用户名: 密码: 验证码:
新型骨架结构材料的分离与催化性能的计算化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机骨架材料和共价有机骨架材料是新型的纳米多孔材料,由于其高的比表面积、大的孔隙率、结构的多样性与可调控以及可设计性等诸多优势,已经成为目前材料领域研究的前沿和热点。其在气体存储、多组分气体分离、催化以及传感器等方面均有潜在的应用价值,正得到越来越多的科研人员的关注。但是,由于材料的多样性以及孔道结构的复杂性,单纯用实验的手段很难对其进行系统的研究,特别是针对吸附机理,扩散特性的研究更是十分困难。随着计算机水平的提高,计算化学得到了长足的发展,并且逐渐被应用于材料的结构和性质的研究。利用量子化学的方法,可优化材料的结构和客体分子与材料的相互位置关系,计算能量以获得材料中各原子的电荷分布和电子云轨道分布;利用分子动力学方法研究客体分子在材料中的扩散路径以及扩散行为;利用蒙特卡罗方法模拟流体分子在材料中的吸附以及分离等性质,并且进一步探索其中具体的优先吸附位置,探索其机理。
     本论文主要是综合利用以上方法,研究金属-有机骨架材料中的CO_2储存、CO_2相关工业气体的分离以及探索性地研究共价有机骨架材料的催化特性。主要内容和创新点如下:
     1、选取沸石咪唑酯骨架材料(ZIFs)中有代表性的ZIF-68和ZIF-69两种材料,用蒙特卡罗和分子动力学相结合的方法,研究了其中CO_2吸附和扩散性质。研究发现CO_2优先吸附在由nIM围成的小孔中。压力不断增加,小孔中的CO_2几乎饱合,CO_2则趋于吸附在大孔中的苯环角落处,最后CO_2分布在整个大孔中,整个吸附也接近饱合。对比ZIF-68和ZIF-69的吸附过程,我们还发现,ZIF-69中的有机部分由Cl取代了苯环上的H,使得ZIF-69的吸附能变大。但同时,由扩散速度我们也可以发现,这在一定程度上阻碍了ZIF-69中的分子扩散。
     2、发现CO_2的强四偶极距在含CO_2的体系吸附和分离中起重要作用。本文研究了不同离子交换(Li~+, Na~+, K~+, Rb~+, Cs~+, Mg~(2+), Ca~(2+), Sr~(2+),Al~(3+))的usf-ZMOF材料,对于三种不同工业体系(CO_2/CH_4, CO_2/N_2,CO_2/H_2)的分离选择性。发现其分离选择性远高于现有的材料,对于不同的离子交换后的usf-ZMOF,吸附选择性随着离子电荷值的增加而增大;对于同一主族的离子,选择性随着原子序数增加而减小。
     3、在吸附和分离的模拟计算中,量化计算材料的电荷耗时费力,制约着在人们大规模筛选材料。很多研究表明,材料和流体之间的静电贡献随压力的增加而减少,并且在工业应用中都是在中高压力下。因此,本论文中选择了一批有代表性的金属-有机骨架材料,对材料和流体之间的静电贡献进行了系统的研究。发现,对于天然气净化所在的2-3MPa下,材料和流体之间的静电贡献都接近或小于10%。也就是说,在进行大规模材料筛选时,静电贡献可以忽略。
     4、把针对于金属-有机骨架材料开发的基于原子链接性的电荷估算方法(CBAC)应用于共价有机骨架材料。从结果中发现,对于在两种材料中都存在的原子类型,基于金属-有机骨架材料所得的结果可以很好地应用到共价有机骨架材料中。一方面,进一步证明了基于原子链接的电荷估算方法的可靠性和普适性;另一方面,扩展了原来的电荷库。
     5、利用量化计算的方法探索了COF-1的催化活性位。利用CO为探针分子,分别优化吸附CO前后的COF-1的最优结构。通过对其频率、电荷转移、键长等进行分析,发现其本身并不具备酸性位。但是,由于其高的比表面积以及低密度,仍具负载催化的潜质。
Metal-Organic Frameworks and Covalent Organic Frameworks are newfamilies of nanoporous frameworks materials. Due to their extremely highaccessible areas, porosities, chemical diversities and tailored and designedstructures, they have been recongised as the frontier area and hotspot in thefield of materials. They have show potential applications in many fields, suchas in gas storage, separation, catalyst and sensors. However, their structure iscomplex and thus it is difficult to study the materials just by experiments. Withthe development of computer, computational chemical has been wildly used tostudy the structure and properties of materials..
     This work mainly studies the CO_2storage, CO_2related industry gasseparation in Metal-Organic Frameworks and Covalent Organic Frameworksusing computational tool. The main findings and contents are followed.
     1. We have studied two typical Zeolitic Imidazolate Frameworks (ZIFs),ZIF-68and ZIF-69. Using a combined molecular dynamic and Monto Carlomethod, we studied the adsorption and diffusion of CO_2in ZIF-68and ZIF-69. The results show that the small pores formed by he nIM linkers in ZIF-68andZIF-69are the preferential adsorption sites. The corners formed by phenylrings in the large pores are the second preferential aadsorption sites. We alsofound that the chlorine atoms in cbIM linkers in ZIF-69lead to enhancedbinding energy but reduced diffusivity for CO_2.
     2. We report a molecular simulation study for the separation of industrialgas mixtures in different ion-exchanged (Li~+, Na~+, K~+, Rb~+, Cs~+, Mg~(2+), Ca~(2+),Sr~(2+), Al~(3+)) usf zeolite-like metal-organic framework (usf-ZMOF). Theselectivity of the three systems (CO_2/CH4, CO_2/N2, CO_2/H2) is higher thanaverage. For the different ion-exchanged usf-ZMOF, the selectivity enhanceswhen the ion valences go up from positive one to three. In the same maingroup, the selectivity decreased with the increasing of the atom number.
