用户名: 密码: 验证码:
公理化六西格玛设计方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在实施六西格玛设计(DFSS)的过程中,两个主要的设计缺陷会影响到产品的质量,即,由于违背设计原则而引起的概念缺陷、以及由于在应用环境中缺少稳健性而引起的操作缺陷。其中,操作缺陷可以通过减少变异来减少或避免,因而在设计过程中,应用稳健性设计(RD)以通过减少变异效应带动产品的功能性来提高产品质量;而在产品开发过程中,由于缺乏一种找到理想方案的系统化设计方法,概念缺陷通常被忽略。为此,本文将公理化设计(AD)的理论方法引入到六西格玛设计中来,提出了公理化六西格玛设计(ADFSS)方法,并对其进行了深入的研究与探讨:
     首先,阐述了DFSS、AD、TRIZ、QFD以及稳健性设计等设计方法和理念,提出了ADFSS的方法,并以AD的过程为主线,集成TRIZ、QFD、VA/VE、RD、FMEA、DFA、DFM等设计工具与方法并将其融入到六西格玛的哲理之中;
     随后,开展了ADFSS的主要关键技术---公理化六西格玛设计的解耦合设计、基于TRIZ理论的公理化六西格玛设计、基于QFD的公理化六西格玛设计以及基于稳健性的公理化六西格玛设计的研究与应用。即,提出了公理化六西格玛设计解耦合的一般方法,并开发了一种融合分离算法、AHP法和最短路径法去改善复杂系统设计的耦合;通过分析TRIZ与AD的内在联系,提出了基于TRIZ理论的公理化六西格玛设计方法,对现有产品进行理想解分析、S曲线分析,预测产品的演化路线,并采用发明原理和分离原理解决设计过程的冲突和约束问题,实现产品的无耦合设计;针对QFD实施过程中存在的问题,建立了基于QFD的公理化六西格玛设计模型,缩短了产品开发周期,避免了顾客需求信息的损失;为减少或避免设计过程中的操作缺陷,稳健性的思想被应用到公理化六格玛设计中,运用DOE和田口方法对设计参数进行优化,并将功能要求的质量损失和设计参数的控制成本考虑进来,建立基于成本-质量的非线性公差优化数学模型,消除偏差,减小方差,合理分配设计参数的公差,使产品的功能要求从设计一开始就真正满足顾客需求,达到六西格玛质量水平;
     最后,应用公理化六西格玛设计方法设计了应变测量系统的无源滤波器,结果表明:应用公理化六西格玛设计方法,可简化设计结构,使功能要求从设计一开始就真正达到六西格玛质量水平,同时优化了设计参数、减少了过程波动、节约了成本、避免了设计过程中的概念缺陷和操作缺陷。
During the implementation of Design for Six Sigma (DFSS), the quality of products is influenced by two major design weaknesses, i.e., conceptual weakness due to violating design principles and operational weakness due to lack of robustness in the use environment. The operational weaknesses can be lessened or avoided by reducing variation. Robust Design is thus employed to improve product quality through reducing variation to bring along product functionality during design. However, conceptual weaknesses are usually overlooked during product development as a result of lack of a systematic design approach for seeking ideal solutions.
     Therefore, the theory of Axiomatic Design is incorporated herein into DFSS, and Axiomatic Design for Six Sigma is put forward and researched deeply as follows: Firstly, some design methods and theories are described such as DFSS, Axiomatic Design, TRIZ, QFD and Robust Design, etc. Moreover, Axiomatic Design for Six Sigma (ADFSS) is put forward. The ADFSS approach is based on Axiomatic Design which is integrated with design and quality methods such as TRIZ, QFD, VA/VE, Robust Design, FMEA, DFA, DFM and the like, and merged into the philosophy of Six Sigma.
     Thereafter, the key techniques are studied and applied including decoupling of Axiomatic Design for Six Sigma, Axiomatic Design for Six Sigma based on TRIZ, QFD and Robustness. That is, a common method for decoupling of Axiomatic Design for Six Sigma is put forward and a method incorporating separation algorithm, AHP and shortest path is developed to improve coupling of design of a complicated system. Axiomatic Design for Six Sigma based on TRIZ is provided through analyzing the internal relationship between TRIZ and AD. Analyses of ideal solution and S curve are conducted and the evolution route of products is predicted. At the meantime, inventive principle and separation principle are utilized to solve the problems of conflict and constrains during design to realize uncoupled design of products. With regard to the problems occurred in the application of QFD, a model of Axiomatic Design for Six Sigma based on QFD is established to shorten the cycle of product development and avoid loss of information on customers needs. To reduce or avoid operational weaknesses during design, the concept of robustness is utilized in Axiomatic Design of Six Sigma. Design parameters are optimized with DOE and Taguchi methods, and with the quality loss of function requirements and control cost of design parameters considered, a nonlinear mathematic model for optimizing tolerance is established based on cost-to-quality to eliminate deviation, reduce variance and distribute tolerance of design parameters appropriately, which make the function requirements of products really meet the needs of customers from the beginning of design and reach the level of Six Sigma.
