用户名: 密码: 验证码:
基于微分流形的全对称少自由度并联机构基础理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以李群李代数、微分流形理论为基础,综合考虑运动特性和约束特性的影响,对全对称少自由度并联机构的运动学分析、精度分析、静力与静刚度分析的完整建模进行了深入系统的研究,并试图为机构的运动学设计、精度设计和静刚度设计的公共性能指标的提炼提供理论依据。本论文的研究工作得到国家自然科学基金重点项目(50535010)的资助,是该项目理论工作的一部分。论文主要工作如下:
     1)总结了描述刚体运动的李群李代数和微分流形理论基础,并分析了受约束刚体的(切空间)速度空间和力空间(余切空间)的构成。此外在微分流形理论统一框架内,分析了运动螺旋和力螺旋与切空间和余切空间之间本质关联,以及D-H法和指数积公式的等效性。以2R机构为例,对上述分析进行了详细说明。
     2)根据全对称少自由度并联机构的结构特征,综合运用D-H法、位移群上的平移计算以及对偶螺旋理论给出了此类机构运动学完整建模的一般方法,得到完整6×6雅可比矩阵,包括运动子雅可比矩阵和约束子雅可比矩阵,这为后续的误差建模分析和静刚度建模分析奠定了统一的基础。最后以Tsai 3-UPU机构和SNU 3-UPU机构为例进行了实例分析。
     3)首次对全对称少自由度并联机构的可控误差和不可控误差作出了基于微分流形理论的数学解释。基于位移群上的平移计算和对偶螺旋理论,提出了此类机构的一种新的完整误差建模方法,建立了动平台不可控误差、可控误差分别与各自几何误差源之间的线性映射关系。前者可用于指导零部件制造/装配的公差设计;后者可用作机构运动学标定的基础公式。最后,以Tsai 3-UPU机构为例进行了详细分析。
     4)首次对全对称少自由度并联机构支链中驱动力和约束力的传递作出了基于微分流形理论的数学解释。利用虚功原理,给出了此类机构的一种静力分析和静刚度分析的完整建模方法。除了得到传统的驱动力映射和驱动静刚度映射外,还建立了约束力映射和约束静刚度映射。最后,以一般3-UPU机构为例进行了详细说明。并通过算例首次分析了约束力映射和约束刚度分析对于全对称少自由度并联机构几何参数设计的必要性。
Based on the theory of differential manifold, the theory and methodology for modeling of the fully symmetric parallel mechanisms with lower-mobility are studied by considering of the characteristics of both kinematics and constraint, including kinematics, accuracy, static and stiffness. The research intends to provide the theoretical guide for distilling a universal performance index about kinematics, accuracy, static and stiffness. The dissertation is organized as following.
     1) Preliminary theory of differential manifold describing the motion of a rigid body is analyzed, which shows that the tangent and the cotangent space consist of two orthogonal subspaces respectively when some degrees-of-freedom (DOFs) of the body are limited. In the unified frame, the relationship between twist and tangent space, wrench and cotangent space, equivalent relationship between D-H method and product-of-exponentials (POE) are presented respectively. A 2R mechanism is taken as an example to illustrate the above analysis.
     2) According to the fully symmetric parallel mechanisms (FSPM) with lower-mobility, a general method for kinematic modeling of the mechanisms is presented by integrating D-H method, translation operation on the Group with the theory of reciprocal screw, in which the complete 6×6 Jacobian matrix is obtained including kinematic and constraint sub-matrices. It lays the unified foundation for both error and static stiffness modeling. Tsai’s 3-UPU parallel mechanism is taken as an example to illustrate the method.
     3) By using the theory of differential manifold, an explanation is presented for the controllable and uncontrollable error of the FSPM with lower-mobility. A new method is proposed to modeling error of the mechanism based on the translation operation and reciprocal screw theory, in which the linear mapping between the controllable and uncontrollable error and their source can be set up. The former can be used to instruct tolerance design of parts, and the latter mainly act as a fundamental formula. The detailed illustration is made through an example of Tsai’s 3-UPU.