     3. This work takes a computational study to investigate the influences offramewok charges on CO_2uptake in metal-organic frameworks. The resultsshow that the contribution of framework charges to CO_2uptake dependslargely on pressure. For applications operated at moderate or high pressures,such as in the natural gas purification process, the framework contributionbecomes less important ansd is usually less than10%. In this case, it isreasonable to neglect the framework contribution in the initial materialscreening, which makes it possible to pursue a large-scale computationalscreening of MOF materials for applications operated at moderate or highpressure.
     4. An approach named connectivity-based atom contribution method(CBAC) was developed for estimationg framework charges in metal-organicframeworks in our group. This work extends the approach to covalent Organicframeworks. The results show that those framework atoms with the samebonding connectivity in covalent organic frameworks have identical chargesas that in metal-organic frameworks, this further validates the suitability of theCBAC method and makes it possible to apply to other nanoporous materials.We also extend the CBAC charge databank.
     5. We explored whether there are catalysis sites in Covalent OrganicFrameworks by Quantum Mechanics. We optimized the structures of bothCOF-1and CO-COF-1,and CO is adopted as probe molecule. We find thatthere is no catalysis activity in COF-1, by comparing frequencies, charges andthe length of bonds.
引文
[1]张立德.纳米材料研究的新进展及在21世纪的战略地位[J].中国粉体技术,2000,6(1):1-5
    [2]穆翠枝,徐峰,雷威.功能金属-有机骨架材料的应用[J].化学进展,2007,19(9):1345-1356
    [3] Férey G. Hybrid porous solids: past, present, future [J]. Chem. Sco. Rev.,2008,37:191-214
    [4] Mircea D, Dailly A, Liu Y, Craig M B, Neumann Dn A, Long J R. Hydrogen Storage in aMicroporous Metal-Organic Framework with Exposed MN2+Coordination Sites [J]. J. Am.Chem. Soc.2006,128:16876–16883
    [5] Rosi N L., Eckert J, Eddaoudi M, Vodak D T., Kim J, O’Keeffe M, Yaghi O M. HydrogenStorage in Microporous Metal-Organic Frameworks [J]. Science,2003,300:1127-1129
    [6] Li Y, Yang R T. Hydrogen Storage in Metal-Organic Frameworks by Bridged HydrogenSpillover [J]. J. Am. Chem. Soc.2006,128:8136–8137
    [7] Lee J Y, Pan L, Kelly S P., Jagiello J, Emge T J., Li J. Achieving Hing Density of AdsorbedHydrogen in Microporous Metal Organic Frameworks [J]. Adv. Mater.,2005,17:2703-2706
    [8] Antek G W-F, Matzger A J, Yaghi O M. Exceptional H2Saturation Uptake in MicroporousMetal-Organic Frameworks [J]. J. Am. Chem. Soc.2006,128,3494–3495
    [9] Dybesev D N., Chun H, Yoon S H, Kim D, Kim K. Microporous Manganese Formate: A SimpleMetal-Organic Porous Material with High Framework Stability and Hingely Selective GasSorption Properties [J]. J. Am. Chem. Soc.,2004,126:32-33
    [10] Rowsell J L C, Yaghi O M. Effects of Functionalization, Catenation, and Variation of the MetalOxide and Organic Linking Units on the Low-Pressure Hydrogen Adsorption Properties ofMetal-Organic Frameworks [J]. J. Am. Chem. Soc.2006,128,1304–1305
    [11] Pan L, Olson D H, Lauren R C, Ryan H, Li J, Separation of Hydrocarbons with a MicroporousMetal–Organic Framework [J]. Angew. Chem. Int. Ed.2006,45:616–619
    [12] Xiang L, Jia J, Zhao X, Thomas K M, Alexander J B, Gavin S W, Neil R C, Peter H, Martin S.High H2Adsorption byCoordination-Framework Materials [J]. Angew. Chem. Int. Ed.2006,45:7358–7364
    [13] Li Y W, Yang R T. Significantly Enhanced Hydrogen Storage in Metal-Organic Frameworks viaSpillover [J]. J. Am. Chem. Soc.2006,128:726–727
    [14] Latroche M, Surble S, Serre C, Mellot-Draznieks C, Llewellyn P L, Lee J-H, Chang J-S, JhungS H, Férey G. Hydrogen Storage in the Giant-Pore Metal–Organic Frameworks MIL-100andMIL-101[J]. Angew.Chem. Int. Ed.2006,45:8227–8231
    [15] Pan L, Parker B, Huang X, Olson D H, Lee J Y, Li J. Zn(tbip)(H2tbip=5-tert-Butyl IsophthalicAcid): A Highly Stable Guest-Free Microporous Metal Organic Framework with Unique GasSeparation Capability [J]. J. Am. Chem. Soc.2006,128,4180–4181
    [16] Kesanli B, Cui Y, Smith M R., Bittner E W., Bockrath, B C., Lin W. Highly InterpenetratedMetal-Organic Frameworks for Hydrogen Storage [J]. Angew. Chem. Int. Ed.,2005,44:72-75.
    [17] Sun D, Ma S, Ke Y, Collins J, Zhou H-C. An Interweaving MOF with High Hydrogen Uptake [J]. J. Am. Chem. Soc.2006,128:3896-3897
    [18]Rowsell J L. C., Yaghi O M. Strategies for Hydrogen Storage in Metal-Organic Frameworks [J]. Angew. Chem. Int. Ed.,2005,44:4670-4679
    [19]Mircea D, Yu Aa F, Long J R. Microporous Metal-Organic Frameworks Incorporating1,4-Benzeneditetrazolate:Syntheses, Structures, and Hydrogen Storage Properties [J]. J. Am. Chem. Soc.2006,128:8904-8913
    [20]Czaja U., Trukhan N, Muller U. Industrial applications of metal-oganic frameworks [J]. Chem. Soc. Rev.,2009,38:1284-1293
    [21]Culp J T, Matranga C, Smith M, Bittner E W, Bockrath B.Hydrogen Storage Properties of Metal Nitroprussides M[Fe(CN)5NO],(M=Co, Ni)[J]. J. Phys. Chem. B2006,110:8325-8328
    [22]Mohamed E, Jaheon K, Nathaniel R, Vodak D, Joseph W, O'Keeffe MI, Yaghi O M. Systematic Desigh of Pre Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage [J] Science,2002,295:469472
    [23]Jia Ho P, Li W, Ju Zh F, Zhang J. Synthesis, Structure and Magnetism of Metal-Organic Framework Materials with Doubly Pillared Layers [J]. Eur. J. Inorg. Chem.,2006:4264-4270
    [24]Warshel A, Molecular Dynamics Simulations of Biological Reactions [J]. Ace. Chem. Res.,2002,35:385-395
    [25]Brunger A T, Adams P D., Molecular Dynamics Applied to X-ray Structure Refinement [J]. Ace. Chem. Res.,2002,35:404-412
    [26]Young D C. Computational Chemistry: A practiceal Guide for Applying Techniques to Real-World Problems [M]. John Wiley&Sons, Inc.:New York,2001.
