):135-138.
    [114]Dantan,J.Y.,Mathieu,L.,Ballu,A.,et al.Tolerance synthesis:quantifier notion and virtual boundary.Computer-Aided Design.2005,37(2):231-240.
    [115]Wu,Y.Development of mathematical tools for modeling geometric dimensioning and tolerancing[Ph.D.dissertation].Tempe:Arizona State University,2002.
    [116]吴昭同,杨将新.计算机辅助公差优化设计.杭州:浙江大学出版社,1999.
    [117]Huang,M.,Gao,Y.,Xu,Z.,Li,Z.Composite planar tolerance allocation with dimensional and geometric specifications.The International Journal of Advanced Manufacturing Technology.2002,20:341-347.
    [118]黄美发,徐振高,李柱.一种工序公差的并行优化分配方法.工程设计.2000(4):39-42.
    [119]彭和平,蒋向前,徐振高,刘晓军.基于多重相关特征质量损失函数的公差优化设计.中国机械工程.2008,19(5):590-594.
    [120]张根保.计算机辅助公差设计综述.中国机械工程.1996,7(5):47-50.
    [121]李斌.计算机辅助公差设计中有向功能关系图OFRG功能实现方法及应用[博士学位论文].重庆:重庆大学,1998.
    [122]李斌,张根保,徐宗俊.公差设计中敏度系数的张量求法.重庆大学学报.1999,22(4):6-12.
    [123]李斌,张再勇,黄剑,陈明波.基于拓扑、几何关系于一体的产品模型研究.中国机械工程.2005,16(23):2105-2108.
    [124]蒋庄德.机械精度设计.西安:西安交通大学出版社,2000.
    [125]张宇.面向质量目标的统计公差的表达方式及应用分析.中国机械工程.2006,17(24):2595-2599.
    [126]张宇,杨慕升,李晓沛.面向质量目标的尺寸链和统计公差设计方法.机械工程学报.2007,43(4):1-6.
    [127]丁红宇.计算机辅助精度设计研究[硕士学位论文].合肥:合肥工业大学,2005.
    [128]王恒,宁汝新.面向精度分析的全语义产品模型研究.计算机集成制造系统.2005,11(7):921-926.
    [129]王恒,宁汝新.面向虚拟装配的产品公差模型.计算机集成制造系统.2006,12(7):961-968.
    [130]周志革,黄文振,张利.数论方法在统计公差分析中的应用.机械工程学报.2000,36(3):69-72.
    [131]姬舒平.虚拟装配环境下公差并行设计方法的研究[博士学位论文].哈尔滨:哈尔滨工业大学,2000.
    [132]ISO/TS 17450-1:2002(E) Geometrical product specification(GPS)-General Concepts-Patt1:Model for geometric specification and verification.
    [133]Clement,A.,Riviere,A.Tolerancing versus nominal modeling in next generation CAD/CAM system.In Proceedings of 3th CIRP Seminars on Computer Aided Tolerancing.1993:97-114.
    [134]Clement,A.,Riviere,A.,Temmerman,M..Cotation tridimensionnelle des systemes mecaniques.PYC ed.1994.
    [135]Clement,A.,Riviere,A.,Serre,P.,Valade,C.The TTRSs:13 constraints for dimensioning and tolerancing.In Proceedings of 5th CIRP Seminars on Computer Aided Tolerancing.1997:122-131.
    [136]Clement,A.,Riviere,A.,Serre,P.Global consistency of dimensioning and tolerancing.In Proceedings of 6th CIRP Seminars on Computer Aided Tolerancing.1999:1-26.
    [137]张琳娜.精度设计与质量控制基础.北京:中国计量出版社,2006.
    [138]国家技术监督局.GB/T19671-1996形状和位置公差最大实体要求、最小实体要求和可逆要求.北京:中国标准出版社,1996.
    [139]ANSIY14.5 M.Dimensioning and tolerancing.ASME,New York,1994.
    [140]Chiabert,P.,Orlando,M.About a CAT model consistent with ISO/TC 213 last issues.Journal of Materials Processing Technology.2004,157-158:61-66.
    [141]Wang,H.,Pramanik,N.,Roy,U,etc.A scheme for transformation of tolerance specifications to generalized deviation space for use in tolerance synthesis and analysis.In Proceedings of Design Engineering Technical Conferences.Montreal,Canada:ASME,2002.
    [142]Bruy e re,J.,Dantan,J.Y.,Bigot,R.,Martin,P..Statistical tolerance analysis of bevel gear by tooth contact analysis and Monte Carlo simulation.Mechanism and Machine Theory.2007,42(10):1326-1351.
    [143]李柱,徐振高,蒋向前,等.互换性与测量技术.北京:高等教育出版社,2004.
    [144]施法中.计算机辅助几何设计与非均匀有理B样条.北京:高等教育出版社,2001.
    [145]王树人.齿轮啮合理论简明教程.天津:天津大学出版社,2005.
    [146]Mantripragada,R.,Whitney,D.E.The datum flow chain:A systematic approach to assembly design and modeling.Research in Engineering Design.1998(10):150-165.
    [147]Ballu,A.,Mathieu,L.Choice of functional specifications using graphs within the framework of education.In Proceedings of the 6th CIRP Seminar on CAT.University of Twente,1999.
    [148]国家技术监督局.GB/T1182-1996形状和位置公差通则、定义、符号和图样表示法.北京:中国标准出版社.1996.
    [149]方红芳.设计公差和工序公差并行设计的研究[博士学位论文].杭州:浙江大学,1997.
    [150]刘玉生,高曙明,吴昭同,等.一种基于数学定义的三维公差语义表示方法.中国机械工程.2003,14(3):241-245.
    [151]王恒,宁汝新,唐承统.三维装配尺寸链的自动生成.机械工程学报.2005,41(6):181-187.
    [152]Dong,Z.Tolerance synthesis by manufacturing cost modeling and design optimization.In:Zhang,H.C.,ed.Advanced Tolerancing Techniques.NewYork:John Wiley & Sons 1997:233-260.
    [153]Chase,K.W.,Greenwood,W.H.Design issues in mechanical tolerance analysis.Manufacturing Review.1988(1):50-59.
    [154]Michael,W.,Sidail,J.N.The optimization problem with optimal tolerance assignment and full acceptance.ASME Journal of Mechanical Design.1981(103):842-848.
    [155]Hong,Y.H.,Chang,T.C.A comprehensive review of toleracing research.International Journal of Production Research.2002,40(11):2425-2459.
    [156]蔡自兴.机器人学.北京:清华大学出版社,2000.
    [157]John,A.R.数理统计与数据分析.北京:机械工业出版社,2003.
    [158]陈维新.线性代数.北京:科学出版社,2000.
    [159]王先逵.机械制造工艺学.北京:机械工业出版社,1995.
    [160]郑叔芳,吴晓琳.机械工程测量学.北京:科学出版社,2003.
    [161]于涛,李勇,马维士.Visual C++6.0教程.北京:科学出版社,2003.
    [162]清源计算机工作室.MATLAB 6.0基础及应用.北京:机械工业出版社,2001.
    [163]范影乐.MATLAB仿真应用详解.北京:人民邮电出版社,2001.
    [164]何强,何英.MATLAB扩展编程.北京:清华大学出版社,2002.
    [165]刘维.精通Matlab与C/C++混合程序设计.北京:北京航空航天大学出版社,2005.
    [166]中华人民共和国国家标准.工业自动化系统与集成.产品数据的表达与交换.第一部分:概述与基本原理.北京:中国标准出版社,1999.6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700