     4) The explanation about transmissions of actuation and constraint force of the FSPM with lower-mobility is first presented based on the theory of differential manifold. By using the theory of virtual work, an approach is proposed to obtain the complete static and stiffness, in which constraint force and constraint stiffness mapping are also obtained besides traditional actuation force and actuation stiffness mapping. It is demonstrated in detail through an example of general 3-UPU. The analysis of constraint force and constraint stiffness is indicated to be necessary for geometric design of these parallel mechanisms.
引文
1 Gough V. Contribution to discussion to paper on research in automobile stability and control and in tire performance. Proceedings of the Auto. Div. Instn. Mech. Engrs., 1965, p.392
    2 Stewart D. A platform with six degrees of freedom. Proceedings Inst. Mech. Eng., 1965: 371-378
    3 Hunt K H. Structural kinematics of in-parallel-actuated robot arms. ASME Journal of Mechanical Transmission and Automation Design, 1983(105): 705-712
    4 Fichter E F. A Stewart platform based manipulator: general theory and practical construction. International Journal of Robotics Research, 1986(5): 157-182
    5 Griffis M. and Duffy J. Forward displacement analysis of a class Stewart platform. Journal of Robotic System, 1989(6):703-720
    6 Nanua P, Waldron K J and Murthy V. Direct kinematic solution of a Stewart platform. IEEE Transactions of Robot Automation,1990(6): 438-444
    7 Zhang C and Song S M. Forward position analysis of nearly general Stewart platforms. ASME Journal of Mechanical Design, 1994(116):54-60
    8 王玉新,王仪明. 对称结构 Stewart 并联机器人的位置正解及构型分析,中国机械工程,2002,13(9):734-737
    9 刘文涛,王知行. Stewart 平台的运动可控条件. 中国机械工程,2001, 12(5): 502-504
    10 曹毅,黄真,李艳文.3/6-SPS 型 Stewart 并联机构奇异轨迹的性质识别. 中国机械工程,2006, 17(4):391-396
    11 黄真,李秦川.少自由度并联机器人机构的型综合原理. 中国科学(E 辑),2003, 33(9): 813-819
    12 Huang Z, Li Q C. General methodology for type synthesis of symmetrical lower-mobility parallel manipulators and several novel manipulators. International Journal of Robotics Research, 2002, 21(2): 131-145
    13 Clavel R. Dispositif pour le deplacement et le positionnement d’un element dans l’espace, Switzerland patent, CH1985005348856, 1985
    14 http://www.sig-robotics.com
    15 http://www.abb.com
    16 Company O, Pierrot F. A new 3T-1R parallel robot. ICAR99: 9th International Conference on Advanced Robotics, Tokyo, Japan, 1999: 557-562
    17 Pierrot F, Company O. Parallel Mechanism Machining Device, EP1084802A2, 2000
    18 Huang T, Li Z X, Li M, et al. Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations. ASME Journal of Mechanical Design, 2004, 126 (3): 449-455
    19 Huang T, Li M, Li Z X, et al. Optimal kinematic design of 2-DOF parallel manipulators with well-shaped workspace bounded by a specified conditioning index. IEEE Transactions on Robotics and Automation, 2004, 20(3): 538-542
    20 黄田, 李曚, 李占贤. 仅含转动副的二自由度平动并联机器人机构,中国专利,CN 1355087A, 2002
    21 Tsai L W, Walsh G C, Stamper R E. Kinematics of a novel three DOF translational platform. Proceedings of the IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, 1996: 3446-3451