    [27]李以卡,刘金晨.分子模拟与化学工程[J].现代化工,2001,21:10-15
    [28]Dailly A, Vajo J J, Ann C C. Saturation of Hydrogen Sorption in Zn Benzenedicarboxylate and Zn Naphthalenedicarboxylate [J]. J. Phys. Chem. B2006,110:1099-1011
    [29]Rowsell J L., Millward A R., Park K S, Yaghi O M. Hydrogen Sorption in Functionalized Metal-Organic Frameworks [J] J. Am. Chem. Soc.,2004,126:5666-5667
    [30]Park K S, Ni Z, Cote A P., Choi Jae Y, Huang R, Uribe-Romo F J., Chae H K., O'Keefee M, Yaghi O M. Exceptional Chemical and Thermal Stability of Zeolitic Imidazolate Frameworks [J]. Proc. Natl. Acad. Sci. U. S. A.,2006,103:10186-10191
    [31]Hayashi H, Cote A P., Furukawa H, O'Keefee M, Yaghi O M. Zeolite a Imidazolate Frameworks [J] Nat. Mater,2007,6:501-506
    [32]Liu Y. Kravtsov V. C, Eddaoudi M. Template-Directed Assembly of Zeolite-Like Metal-Organic Frameworks (ZMOFs): A usf-ZMOF with an Unprecedented Zeolite Topology.[J]. Angew. Chem., Int. Ed.,2008,47:8446-8449
    [33]Banerjee R, Furukawa H, Britt D, Knobler C, O'Keeffe M, Yaghi O M. Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and Their Carbon Dioxide Selective Capture Properties [J] J. Am. Chem. Soc.,2009,131:3875-3877
    [34]Fu Y.-M, Zhao Y.-H., Lan Y.-Q, Wang Y, Qiu Y.-Q, Shao K.-Z, Su Z.-M. A Chiral3D Polymer With Right-and Left-Helices Based on2,2-Biimidazole: Synthesis, Crystal Structure and Fluorescent Property [J]. Inorg. Chem. Commun.2007,10:720-723
    [35]Huang X.-C, Lin Y.-Y, Zhang J.-P, Chen X.-M. Ligand-Directed Strategy for Zeolite-Type Metal-Organic Frameworks:Zinc(II)Imidazolates with Unusual Zeolitic Topologies[J] Angew, Chem.,Int.Ed.,2006,45:1557一1559
    [36]Tian Y.-Q, Xu L,Cai C-X, Wei J-C, Li Y-Z,You X-Z. Determination of the Solvothermal Synthesis Mechanism of Metal Imidazolates by X-ray Single-Crystal Studies of a Photoluminescent Cadmium(II)Imidazolate and Its Intermediate Involving Piperrazin.[J].EuL J. Inorg. Chem.,2004:1039-1044
    [37]Tian Y.-Q,Zhao Y.-M,Chen Z.-X,Zhang G-N,Weng L.-H,Zhao,D.-Y. Design and Generation of Extended Zeolitic Metal-Organic Frameworks(ZMOFs):Synthesis and Crystal Structures of Zinc(II)Imidazolate Polymers with Zeolitic Topologies[J].Chem.sEur.J.2007,13:4146-4154
    [38]I.orente M A,.Dahan F, Petrouleas V, Bousseksou A,Tuchagues J-P. New Ferrous Complexes Based on the2,2-Biimidazole Ligand: Structural,Moessbauer,and Magnetic Properties of [FeIl(bimH2)2(CH3OH)2](OAc)2,[FeII(bimH2)3]CO3,[FelI(bimH2)2]n,and{[FeII(bim)]}n.[J].Inorg. Chem.,1995,34:5346-5357
    [39]Tiall Y.-Q,Cai C.-X.,Ren X.-M,Duan C.-Y,Xu Y, Gao S,You X.-Z. The Silica-Like Extended Polymorphism of Cobalt(II)Imidazolate Three-Dimensional Frameworks:X-ray Single-Crystal Structures and Magnetic Properties [J].Chrm.sEur.J.2003,9:5673-5685
    [40]Muller-Buschbaum K. A Three-Dimlensional Network With Complete Nitrogen Coordination Obtained From an Imidazole Melt [J].Z.Naturforsch.B:Chem.Sci.2006,61:792-798
    [411Banerjee Rl,Phan S,Wang B,Knobler C,Furukawa H,O'Keeffe,Yaghi0M. High-Throughput Synthesls of Zeolitic Imidazolate Frameworks and Application to CO2Capture[J].Science,2008,319:939-943
    [42]Muller-Busellbaum K.A Three-Dimensional Network With Complete Nitrogen Coordination Obtalned From an Imidazole Melt [J].Z.Naturforsch.B:Chem.Sci.2006,61:792798
    [43]Rettig S J. Sanchez V, Storr A, Thomson R. C, Trotter J. Polybis(4-Azabenzimidazolato)-Iron(II)and Cobalt(II).3一D Single Diamond-Like Framework Materials Which Exhibit Spin Canting and Ferronlagnetic Ordering at Low Temperatures[J]. J.Chem. Soc., Dalton Trans.2000:39313937
    [44]Sturm M, Brandl F, Engel D,Hoppe W.Crystal Structure of Diimidazolylcobalt [J]. Acta Crystallogr.1975,B31:2369-2378
    [45]Masciocchi N, Ardlzzoia G. A,Brenna S, Castelli F. Galli S,Maspero A,Sironi A, Synthesis and Ab-Initio XRPD Structure of Group12Imidazolato Polymers[J].Chem. Commun.2003:2018-2019
    [46]Morris W. Doonan C J., Furukawa Hi,Banerice R,Yaghi O M.Crystals as Molecules: Postsynthesis Covalent Funetionalization of Zeolitic Imidazolate Frameworks [J] J. Am. Chem. Soc..2008,130:12626-12627
    [47]Zhang J, Wu T, Zhou C. Chen S,Feng P, Bu X.Zcolitic Boron Imidazolate Frameworks[J]. Angew.Chem. Int. Ed.,2009,48:2542-2545
    [48]Wu T, Bu X, zhang J, Feng P. New Zeolitic Imidazolate Frameworks: From Unprecedented Assembly of Cubic Clusters to Ordered Cooperative Organization of Complementary Ligands.[J]. Chem. Mater.,2008,20:7377-7382