     Finally, a passive filter of a strain measurement system is designed with the approach of Axiomatic Design for Six Sigma. The result shows that the design structure is simplified and the level of Six Sigma is reached just at the beginning of the design of function requirements with optimized design parameters, less process variation, lower cost, and conceptual and operational weakness during design being avoided.
引文
[1] Suh N. P. The Principles of Design. New York: Oxford University Press, 1990
    [2] Peter M. Senge. The Fifth Discipline. New York:Doubleday,1990
    [3] Larry R. Smith. Six Sigma and the Evolution of Quality in Product Development. Six Sigma Forum Magazine, November 2001, 28~35
    [4] Srinivasan R. S. A Theoretical Framework for Functional Form Tolerance in Design for Manufacturing. Ph. D. Dissertation, Austin: the University of Texas, 1994
    [5] Yang K. and Basem El-Haik. Design for Six Sigma: A Roadmap for Product Development. New York: McGraw-Hill, 2003
    [6] 杰夫·坦南特.六西格玛设计[吴源俊译].北京:电子工业出版社,2002
    [7] Geoff Tennant. Pocket TRIZ for Six Sigma. Mulbury Consulting Limited, 2003
    [8] Joseph A. De Feo and Zion Bar-El. Creating Strategic Change More Efficiently with a New Design for Six Sigma Process. Journal of Change Management, 2002, 3(1): 60~80
    [9] Basem Said EI-Haik. Manufacturing and Design for Six Sigma (X-FSS). Ph. D. Dissertation, Michigan: the University of Michigan, 2002
    [10] 何桢,张志红,刘子先.基于并行质量工程的 6σ 公差设计方法应用研究.中国机械工程,2005,16(9):827~830
    [11] 张志红.基于并行质量工程的 6σ 公差设计方法研究:[博士学位论文],天津:天津大学,2006
    [12] Suh N. P. Axiomatic Design: Advance and Applications. New York: Oxford University Press, 2001
    [13] Lindholm D., Tate D. and Harutunian V. Consequences of Decisions in Axiomatic Design. Journal of Integrated Design and Process Science,1999,4(3):1~12
    [14] Nordlund M., Tate D. and Suh N. P. Growth of Axiomatic Design Through Industrial Practice. 3rd CIRP Workshop on Design and the Implementation of Intelligent Manufacturing Systems, Tokyo, Japan, 1996, 6:77~84
    [15] HarutuniaV., Nordlund M., Tate D. et al. Decision Making and Software Toolsfor Product Development Based on Axiomatic Design Theory. Annals of the CIRP,1996,45(1):135~139
    [16] Lu S. C-Y. & Cai J. Modeling Collaborative Design Process with a Socio -Technical Framework. 6th ISPE International Conference on Concurrent Engineering, Bath,UK,1999,1~3
    [17] 杨培林,朱均.机械产品并行设计的实施策略.机械科学与技术,2000,3(19):479~481
    [18] 陈永亮,徐燕申.面向对象的模块化柔性生产线并行设计研究.机械设计,2001,(6):8~10
    [19] 张瑞红,孙力峰,段国林等.基于工程模型的现代稳健优化设计.河北工业大学学报,1999,1(28):80~83
    [20] 陈晓川,刘晓冰等.基于公理设计的现代设计方法集成研究.计算机集成制造系统,2000,3(6):75~79
    [21] 陈晓川,冯辛安.基于公理化设计理论的 DFC 成本估算软件框架.计算机集成制造系统,2001,10(7):69~72
    [22] 宋慧军,林志航.基于域结构模板的机械产品概念设计方案生成.机械工程学报,2001,9(37):24~39
    [23] 唐敦兵,李东波,张世琪.基于“之”字形映射的并行设计研究.工程设计,1999,(2):17~20
    [24] 吴斌,乌兰木其,王丽英等.产品需求敏捷获取与处理系统.计算机辅助工程,2000,20(1):1~7
    [25] 郑称德.公理化设计基本理论及其应用模型.管理工程学报,2003,17(2):81~85
    [26] 朱龙英.公理化设计理论用其应用研究:[博士学位论文],南京:南京航空航天大学,2004
    [27] Creveling C. M., Slutsky J. L. and Antis D. Design for Six Sigma in Technology and Product Development. Pearson Education, Inc. 2003
    [28] Yang Kai & El-Haik Basem. Design for Six Sigma: A Roadmap for Product Development. McGraw-Hill, 2003
    [29] Chowdhury Subir. Design for Six Sigma: The Revolutionary Process for Achieving Extraordinary Profits. FT Prentice Hall, 2002
    [30] 何桢,梁昭磊,邹峰.六西格玛设计模式及其应用.工程机械,2006,37(7):62~65
    [31] Altshuller G. S. And Suddenly the Inventor Appeared. Technical InnovationCenter, Worcester, Massachusetts,1996