    22 Tsai L W, Stamper R. A parallel manipulator with only translational degrees of freedom. ASME 1996 Design Engineering Technical Conference, Irvine, CA, 1996, 96-DETC-MECH-1152
    23 Miller K. Maximization of workspace volume of 3-DOF spatial parallel. ASME Journal of Mechanical Design, 2002, 124(2): 347-350
    24 www.giddings.com
    25 汪劲松,黄田. 并联机床——机床行业面临的机遇与挑战,中国机械工程,1999, 10(10): 1103-1107
    26 www.starragheckert.com
    27 http://www.ds-technologie.de/v2/en/home/index.php
    28 Neumann K E, Robot, US Patent No. 4732525, Mar. 22, 1988
    29 http://www.smttricept.com
    30 www.gildemeister.com
    31 黄田,李曚,李占贤等. 非对称空间 5 自由度混联机器人,国家发明专利,公开号:CN 1524662, 2003.9.16
    32 Huang T, Li M, Zhao X Y, et al. Kinematic design of a reconfigurable miniature parallel kinematic machine. Chinese Journal of Mechanical Engineering (机械工程学报英文版), 2003, 16(1): 79-82
    33 www.electaweb.com
    34 Gosselin C, Hamel J. The agile eye : a high-performance three-degree-of- freedom camera-orienting device. Proceedings of IEEE International Conference on Robotics and Automation, 1994 :781-786
    35 Hervé J M. Analyse structurelle des méchanismes par Groupe des déplacements. Mechanism and Machine Theory, 1978(13): 437-450
    36 Brockett R W. Robotic Manipulators and the Product of Exponentials Formula. Mathematical Theory of Networks and Systems. P. A. Fuhrman, Springer-Verlag, 1981:11-27
    37 Hervé J M. The mathematical group structure of the set of displacements. Mechanism and Machine Theory, 1994,29(1): 73-81
    38 Hervé J M. The Lie group of rigid body displacements, a fundamental tool for mechanism design. Mechanism and Machine Theory, 1999,34: 719-730
    39 Tsai L W. The enumeration of a class of three-dof parallel manipulators. Proceedings of the 10th World Congress on the Theory of Machine and Mechanisms, Oulu, Finland, 1999: 1121-1126
    40 Tsai L W. Systematic enumeration of parallel manipulators, parallel kinematic machine: theoretical aspects and industrial requirement, Boer C R, Molinari-Tosatti L, Smith K S (Eds), New York: Springer, 1999: 33-49
    41 Gao F, Li W, Zhao X, et al. New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs. Mechanism and Machine Theory, 2002(37): 1395-1411
    42 黄田, 李曚, 吴梦丽等. 可重构 PKM 模块的选型原则—理论与实践. 机械工程学报,2005, 41(8): 36-41
    43 Kong X W, Gosselin C M. Type synthesis of 3T1R 4-DOF parallel manipulators based on Screw Theory. IEEE Transactions on Robotics and Automation, 2004, 20(2): 181-190
    44 Kong X W, Gosselin C M. Type synthesis of 3-DOF translational parallel manipulators based on Screw Theory. ASME Journal of Mechanical Design, 2004, 126: 83-92
    45 Kong X W, Gosselin C M. Type synthesis of 3-DOF spherical parallel manipulators based on Screw Theory. ASME Journal of Mechanical Design, 2004, 126: 101-108
    46 Fang Y F, Tsai L W. Structure synthesis of a class of 3-DOF rotational parallel manipulators. IEEE Transactions on Robotics and Automation, 2004, 20(1): 117-121
    47 杨廷力. 机器人机构拓扑结构学. 北京:机械工业出版社, 2004
    48 Sparacino F, Hervé J M. Synthesis of parallel manipulators using Lie-Groups Y-Star and H-Robot. Proceedings of the 1993 IEEE/Tsukuba International Workshop on Advanced Robotics. Tsukuba, Japan, 1993: 75-80