    [49]Han J-Y. Fang J. Chang H-Y, Dong Y, Liang S. Poly(?) μ2-4_4-Bipyridine-di-μ 2-Imidazolido-Cadmium(Ⅱ)].[J]. Acta Crystallogr.2005, E61:2667-2669
    [50]Tian Y.-Q, Chen Z.-X, Weng L.-H, Guo H.-B, Gao S, Zhao D. Y. Two Polymorphs of Cobalt(Ⅱ) Imidazolate Polymers Synthesized Solvothermally by Using One Organic Template N,N-Dimethylacetamide [J]. Inorg. Chem.2004,43:4631-4635
    [51]Lehnert V R, Steel F. Crystal Structure of the Iron(Ⅱ) Derivative of Imidazole [J]. Z.Anorg. Allg. Chem.,1978,444:91-96
    [52]Serre C, Taulelle E, Ferey G. Synthesis and Characterization of New Lamellar Templated Titanium(Ⅳ) Phosphates with Perforated Layers: MIL-28n or Ti3O2X2(HPO4)x(PO4)y.(N2CnH2n+6)z.(H2O)2(n=2,3; x=0,2; y=4,2; z=3,2; X=F, OH).[J] Chem. Mater.,2002,14:998-1003
    [53]Lehnert V R, Seel F. Preparation and Crystal Structure of the Manganese(Ⅱ) and Zinc(Ⅱ) Derivative of Imidazole [J]. Z. Anorg. Allg. Chem.,1980,464:187-194
    [54]Huang X, Zhang J, Chen X.[Zn(bim)2]·(H2O)1.67:A Metal-Organic Open-Framework with Sodalite Topology.[J]. Chin. Sci. Bull.,2003,48:1531-1534
    [55]Tian Y-Q, Cai C-X, Ji Y, You X-Z, Peng S-M, Lee G.-H.[Co5(im)10·2MB]:A Metal-Organic Open-Framework with Zeolite-Like Topology [J]. Angew. Chem., Int. Ed.,2002,41:1384-1386
    [56]Mellot-Draznieks C, Serre C, Surble S, Audebrand M, Ferey G. Very Large Swelling in Hybrid Frameworks:A Combined Computational and Powder Diffraction Study [J]. J. Am. Chem. Soc.,2005,127:16273-16278
    [57]Zhang J-P, Chen X-M. Crystal engineering of binary metal imidazolate and triazolate frameworks.[J]. Chem. Commun.,2006:1689-1699
    [58]Barthelet K., Riou D., Nogues M., Ferey G. Synthesis, Structure, and Magnetic Properties of Two New Vanadocarboxylates with Three-Dimensional Hybrid Frameworks [J]. Inorg. Chem.,2003,42:1739-1743
    [59]Wu H, Zhou W, Yildirim T. Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8.[J]. J. Am. Chem. Soc.,2007,129:5314-5315
    [60]Philip L. L, Sandrine B, Cristian S, Alexandre V, Marco D, Lomig H, Guy D W, Jong-San C, Do-Young H, Young K H, S H J, Ferey G. High Uptakes of CO2and CH4in Mesoporous MetalsOrganic Frameworks MIL-100and MIL-101.[J]. Langmuir,2008,14:7245-7250
    [61]Huang X-C, Zhang J-P, Lin Y-Y, Yu X-L, Chen X-M. Two Mixed-Valence Copper (Ⅰ,Ⅱ) Imidazolate Coordination Polymers:Metal-Valence Tuning Approach for New Topological Structures.[J]. Chem. Commun.,2004,:1100-1101
    [62]Rettig S J, Storr A, Summers D A, Thompson R C, Trotter J. Transition Metal Azolates From Metallocenes. Synthesis, X-ray Structure, and Magnetic Properties of a Three-Dimensional Polymetallic Iron(Ⅱ) Imidazolate Complex, a Low-Temperature Weak Ferromagnet [J], J. Am. Chem. Soc.,1997,119:8675-8680
    [63]Gao Q, Guillou N, Nogues M, Cheetham A K., Ferey G. Structure and Magnetism of VSB-2,-3and-4or Ni4(O3P-(CH2)-PO3)2.(H2O)n (n=3,2,1), the First Ferromagnetic Nickel(Ⅱ) Diphosphonates: Increase of Dmensionality and Multiple Coordination Changes during a Quasi Topotactic Dehydration [J]. Chem. Mater.,1999,11:2937-2947
    [64]Wu T, Bu X, Liu R, Lin Z, Zhang J, Feng P. A New Zeolitic Topology with Sixteen-Membered Ring and Multidimensional Large Pore Channels [J].Chem.s Eur.J.,2008,14:7771-7773
    [65]Karin B,Jerome M,Didier R,Ferey G A Breathing Hybrid Organic Inorganic Solid with Very Large Pores and High Magnetic Characteristics [J]. Angew.Chem.Int.Ed.,2002,41:281-284
    [66]Wang B.;Cote A P, Furukawa H,O'Keeffe M,Yaghi O M.Colossal Cages in Zeolitic Imidazolate Frameworks as Selective Carbon Dioxide Reservoirs[J].Nature,2008,453:207-212
    [67]Thierry L,Ludovic L,Christophe V, Jerome M, Ferey G, Haouas M,Francis T, Sandrine B, Philip L. L, Michel L. MIL-96, a Porous Aluminum Trimesate3D Structure Constructed from a Hexagonal Network of8-Membered Rings and μ3-Oxo-Centered Trinuclear Units [J]. J. Am. Chem.Soc.,2006,128:10223-10230
    [68]Phan A,Doonan C J,Uribe-Romo F J,Knobler C B, O'Keeffe M,Yaghi O M.Synthesis, Structure and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks[J].Acc. Chem.Res.,2010,43:58-67
    [69]Surble S, Millange F, Serre C, Duren T, Latroche M, Bourrelly S, Llewellyn P L, Ferey G. Synthesis of MIL-102,a Chromium Carboxylate Metal-Organic Framework, with Gas Sorption Analysis [J]. J.Am.Chem.Soc.,2006,128:14889-14896
    [70]Spek A L, Duisenberg A J M. The Structure of the Three-Dimensional Polymer Poly[μ Hexakis(2-Methylimidazolato-N, N')-Triiron(II)],[Fe3(C4H5N2)6]n.[J]. Acta Crystallogr.,1983, C39:1212-1214