    [32] 曾凤章.稳健性设计 原理 技术 方法 案例.北京:兵器工业出版社,2004
    [33] 赵松年,佟杰新,卢秀春.现代设计方法.北京机械工业出版社,1999
    [34] Pahl G. & Beitz W. Engineering Design. 2nd Edition, London: Springer, 2001
    [35] Akao K. Quality Function Deployment. Productivity Process, Cambridge, MA, 1990
    [36] Tomiyama T. General Design as A Basis for Universal Design Theory. Aachen: Shaker Veralg,1998
    [37] Toru Nakagawa. TRIZ: Theory of Inventive Problem Solving-Understanding and Introduction It. Bulletin of Culture and Natural Science in Osaka Gakuin University, September 1998, (37):31~37
    [38] Tate D. A Roadmap for Decomposition: Activities, Theories, and Tools for System Design. Ph. D. Dissertation, Department of Mechanical Engineering, MIT, 1999
    [39] Altshuller G. S. Creativity as an Exact Science. New York: Gordon & Breach, 1988
    [40] Altshuller G. S. The Innovation Algorithm, TRIZ, Systematic Innovation and Technical Creativity. Technical Innovation Center, INC. Worcester,1999
    [41] Boris Zlotin, Alla Zusman, Len Kaplan, et al. TRIZ Beyond Technology: The Theory and Practice of Applying TRIZ to Non-technical Areas. TRIZ Journal, May 2001, http://www.trizjournal.com
    [42] Kowalick J. F. Technology Forecasting Using TRIZ, Predicting Next-Generation Products & Processes Using AFTER-96 (Algorithm for Forecasting Technology- Evolution Roadmaps). TRIZ Journal, Jan 1997, http://www.triz-journal.com/archives /1997/01/b/index.html
    [43] 牛占文,徐燕申等.发明创造的科学方法论—TRIZ.中国机械工程,1999,10(1):84~89
    [44] 檀润华,马建红等.产品设计中的物质-场分析.工程设计学报,2001,(4):207~210
    [45] 牛占文,徐燕申.实现产品创新的关键技术-计算机辅助创新技术.机械工程学报,2000,36(1):11~14
    [46] Tan Runhua. The Conceptual Design of a Fast Clasping Mechanism Based on Function Means Tress and TRIZ. TRIZ Journal, October, 2000, http://www.triz- journal.com / archives /2000/10/f/index.htm
    [47] Terninko J. Step by Step QFD-Customer-driven Product Design. St, Lucie Press,1997
    [48] John J. J., Jeffrey K. L. and Chelsea C. W. Key Factors in the Successful Application of Quality Function Deployment. IEEE Transactions on Engineering Management, 2001, 48(1): 81~95
    [49] Hauser John R. and Clausing Don. The House of Quality. Harvard Business Review, 1988,66(3): 63~73
    [50] Temponi C., Yen J. and Tiao W. A. House of Quality: A Fuzzy Logic-based Requirements Analysis. European Journal of Operational Research, 1999, 117(2):340~354
    [51] 刘鸿恩.改进的质量功能展开.系统工程理论方法应用,1995,15(4):49~52
    [52] 陈立周编著.稳健设计.北京:机械工业出版社,1999
    [53] Chunming Duan. Developing Robust System Designs Under Uncertainty: A Systematic Approach to Design Evaluation. Proceedings of ISUMA-NAFIPS’95, Third International Symposium on,1995: 210~215
    [54] Parkinson A. Robust Mechanical Design Using Engineering Models. Transactions of the ASME, Journal of Mechanical Design, 1995,117:48~54
    [55] Phadke M. S. Quality Engineering Using Robust Design. Pretic-Hall Internation Inc., U.S.A, 1989
    [56] Goli T. N. Taguchi Methods: Some Technical, Cultural and Pedagogical Perspective. Quality and Reliability Engineering International,1993,9:185~202
    [57] Jugulun R. & Dichter A. Taguchi Methods in American Universities and Corporations. Quality Enginering,2001,13(4):607~621
    [58] Myers R. H. Response Surface Methodology in Quality Improvement. Communications in Statistics-Theory and Methods, 1991, 20: 457~476
    [59] Khattree R. Robust Parameter Design: A Response Surface Approach. Journal of Quality Technology,1996,28(2):187~198
    [60] Parkinson A., Sorensen C. and Pourhassan N. A General Approach for Robust Optimal Design. Transactions of the ASME, Journal of Mechanical Design, 1993,115:74~78