    49 Hervé J M, Sparacino F. Structural synthesis of “parallel” robots generating spatial translation. IEEE International Conference on Robotics and Automation, 1991: 808-813
    50 Karouia M, Hervé J M. A family of novel orientational 3-dof parallel robots. Proceedings of the Roman Sy 2002, 14th CISM-IFToMM Symposium. Udine, 2002: 359-368
    51 Karouia M, Hervé J M. Asymmetrical 3-dof spherical parallel mechanisms. European Journal of Mechanics, 2005(24): 47-57
    52 李秦川,黄真. 基于位移子群分析的 3 自由度移动并联机构型综合. 机械工程学报,2003, 39(6): 18-21
    53 Angeles J. The qualitative synthesis of parallel manipulators. ASME Journal of Mechanical Design, 2004,126: 617-624
    54 Li Q C, Huang Z, Hervé J M. Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie Group of displacements. IEEE Transaction on Robotics and Automation, 2004,20(2):173-180
    55 李秦川,黄真. 少自由度并联机构的位移流形综合理论. 中国科学(E 辑),2004, 34(9): 1011-1020
    56 Meng J, Liu G F, Li Z X. A geometric theory for synthesis and analysis of sub-6 DOF parallel manipulators. Proceedings of IEEE International Conference on Robotics and Automation, 2005: 2938-2943
    57 黄真, 孔令富, 方跃法. 并联机器人机构学理论及控制. 北京:机械工业出版社, 1997
    58 曲义远, 黄真. 空间六自由度并联机构位置的三维搜索方法. 机器人, 1989, 3(5): 25~29
    59 Innocenti C, Castelli V P. Direct position analysis of the Stewart platform mechanism. Mechanism and Machine Theory,1990, 25(6): 611~621
    60 沈辉, 吴学忠. 基于区间对分搜索法的并联机构位置正解问题求解. 机械科学与技术, 2004, 23(2): 185-188
    61 赵新华, 彭商贤. 一种分析并联机器人位置正解的高效算法. 天津大学学报, 2000, 33(2): 134-137
    62 冯志友,张策,杨廷力. 基于序单开链法的空间 4 自由度并联机构位置正解. 机械工程学报,录用
    63 梁崇高, 荣辉. 一种 Stewart 平台机械手位移正解. 机械工程学报,1991, 27(2): 26~30
    64 Wen F A, Liang C G. Displacement analysis of the 6-6 Stewart platform mechanisms. Mechanism and Machine Theory. 1994, 29(4): 547~557
    65 Innocenti C, Castelli V P. Closed-Form Direct Position Analysis of a 5-5 Parallel Mechanism. ASME Journal of Mechanical Design, 1993(115): 515~521
    66 赵铁石,黄真. 一种新型四自由度并联平台机构及其位置分析. 机械科学与技术,2000, 19(6): 927-929
    67 范守文, 徐礼钜, 周肇飞. 基于数学——符号法的空间 4 自由度并联机构位置正解. 机械工程学报,2002, 38(9): 57-60
    68 Huang Z. Modeling formulation of 6-DOF multiloop parallel manipulators part
    1-kinematic influence matrix. The 4th IFToMM Conference on Mechanisms and CAD, Bucharest, Romania, 1985, Ⅱ-1,155-162
    69 Thomas M, Tesar D. Dynamic modeling of serial manipulator arms. Journal of Dynamics System Measurement and Control, 1982, 104(9):218-227
    70 黄真, 孔宪文. 具有冗余度空间并联机构的运动分析. 机械工程学报, 1995, 31(3): 44-50
    71 方跃法, 黄真. 三自由度3-RPS并联机器人机构的运动分析. 机械科学与技术,1997, 16(1): 82-88
    72 夏富杰. 空间并联机构运动分析的限元法. 机械科学与技术,1998, 17(1): 60-62
    73 黄田, 李江. 空间机构运动学的网络分析方法. 天津大学学报,1995, 28(5): 600-604
    74 Murray R M, Li Z X, Sastry S S. A Mathematical Introduction to Robotic Manipulation. Florid, USA : CRC Press, 1994: 51-92
    75 Fitcher E F. A stewart platform based manipulator : general theory and paractical construction. International Journal of Robotics Research, 1986, 5(2) : 157-181
    76 黄真, 曲义远.YS-1 型并联机器人特殊位形下运动学和动力学性质. 机械工程学报, 1991, 27(2) : 51-54
    77 Merlet J P. Singular configuration of parallel manipulators and grassmann geometry. International Journal of Robotics Research, 1989, 8(5) : 45-56