    [71]Serre C, Pelle F, Nicole G. Ferey G. Synthesis and Characterization of M IL-79and MIL-80: Two New Luminescent Open-Framework Rare-Earth Dicarboxylates with Unusual1D Inorganic Subnetworks [J]. Chem. Mater.,2004,16:1177-1182
    [72]Mohamed H.A, Jactilynn A.B, Lukasz W, Victor C K,Amy J C,Mohamed E.Zeolite-like Metal-Organic Frameworks(ZMOFs)Based on the Directed Assembly of Finite Metal-Organic Cubes(MOCs)[J]. J. Am.Chem.Soc.,2009,131:17753-17755
    [73]Serre C,Millange F, Christelle Tt, Nogue M,Gerard M, Daniel Lo, Ferey G. Very Large Breathing Effect in the First Nanoporous Chromium (III)-Based Solids:MIL-53or CrIII(OH).{02C-C6H4-CO2}.{H02C-C6H4-CO2H}x.H2Oy [J]. J. Am. Chem. Soc.,2002,124:13519-13526
    [74]Wang X-S, Ma S, Rauch K,Simmons J M, Yuan D,Wang X,Yildim T, CoIe William C, Lopez J J, Armin M, Zhou H-C. Metal-Organic Frameworks Based on Double-Bond-Coupled Di-Isophtha]ate Linkers with High Hydrogen and Methane Uptakes [J].Chem. Mater.,2008,20:3145-3152
    [75]Sun D,Ma S,Ke Y, Collins D J., Zhou. H-C. An Interweaving MOF with High Hydrogen Uptake.[J]. J. Am. Chem. Soc.,2006,128:3896-3897
    [76]Farid N, Jarrod F E, Till B, Lukasz W, Michael J.Z, Mohamed E. Supermolecular Building Blocks (SBBs) for the Design and Synthesis of Highly Porous Metal-Organic Frameworks.[J]. J. Am. Chem. Soc.,2008,130:1833-1835
    [77]Ma S, Wang X, Collier C D, Mallis E S, Zhou H-C. Ultramicroporous Metal-Organic Framework Based on9,10-Anthracenedicarboxylate for Selective Gas Adsorption [J;. Inorg. Chem.,2007,46:8499-8501
    [78]Liu Y, Kravtsov V C, Larsena R, Mohamed E. Molecular building blocks approach to the assembly of zeolite-like metal-organic frameworks (ZMOFs) with extra-large cavities [J]. Chem. Commun.,2006:1488-1490
    [79]Ma S, Wang X-S, Yuan D, Zhou H-C. A Coordinatively Linked Yb Metal-Organic Framework Demonstrates High Thermal Stability and Uncommon Gas-Adsorption Selectivity [J]. Angew. Chem. Int. Ed.,2008,47:4130-4133
    [80]Donna F S, Victor C K, Farid N, Lukasz W, Jarrod F E, Mohamed E. Quest for Zeolite-like Metal-Organic Frameworks: On Pyrimidinecarboxylate Bis-Chelating Bridging Ligands[J]. J. Am. Chem. Soc.,2008,130:3768-3770
    [81]Ma S, Sun D, Simmons J M, Collier C D, Yuan D, Zhou H-C. Metal-Organic Framework from an Anthracene Derivative Containing Nanoscopic Cages Exhibiting High Methane Uptake [J]. J. Am. Chem. Soc.,2008,130:1012-1016
    [82]Serre C, Groves J A, Lightfoot P, Alexandra M Z S, Wright P A., Norbert S, Thomas B, Mohamed H, Francis T, Ferey G. Synthesis, Structure and Properties, of Related Microporous N,N'-Piperazinebismethylenephosphonates of Aluminum and Titaniu.[J]. Chem. Mater.,2006,18:1451-1457
    [83]Liu Y, Kravtsov V C., Beauchamp D A., Eubank J F., Mohamed E.4-Connected Metal-Organic Assemblies Mediated via Heterochelation and Bridging of Single Metal Ions:Kagome Lattice and the M6L12Octahedron.[J]. J. Am. Chem. Soc.,2005,127:7266-7267
    [84]Liu Y, Kravtsov V C, Larsena R, Mohamed E. Molecular building blocks approach to the assembly of zeolite-like metal organic frameworks (ZMOFs) with extra-large cavities [J]. Chem. Commun.,2006:1488-1490
    [85]Liu Y, Kravtsov V C, Mohamed E. Template-Directed Assembly of Zeolite-like Metal-Organic Frameworks (ZMOFs):A usf-ZMOF with an Unprecedented Zeolite Topology [J]. Angew. Chem.2008,120:8574-8577
    [86]Ma S, Wang X-S, Manis E S, Collier C D,Zhou H-C. Metal-Organic Framework Based on a Trinickel Secondary Building Unit Exhibiting Gas-Sorption Hysteresis [J]. Inorg. Chem.,2007,46:3432-3434
    [87]Zhang J-Y, Cheng A-L, Yue Q, Sun W-W, Gao E-Q. Eight coordination with bis(bidentate) bridging ligands:zeolitic topology versus square grid networks [J]. Chem. Commun.,2008:847-849
    [88]Ma S, Sun D, Forster P M, Yuan D, Zhuang W, Chen Y-S, Parise J B, Zhou H-C. A Three-Dimensional Porous Metal-Organic Framework Constructed from Two-Dimensional Sheets via Interdigitation Exhibiting Dynamic Features [J]. Inorg. Chem.,2009,48:4616-4618
    [89]Chen S, Zhang J, Wu T, Feng P, Bu X. Multiroute Synthesis of Porous Anionic Frameworks and Size-Tunable Extraframework Organic Cation-Controlled Gas Sorption Properties [J]. J. Am. Chem. Soc.,2009,131:16027-16029
    [90]Ma S, Zhou H-C. A Metal-Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity.[J]. J. Am. Chem. Soc.,2006,128:11734-11735