    [61] Michael W. & Siddall J. N. The optimization Problem with Optimal Tolerance Assignment and Full Acceptance. Transactions of the ASME, Jorunal of Mechanical Design,1981,103:842~848
    [62] Fiacco A. V. Introduction to Sensitivity and Stability Analysis in Nonlinear Programming. Academic Press,1983
    [63] Balling G. J., Free J. C. and Parkinson A. Consideration of worst-case manufacturing Tolerances in Design Optimization.ASME Journal of Mechanical Design, 1986, 108(5):438~441
    [64] 陈立周,于晓红,翁海珊.基于随机优化的工程稳健设计.北京科技大学学报,1999,21(1):57~59
    [65] Brllatos S. B. & Grigely L. J. Functional Requirement Mapping as a Framework for Concurrent Engineering. Concurrent Engineering: Research and Applications, 1993,1(3):171~178
    [66] Kusiak A., Wang J., He D. et al. Structured Approach for Analysis of Design Processes. IEEE Transactions on Components, Packaging and Manufacturing Technology, Part A,1995,18(3):664~673
    [67] Bras B. & Mistree F. A Compromise Decision Support Problem for Axiomatic and Robust Design. Advances in Design Automation,1993,65(1):359~369
    [68] Suh N. P. Design-in of Quality through Axiomatic Design. IEEE Transitions on Reliability,1995,44(2):256~264
    [69] Zadeh L. Fuzzy sets. Information Control,1965, 8:338~353
    [70] Liang G. & Wang M. A Fuzzy Multi-Criteria Decision Making Method for Facility Site Selection. International Journal of Production Research,1991, 29(2):2313~2330
    [71] Von Neumann J. & Morgenstern O. Theory of Games and Economic Behavior. Princeton University Press, Princeton, New Jersey,1944
    [72] Keeney R. L. & Raiffa H. Decision with Multiple Objectives: Preferences and Value Tradeoffs. New York:Wiley,1976
    [73] Saaty T. L. Muticriteria Decision Making: The Analytic Hierarchy Process. New York: McGraw-Hill,1980
    [74] Lin Z. & Yang C. Evaluation of Machine Section by the AHP Method. Journal of Materials Processing Technology,1996,57(3-4):253~258
    [75] Partovi F. Y. & Hopton W. E. The Analytical Hierarchy Process as Applied to Two Types of Inventory Problems. Production and Inventory Management Journal,1994, 35(1):13~19
    [76] Joseph Chung-Yu, Shi-Jie Chen and Li Lin. A Structured Approach to Measuring Functional Dependency and Sequencing of Coupled Tasks inEngineering Design. Computers & Industrial Engineering 2003,45(1):195~214
    [77] Steward D. V. The Design Structure Systems: A Method for Managing the Design of Complex Systems. IEEE Transaction on Engineering Management,1981, 28(3):71~74
    [78] Browning T. R. Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Direction. IEEE Transaction on Engineering Management,2001,48(3):292~307
    [79] Shu L. & Flowers W. Structured Approach to Design for Remanufacture. American Society of Mechanical Engineers, Design Engineering Division, DE, 1993, 66:13~19
    [80] Nordlund M. An Information Framework for Engineering Design Based on Axiomatic Design. Ph.D. Thesis,The Royal Institute of Technology, Department of Manufacturing Systems,Stockholm,Sweden,1996
    [81] James Kowalick. Advanced TRIZ Developments. TRIZ Journal, March 1999
    [82] Ellen Domb. 40 Inventive Principles with Examples. TRIZ Journal. http://www.triz-journal. com/archives/1997/07/b/index.html
    [83] Ellen Domb. The 39 Features of Altshuller’s Contradiction Matrix. TRIZ Journal. http://www.triz-journal.com /archives/1998/11 /d/index. Html
    [84] John Terninko, Ellen Domb and Joe Miller. The Seventy Six Standard Solutions, with Examples Section One. TRIZ Journal. http://www.triz-journal.com/ archives/ 2002/g/index.html