    78 Ma O, Angeles J. Architecture singularity of platform manipulators. Proceedings of IEEE International Conference on Robotics and Automation, Sacramento, USA, 1991: 1542-1547
    79 Collins C L, Mecarthy J M. The singularity loci of two trianglar parallel manipulator. Proceedings of IEEE Internatioanl Conference on Robotics and Automation, Corlifornia, 1997 : 473-478
    80 St-Onge M, Gosselin C. Singularity analysis and representation of the general gough-stewart platform. International Journal of Robotics Research, 2000, 19(3) : 271-288
    81 Huang Z, Chen L H, Li Y W. The singularity principle and property of Stewart parallel manipulator, Journal of Robotic Systems, 2003, 20(4): 163-176
    82 Gosselin C, Angeles J. Singularity analysis of closed-loop kinematic chains. IEEE Transactions Robotics and Automation. 1990(6): 281-290
    83 Han C H, Kim J W, Park F C. Kinematic sensitivity analysis of the 3-UPU parallel mechanisms. Mechanism and Machine Theory, 2002(37): 787-798
    84 Zlatanov D, Bonev I A, Gosselin C M. Constraint singularities of parallel mechanisms. Proceedings of IEEE International Conference on Robotics and Automation. Washington, DC, 2002: 496-50
    85 Joshi S A, Tsai L W. Jacobian analysis of limited-DOF parallel manipulators . ASME Journal of Mechanical Design, 2002(124): 254-258
    86 Park F C, Kim J W. Singularity analysis of closed kinematic chains. ASME Journal of Mechanical Design, 1999,121(1): 32-38
    87 Liu G F, Lou Y J, Li Z X. Singularities of parallel manipulators: a geometric treatment. IEEE Transactions on Robotics and Automation, 2003, 19(4): 579 - 594
    88 沈辉,吴学忠,刘冠锋,李泽湘. 并联机构中奇异位形的分类与判定. 机械工程学报,2004, 40 (4): 26-31
    89 Jon Kieffer. Differential Analysis of Bifurcations and Isolated Singularities for Robots and Mechanisms. IEEE Transactions on Robotics and Automation, 1994, 10(1):1-10
    90 Yang G L, Chen I M, W Lin et al. Singularity analysis of Three-Legged Parallel Robots Based on Passive-Joint Velocities. IEEE Transactions on Robotics and Automation, 2001,17(4): 413-422
    91 沈辉,吴学忠,李泽湘. 并联机构中奇异性的稳定性问题. 国防科技大学学报, 2002, 24(5): 37-40
    92 沈辉,吴学忠,李泽湘. 并联机构奇异点的运动分叉研究. 国防科技大学学报, 2004, 26(6): 54-57
    93 吴宇列,吴学忠,李圣怡. 并联机构位形空间的拓扑结构研究. 机械工程学报,2002, 38(8): 37-40
    94 王玉新,王仪明,刘学森. 并联机构构型分岔与保持性研究. 中国科学(E 辑), 2003, 33(1): 56-64
    95 Gosselin C M, Angeles J. The optimum kinematic design of a spherical 3-DOF parallel manipulator, ASME Journal of Mechanism, Transmission and Automation in Design, 1989, 112(2): 202-207
    96 Pittens K H, Podhorodeski R P. A family of Stewart platform with optimal dexiterity, Journal of Robotic Systems, 1993, 10(4): 463-479
    97 Huang T, Whitehouse D J, Wang J S. Local dexterity, optimum architecture and design criteria of parallel machine tools, Annals of the CIRP, 1998, 47(1): 347-351
    98 Huang T, Li M, Li Z X, et al, Optimal kinematic design of 2-DOF parallel manipulators with well-shaped workspace bounded by a specified conditioning index, IEEE Transactions on Robotics and Automation, 2004, 20(3): 538-542
    99 Gosselin C M, Angeles J. A globe performance index for the kinematic optimization of robotic manipulators, ASME Journal of Mechanical Design, 1991, 113(3): 220-226