    [91]Farid N, Juergen E, Jarrod F. E, Paul F, Mohamed E. Zeolite-like Metal-Organic Frameworks (ZMOFs) as Hydrogen Storage Platform:Lithium and Magnesium Ion-Exchange and H2-(rho-ZMOF) Interaction Studies [J]. J. Am. Chem. Soc.,2009,131:2864-2870
    [92]Nose S A. Unified Formation of the Constant Temperature Molecular Dynamics Methods [J]. J. Chem. Phys.,1984,81:511-519
    [93]Liu Y, Kabbour H,Brown C M, Neumann D A, Ahn C C. Increasing the Density of Adsorbed Hydrogen with Coordinatively Unsaturated Metal Centers in Metal-Organic Frameworks [J]. Langmuir,2008,24:4772-4777
    [94]Parr R G, Yang W T. Density-Functional Theory of Atoms an d Molecules [M]. Oxford U versity.1989
    [95]Chen B, Eddaoudi M, Hyde S T,'Keeffe M, Yaghi O M. Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores [J]. Science,2001,291:1021-1023
    [96]Jorgensen W L, Maxwell D S, Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids [J]. J. Am. Chem. Soc.,1996,118:11225-11236
    [97]Young D C. Computational Chemistry: A Practical Guide for Applying Techniques to Real-world Problems[M] John Wiley&Sons, Inc,2001
    [98]Rappe A K, Casewit C J, Colwell K S, Goddard III W A, Skid W M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations [J]. J. Am. Chem. Soc.,1992,14:10024-10035
    [99]Nagy A. Density Functional theory and Application to Atoms and Molecules [J]. Physics Reports,1998,298:1-79
    [100]Woodcock L V. Isothermal Molecular Dynamics Calculations for Liquid Salts [J]. Chem. Phys. Lett.,1971,10:257-261
    [101]KochW, Holthausen M C. A chemist's Guide to Density Functional Theory [M]. WILEY VCH:Weinheim, Germany,2000
    [102]Chui S S-Y., Samuel M-F. L, Jonathan P H C, Orpen A. G, Williams I D. A Chemically Functionalizable Nanoporous Material [Cu3(TMA)2(H2O)3]n [J]. Science,1999,283:1148-1150
    [103]Mayo S L. Olafson B D, Goddard III W A. DREIDING:A Generic Force Field for Molecular Simulations [J]. J. Phys. Chem.,1990,94:8897-8909
    [104]Kohn W, Sham L J. Self-Consistent Equations Including Exchange and Correlation Effects [J]. Phys. Rev.,1965,140:A1133-A1138
    [105]Sun H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationssOverview with Details on Alkane and Benzene Compounds [J]. J. Phys. Chem. B,1998,102:7338-7364
    [106]Chae H K, Siberio-Perez D-Y, Kim J, Go Y-B, Mohamed E, Matzger A J, O'Keeffe M, Yaghi O M. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature,2004,427:523-527
    [107]Alder B J, Wainwright T E. Studies in Molecular Dynamics. I:General Methed [J]. J. Chem. Phys.,1959,31:459-466
    [108]吉青,杨小震.分子力场发展的新趋势[J].化学通报,2005,111-116
    [109]Anderson H C. Molecular Dynamics Simulation at Constant Ressure and/or Temperature [J]. J. Chem. Phys.,1980,72:2384-2393
    [110]Chen B, Ockwig N W, Millward A R, Contreras D S, Yaghi O M. High H2Adsorption in a Microporous Metal-Organic Framework with Open Metal Sites [J]. Angew. Chem. Int. Ed.,2005,44:4745-4749
    [111]Evans D J. Computer "Experiment" for Nonlinear Thermodynamics of Couette Flow [J]. J. Chem. Phys.,1983,78:3297-3302
    [112]Mattesini M, Soler j M, Yndurain F. Snurr R Q. Molecular Simulation of Adsorption Sites of Light gases in the Metal-organic Framework IRMOF-1[J]. Fluid Phase Equilib.,2007,261:152-
    [113]Torrie G M, Valleau J P. Nonphysical Sampling Distributions on Monte Carlo Free-Energy Estimation:Umbrella sampling [J]. J. Comp. Phys.,1977,23:187-199
    [114]Tafipolsky M, Amirjalayer S, Schmid R. Ab Initio Parametrized MM3Force Field for the Metal-Organic Framework MOF-5[J]. J. Comput. Chem.,2007,28,1169-1176
    [115]Breneman C M, Wiberg K B. Determining Atom-centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis.[J] J. Comp. Chem.,1990,11:361
    [116]Locan R C, Khaliullin R Z, Head-Gordon M. Interaction of Molecular Hydrogen with Open Transition Metal Centers for Enhanced Binding In Metal-Organic Frameworks: A Computational Study [J]. Inorg. Chem.,2008,47:4032
    [117]Young S B, Karen L M, Houston F, Patrick R, Sudeep P, Linda J, Broadbelt J T, Randall Q S. Separation of CO2from CH4UsingMixed-Ligand Metal-Organic Frameworks [J]. Langmuir,2008,24(16):8592-8598
    [118]Ramsahye N A, Maurin G, Bourrelly S, Llewellyn P L, Devic T, Serre C, Loiseau T, Ferey G. Adsorption of CO2in metal organic frameworks of different metal centres:Grand canonical Monte Carlo simulations compared to experiments [J]. Adsorption,2007,13:461-467
    [119]Sagara T, Klasen J, Ganz E. Computational Study of Hydrogen Binding by Metal-Organic Framework-5[J]. J. Chem. Phys.,2004,121:12543-12547