    [85] Zinovy Royzen. Solving Contradiction in Development of New Generation Products Using TRIZ. The ASI Total Product Development Symposium,1996
    [86] Zinovy Royzen. Case Study: TRIZ Solves a Hard Drive Reliability Problem.10th Symposium on QFD, June 1998,(6):14~16
    [87] Boris Zlotin & Alla Zusman. Managing Innovation Knowledge-The Ideation Approach to Search, Development, and Utilization of Innovation Knowledge. Journal for Altshuller Institute for TRIZ Studies,1999,21~29
    [88] Kim Y-S., Cochran D. S. Reviewing TRIZ from the Perspective of the Axiomatic Design. Jorunal of Engineering Design, 2000,11(1):79~94
    [89] Darrell Mann. Axiomatic Design and TRIZ: Compatibilities and Contradictions. TRIZ Journal. http://www.triz-journal.com/archives/1999/06/a/index.htm
    [90] Darrell Mann. Axiomatic Design and TRIZ: Compatibilities and Contradictions Part II.TRIZ Journal. http://www.triz-journal.com/archives/1999/07/f/index.htm
    [91] Kim Y. S. & Cochran D. S. Reviewing TRIZ from the Perspective of Axiomatic Design. Journal of Engineering Design, 2001,11(1):79~94
    [92] Yang Kai & Zhang Hongwei. Comparison of TRIZ and Axiomatic Design. TRIZ Journal. http://www.triz-journal.com/archives/2000/08/d/index.htm
    [93] Yang Kai & Zhang Hongwei. Compatiability Analysis and Case Studies of Axiomatic Design and TRIZ. TRIZ Journal. http://www.triz-journal.com/ archives /2000/09/c/index.htm
    [94] Hu Matthew, Yang Kai andTaguchi Shin. Enhancing Robust Design with the Aid of TRIZ and Axiomatic Design. TRIZ Journal. http://www.triz-journal.com/ archives /2000/11/d/index.htm
    [95] Zltin B., Zusman A. and Zainniev G. An Application of Directed Evolution. TRIZ Journal. http://www.ideationtriz.com/Endoscopic_Case_study.htm
    [96] Hajime Yamashina, Takaaki Ito and Hiroshi Kawada. Innovation Product Development Process by Integrating QFD and TRIZ. International Journal of Production Research,2002, 40(5): 1031~1050
    [97] Low MK., Lamvik T., Walsh K. and Myklebust O. Product to Service eco-innovation: The TRIZ Model of Creativity Explored. IEEE.2000,10 :209~214
    [98] Kang Young Ju. The Method for Uncoupling Design by Contradiction Matrix of TRIZ, and Case Study. Proceedings of ICAD2004, the Third International Conference on Axiomatic Design, June 2004
    [99] Bohuslav BUSOV, Darrell MANN, Pavel JIRMAN. Case Studies In TRIZ:A Novel Heat Exchange. TRIZ Journal. http://www.triz-journal.com/archives /1999/12/b/index.htm
    [100] Lai-Kow Chan, Ming-Lv Wu. Quality Function Development: A Literature Review. European Journal of Operational Research,2002,143:463~497
    [101] Harding J. A., Popplewell K., Fung R., et al. An Intelligent Information Framework Relating Customer Requirements and Product Characteristics. Computers in Industry, 2001,44(1):51~65
    [102] 何桢,邹峰,赵燕.基于 QFD 质量工具集成的研究与应用.组合机床与自动化加工技术,2006,(1):96~99
    [103] Tang J., Fung R., et al. A New Approach to Quality Function Deployment Planning with Financial Consideration. Computers and Operations Research, 2002, 29(11):1447~1463
    [104] Ross P. J. The Role of Taguchi Method and Design of Experiments in QFD. Quality Progress,1988,(6):41~47
    [105] Terninko J. The QFD, TRIZ and Taguchi Connection:Customer-Driven Robust Innovation. TRIZ Journal. http://www.triz-journal.com/archives/ 1998/01/b/index.htm
    [106] Noel León-Rovira & Humberto Aguayo. A new Model of the Conceptual Design Process using QFD/FA/TRIZ. The Proceedings of the 10th Annual Quality Function Deployment Symposium, 1998