    100 Gosselin C M, St. Pierre E. Development and experimentation of a fast three-degree-of-freedom camera-orienting device, The International Journal of Robotics Research, 1997, 16(5): 619-630
    101 Tsai L W, Joshi S. Kinematics and optimization of a spatial 3-UPU parallel manipulator, ASME Journal of Mechanical Design, 2000, 122: 439-446
    102 Hao F, Merlet J P. Multi-criteria optimal design of parallel manipulators based on interval analysis. Mechanism and Machine Theory, 2005,40(2): 157-171
    103 Merlet J P. Jacobian, manipulability, condition number, and accuracy of parallel robots. ASME Journal of Mechanical Design, 2006, 128(1): 199-206
    104 Hayyati S A. Robot arm geometric link calibration. Proceedings of the 22nd IEEE Conference on Decision and Control. 1983:1477-1483
    105 Hsu T W, Everitt L J. Identification of the kinematic parameters of a robot manipulator for positional accuracy improvement. Proceedings of the ASME 1985 International Computers in Engineering Conference, 1985: 263-267
    106 Veitschegger W K, Wu C. Robot accuracy based on kinematics. IEEE Transactions on Robotics and Automation, 1986,2(3): 171-179
    107 黄真. 空间机构学. 北京:机械工业出版社,1989
    108 Wang J, Masory O. On the accuracy of a stewart platform Part 1: the effect of manufacturing tolerances. Proceedings of the IEEE International Conference on Robotics and Automation, 1993: 114-120
    109 Masory O, Wang J, H Zhuang. On the accuracy of a stewart platform Part 2: kinematic calibration and compensation. Proceedings of the IEEE International Conference on Robotics and Automation, 1993:725-731
    110 李嘉,王继武,陈恳等. 基于广义几何误差模型的微机器人精度分析.机械工程学报,2000, 36(8): 20-24
    111 Moon S K, Moon Y M, S Kota. Screw theory based metrology for design and error compensation of machine tools. Proceedings of ASME design Engineering Technical Conferences, 2001, DETC2001/DAC-21083
    112 谭月胜, 孙汉旭, 贾庆轩等. 旋量理论在机械末端执行器运动精度分析中的应用研究. 机械科学与技术,2006, 25(5): 534-538
    113 Ropponen T, Arai T. Accuracy analysis of a modified Stewart platform manipulator. IEEE International Conference on Robotics and Automation, 1995: 521-525
    114 Huang T, Whitehouse D J. A simple yet effective approach for error compensation of a tripod-based parallel kinematic machine. CIRP Annals, 2000, 49(1): 281-285
    115 黄田,李亚,李思维等. 一种三自由度并联机构几何误差建模、灵敏度分析及装配工艺设计. 中国科学(E 辑), 2002, 32(5): 628-635
    116 黄田,唐国宝,李思维等. 一类少自由度并联构型装备运动学标定方法研究. 中国科学(E 辑), 2003, 33(9): 829-838
    117 唐国宝,黄田. Delta 并联机构精度标定方法研究. 机械工程学报, 2003, 39(8): 55-60
    118 Park F C, Martin B J. Robot sensor calibration: solving AX=XB on the Euclidean group. IEEE Transactions on Robotics and Automation, 1994, 10(5): 717-721
    119 Iurascu C C, Park F C. Geometric algorithms for kinematic calibration of robots containing closed loops. ASME Journal of Mechanical Design, 2003, 125(1): 23-32
    120 Gwak S, Kim J, Park F C. Numerical optimization on the Euclidean group with applications to camera calibration. IEEE Transactions on Robotics and Automation, 2003, 19(1): 65-74
    121 Tsai L W. Robot analysis: the mechanics of serial and parallel manipulators. New York: John Wiley & Sons,1999
    122 孟祥志,王艳,蔡光起. 一种三杆并联机床的静力分析. 中国机械工程,2004,15(14):1231-1235