    [120]Sagara T, Klassen J, Ortony J, Ganz E. Binding energies of hydrogen molecules to isoreticular metal-organic framework materials. J. Chem. Phys.,2005,123:14701-14704
    [121]Tsuchiya T, Abe M, Nakajima T, Hirao K. Accurate relativistic Gauusian basis sets for H through Lr determined by atomic sel-consistent field calculations with the third-order Douglas-Kroll approximation [J]. J. Chem. Phys.,2001,115:4463-4469
    [122]Pangali C, Rao M, Berne B J. On a Novel Monte Carlo Scheme for Simulating Water and Aqueous Solutions [J]. Chem. Phys. Lett.,1977,47:600-602
    [123]Ramsahye N A, Maurin G, Bourrelly S, Llewellyn P L, Loiseau T, Ferey G. Charge Distribution in Metal Organic Framework Materials:Transferability to a Preliminary Molecular Simulation Study of CO2adsorption in the MIL-53(Al) system [J]. Phys. Chem. Chem. Phys.,2007,9:1059-1063
    [124]Belof J L, Stern A C, Eddaoudi M, Space B. On the Mechanism of Hydrogen Storage in a Metal-Oragnic Framework Material [J]. J. Am. Chem. Soc.,2007,129:15202-15210
    [125]Yang Q, Zhong C. Understanding Hydrogen Adsoprtion in Metal-Organic Frameworks with Open Metal Sites:A Computatinal Study [J]. J. Phys. Chem. B,2006,110:655-658
    [126]Mezei M. A Cavity-Biased (μVT) Monte Carlo Method for the Computer Simulation of Fluids [J]. Mol. Phys.,1980,40:901-906
    [127]Lee T B, Kim D, Jung D H, Choi S B, Yoon J H, Kim J, Vhoi K, Choi S H. Understanding the mechanism of hydrogen adsorption into metal organic frameworks [J]. Catal. Yoday,2007,120:330-335
    [128]Civalleri B, Napoli F, Noel Y, Roetti C, Dovesi R. Ab-Initio Prediction of Material Properties with Crystal:MOF-5as a Case Study [J]. Cryst. Eng. Commun.,2006,8:364-371
    [129]Dubbefdam D, Frost H, Walton K S, Snurr R Q. Molecular simulation of adsorption sites of light gases in the metal-organic framework IRMOF-1[J]. Fluid Phase Equilib,2007,261:152-161
    [130]Babarao R, Jiang J. Molecular Screening of Metal-Organic Frameworks for CO Storage [J]. Langmuir,2008,24:6270-6278
    [131]Samanta A, Furuta T, Lia J. Theoretical Assesment of the Elastic Constants and Hydrogen Storage Capacity of Some Metal-organic Framework Materials [J]. J. Chem. Phys.,2006,125:084714
    [132]Kawakami T, Takamizawa S, Kitagawa Y, Maruta T, Mori W, Yamaguchi T. Theoretical Studies of Spin Arrangement of Adsorbed Organic Radicals in Metal-organic Nanoporous Cavity [J]. Polydedron,2001,20:1197
    [133]Yang Q, Zhong C. Molecular Simulation of Adsorption and Diffusion of Hydrogen in Metal-organic Frameworks [J]. J. Phys. Chem. B,2005,109:11862-11864
    [134]Jiang J, Sandler S I. Monte Carlo Simulation for the Adsorption and Separation of Linear and Branched Alkanes in IRMOFf-1[J]. Langmuir,2006,22:5702-5707
    [135]Duren T, Sarkisov L, Yaghi O M, Snurr R Q. Assessment of Isoreticular Metal-organic Frameworks for Adsorption Separations:A Molecular Simulation Study of Methanie/n-butane Mixtures [J]. J. Phys. Chem. B,2004,108:15703-
    [136]宿辉,崔琳,二氧化碳的吸收方法及机理研究[J].环境科学与管理,2006,31(8):79-81
    [137]Walton K S, Millward A R, Dubeldam D, Frost H, Low J J, Yaghi O M, Snurr R Q. Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks [J]. J. Am. Chem. Soc.,2008,130:406-407
    [138]Cornell W D, Cieplak P, Nayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules [J]. J. Am. Chem. Soc.,1995,117:11946-11975
    [139]梁倩,赵震.金属有机骨架材料储存CO2的研究进展[J]工业催化,2010,18(7):1-7
    [140]Forster P M, Stock N. A High-throughput Investgation of the Role of PH, Temperature, Concerntration, and Time on the Synthesis of Hybrid Inorganic-Organic Materials [J]. Angew Chem hit Ed.,2005,44:7708-7611
    [141]Yang Q, Zhong C, Chen J. Computational Study of CO2Storage in Metal-Organic Frameworks.[J].J. Phys. Chem. C2008,112:1562-1569
    [142]Kawakami T, Takamizawa S, Kitagawa Y, Maruta T, Mori W, Yamaguchi T. Theoretical Studies of Spin Arrangement of Adsorbed Organic Radicals in Metal-organic Nanoporous Cavity [J]. Polydedron,2001,20:1197
    [143]Dauber-Osguthoroe P, Roberts V A, Osguthorpe D J, Wolff J, Genest M, Hagler A T. Structire and Energetics of Ligand Binding to Proteins: Eschericia coli Digydrofolate Reductase-Trimethoprim, A Drug-Receptor System [J]. PROTEINS:Structure, Function, and Genetics,1998,4:31-47
    [144]Ramsahye N A, Mauri G, Bourrelly S, Llewellyn P L, Serre C, Loiseau T,Devic T, Ferey G. Probing the Adsorption Sites for CO2in Metal Organic Frameworks Materials MIL-53(Al, Cr) and MIL-47(V) by Density Functional Theory [J] J. Phys. Chem. C2008,112:514-520