    [107] Jing Sheng, Zhen He and Liangxing Shi. Integration of Design of Experiments into Quality Function Deployment. The Asian Journal on Quality 2002, 3 (1):71~84
    [108] He Zhen, Zou Feng et al. Continuous Improvement through Integration of Quality Tools. Chinese Journal of Mechanical Engineering,2006,19(1):72~75
    [109] 刘鸿恩.质量功能展开问题解决理论与方法研究:[博士学位论文],上海:上海交通大学,2001
    [110] XiaoQing Frank Liu. An Inlligent House of Quality.10th Symposium on QFD. Michigan:ASI Press,1998:61~68
    [111] Vivianne Bouhereau, Rowlands H. An Intelligent Systems Approach to Quality Function Deployment. 10th Symposium on QFD, Michigan: ASI Press,1998:276~281
    [112] Jae. Kyeong Kim. A Knowledge-Based Approach to the Quality Funcion Deployment. Computers & Industrial Engineering,1998,35(1-2):233~236
    [113] 车阿大,林志航,高国军.改进的质量功能配置模型.系统工程理论与实践,1998,4:131~135
    [114] 朱龙英,朱如鹏,刘正埙.公理化设计与质量功能配置集成研究.机械科学与技术,2004,23(6):647~650
    [115] Noel Manchulenko. Applying Axiomatic Design Principles to the House of Quality. Master Degree Dissertation, Ontario: Windsor University,2001
    [116] Ho E. S., Lai Y. J. and Chang S. I. An Integrated Group Decision-Making Approaches to Quality Function Deployment. IIE Transactions, 1999,31(6):553~567
    [117] Harry M. J. Abatement of Risk is Key to Six Sigma. Quality Process, 2000,33(7): 72~76
    [118] 张性源主编.设计质量工程.航空工业出版社,1999
    [119] Taguchi G. & Chowdhury S. Robust Engineering: Learn How to Boost Quality While Reducing Costs and Time to Market. First Edition, McGraw-Hill Professional
    [120] Hilario L. Oh. Unifying Axiomatic Design and Robust Design through the Transfer Function. Proceedings of ICAD2004, 3rd International Conference on Axiomatic Design, Seoul, 2004, 6:21~24
    [121] Hilario L. Oh. Amending Axiom II to Achieve a Six Sigma Design. Proceedings of ICAD2006, 4th International Conference on Axiomatic Design, Firenze, 2006, (6):13~16
    [122] Basem El-Haik. Axiomatic Quality: a Framework for Axiomatic Design & Robust Integration. Robust Engineering ASI’s 20th Annual Symposium 285~301
    [123] El-Haik B. & Yang K. The Components of Complexity in Engineering Design. IIE Transactions, 1999, 30(10):925~934
    [124] Chase K. W. & Greenwood W. H. Design Issues in Mechanical Tolerance Analysis. Manufacturing Review, 1988, 1(1):50~59
    [125] Spotts M. F. Allcation of Tolerance to Minimize Cost of Assembly, Transactions of the ASME, 1973, 762~764
    [126] Wu & Hamada. Experiments: Planning, Analysis, and Parameter Design Optimization. New York: John Wiley & Sons, Inc., 2000
    [127] Kacker R. N. Off-line Quality Control, Parameter Design, and the Taguchi Method. Journal of Quality Technology, 1985,(17):176~188
    [128] Kwang-Hyeon, Kwon-Hee Lee, Gyung-Jin Park, et al. Robust Design of a Vibratory Gyroscope with an Unbalanced Inner Torsion Gimbal Using Axiomatic Design. Journal of Micromechanics and Microengineering, 2002,13(1):8~17
    [129] Basem El-Haik & James M. Wasiloff. Axiomatic Design Quality Engineering-A Transmission Planetary Case Study. 3rd International Conference on Axiomatic Design, Seoul, 2004,6:21~24
    [130] Hu M. & Pieprzak J. Using Axiomatic Design to Improve Conceptual Design Robustness in Design for Six Sigma (DFSS) Methodology. International Journal of Six Sigma and Competitive Advantage,2005,1(3):245~262
    [131] Bras B. & Mistree F. Concurrent Axiomatic and Robust Design Using Compromise Decision Support Problems [Passive Filter]. Concurrent Engineering: Research and Application,1994,2(1):17~31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700