    123 赵辉, 高峰, 张建军等. 新型五自由度并联机构静力学分析. 机械设计, 2004, 21(6):54-57
    124 黄真,赵永生,赵铁石. 高等空间机构学.北京:高等教育出版社,2006
    125 高峰, 陈玉龙, 彭斌彬等. 新型解耦和各向同性五维力传感器性能分析. 机械工程学报,2004, 40(9):71-74
    126 Gosselin C. Stiffness mapping for parallel manipulators. IEEE Transactions on Robotics and Automation, 1990, 6(3): 377-382
    127 Tahmasebi F 和 Tsai L W.On the stiffness of a novel six-degree-of-freedom parallel manipulator, Journal of Robotic system, 1995,12(12):845-856
    128 张华, 李育文, 王立华等. 龙门式混联机床的静刚度分析. 清华大学学报(自然科学版),2004, 44(2): 182-185
    129 Tsai L W, Joshi S. Comparison study architecture of four 3 degree-of- freedom translational parallel manipulators. Proceedings of the International Conference on Robotics and Automation, Seoul, Korea, 2001:1283-1288
    130 Joshi S, Tsai L W. A comparison study of two 3-DoF parallel manipulators: one with three and the other with four supporting legs. IEEE Transactions on Robotics and Automation, 2003,19(2): 200-209
    131 Griffis M, Duffy J. Global stiffness modeling of a class of simple compliant couplings, Mechanism and Machine Theory, 1993,28(2):207-224
    132 Svinin M M, Hosoe S, Uchiyama M. On the stiffness and stability of Gough-Stewart platforms. Proceedings of IEEE International Conference on Robotics and Automation, Seoul, Korea, 2001:3268-3273
    133 Bashar S, El-Khasawneh, Placid M Ferreira. Computation of stiffness bounds for parallel link manipulators. International Journal of Machine Tools & Manufacture, 1999(39): 321-342
    134 Huang T, Zhao X Y, Whitehouse D J. Stiffness estimation of a tripod-based parallel kinematic machine, IEEE Transactions Robotics and Automation, 2002, 18(1): 50-58
    135 Yoon W K, Suehiro T, Tsumaki Y, et al. A method for analyzing parallel mechanism stiffness including elastic deformations in the structure. Proceedings of IEEE International Conference on Intelligent Robots and Systems, Lausanne, 2002: 2875-2890
    136 Zhang D, Gosselin C M. Kinetostatic analysis and design optimization of the Tricept machine tool family. ASME Journal of Manufacturing Science and Engineering, 2002(124): 725-733
    137 Kim H S, Tsai L W. Design optimization of a Cartesian parallel manipulator, ASME Journal of Mechanical Design, 2003,125(1):43-51
    138 Zefran M, Kumar V. Affine connections for the Cartesian stiffness matrix. Proceedings of IEEE International Conference on Robotics and Automation, Albuquerque, NM, 1997: 1376-1381
    139 陈省身, 陈维桓. 微分几何讲义. 北京:北京大学出版社,2001
    140 Boothby W. An introduction to differentiable manifolds and Riemannian geometry. New York: Academic, 1975
    141 Griffis M. Crane C, Duffy J. Displacements that null forces. Proceedings of IEEE International Symposium on Intelligent Control. Arlington, VA, 1991: 110-115
    142 Liu G F, Li Z X. A unified geometric approach to modeling and control of constrained mechanical systems. IEEE Transactions on Robotics and Automation, 2002, 18(4): 574-587
    143 Hunt K H. Kinematic geometry of mechanisms. Oxford University Press, 1978.
    144 Denavit J, Hartenberg R S. A kinematic notation for lower pair mechanisms based on matrices. ASME Journal of Applied Mechanics, 1955(77): 215-221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700