    [145]徐俊,张军营,潘霞.二氧化碳储存技术的研究现状[J].煤炭转化,2005,28(3):80-85
    [146]Liu J, Culp J T, natesakhawat S Bochrath B C, Zande B, Sankar S G, Garberoglio G, Johnson J K. Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2:an Effective Activation Procedure [J]. J. Phys. Chem. C,2007,111:9305-
    [147]Yaghi O M, Li Q. Reticular Chemistry and Metal-Organic Frameworks for Clean Energy [J]. MRS Bull,2009,34:682-690
    [148]Liu B, Yang Q, Xue C, Zhong C, Chen B, Smit B. Enhanced Adsorption Selectivity of Hydrogen/Methane Mixtures in Metal-Organic Frameworks with Interpenetration:A Molecular Simulation Study [J]. J. Phys. Chem. C2008,112:9854-9860
    [149]Rowsell J L, Yaghi O M. Metal-organic frameworks:a new class of porous materials [J]. Microporous Mesoporous Mater.,2004,73:3-14
    [150]Milfwar A R, Yaghi O M. Metal-organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature [J]. J. Am. Chem. Soc.,2005,127:17998-17999
    [151]Darkrim F, Levesque D. Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes [J]. J. Chem. Phys.,1998,109:4981-4984
    [152]Wang Q, Johnson J K. Hyddrogen adsorption on graphite and in carbon slit pores from path integral simulations [J]. Mol. Phys.,1998,95:299-309
    [153]Wang Q, Challa S R, Sholl D S, Johnson J K. Quantum sieving in carbon nanotubes and zeolites [J]. Phys. Rev. Lett.,1999,82:956-959
    [154]Wang Q, Johnson J K.. Computer simulations of hydrogen adsorption on graphite nanofibers [J]. J. Phys. Chem. B,1999,103:277-281
    [155]Challa S R, Sholl D S, Johnson J K. Light isotope separation in carbon nanotubes through quantum molecular sieving [J]. Phys. Rev. B.,2001,63:245419
    [156]Gu C, Gao G H. Path integral simulation of hydrogen adsorption in single-walled carbon nanotubes at low temperatures [J]. Phys. Chem. Chem. Phys.,2002,4:4700-4708
    [157]Tanaka H, El-Merraou M, Kodaira T, Laneko K. Possibility of quantum effect in micropore tilling of Ne on A1PO4-5[J]. CHem. Phys. Lett.,2002,351:417-423
    [158]Tanaka H, Fan J, Lanoh H, Yudasaka Y, lijima S, Kaneko K. Quantum nature of adsorbed hydrogen on single-wall carbon nanohoms [J]. Mol. Simul.,2005,31:465-474
    [159]Tanaka H, Kanoh H, Yudasaka M, lijima S, Laneko K. Quantum effects on hydrogen isotope adsorption on single-wall carbon nanohorns [J]. J. Am. Chem. Soc.,2005,127:7511-7516
    [160]Kumar A V, Jobic H, Bhatia S K. Quantum effects on adsorption and diffusion of hydrogen and deuterium in microporous [J]. J. Phys. CHem. B,2006,110:16666-16667
    [161]Kowalczyk P, Gauden P A, Terzyk A P, Bhatia S K. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at77K. Classical versus path-integral Monte Carlo simulations [J]. Langmuir,2007,23:3666-3672
    [162]Garberoglio G. Quantum sieving in organic frameworks[J].Cherm. Phys. Lett.,2009,467:270-275
    [163]罗小武.天然气净化工艺技术研究与应用[J].天然气与石油,2006,24(2):30-34
    [164]阎观亮,崔洪星.液化天然气工厂的原料气处理[J].石油与天然气化工,2000,29(4):9-15
    [165]牛刚,黄玉华,王经.低温甲醇洗技术在天然气净化过程中的应用[J].天然气化工,2003,28(2):28-29
    [166]杨云.变压吸附分离技术的研究进展[J].广西化工,1999,28(1):26-29
    [167]李立清,曾光明,唐新村,李丹.变压吸附技术净化分离有机蒸气的研究进展[J].现代化工,2004,24(3):20-25
    [168]王从厚,陈勇,吴鸣.新世幻膜分离技术市场展望[J].膜科学与技术,2003,23(4):54-60
    [169]陈桂娥,韩玉峰,阎剑,许振良,房鼎业.气体膜分离技术的进展及其应用[J].化工生产与技术
    [170]Yasushige K, Yuzo Y. Characterization of Specific N2-Adsorption Site Existing on CuZSM-5Type Zeolite: Effect on Ion-Exchange Level on Adsorption [J]. J. Phys. Chem. B,1999,103(12):2155-2164
    [171]Curkovic L, Cerjan-Stefanovi S, Filipan T. Metal ion exchange by natural and modified zeolites [J].Water Research,1997,3l(6):1379-1382
    [172]Markku K Risto H, Jussi J, Mika V. Jukka L. Effect of lhe framework charge density on zeolite ion exchange selectivities [J]. Phys. Chem. Chem. Phys.,2000,2:2655-2659
    [173]Colella C. Ion exchange equilibria in zeolite minerals [J]. Mineralium Deposita,1996,31(6):554-562
    [174]Martyna G, Tuckerman M E, Tobias D J,Klein M L. Explicit reversible integrators for extended systems dynamics.[J] Mol. Phys.,1996,87,1117-1157
    [175]Yaku W, Seda K, Sankar N, David S S. Computational identification of a metal-organic framework for high selectivity membrane-based CO2/CH4separations: Cu(hfipbb)(H2hfipbb)0.5[J]. Phys. Chem. Chem. Phys.,2009,11:11389-11394
    [176]Sureadar R V, Moises A Carreon. Highly Permeable Zeolite Imidazolate Framework-8Membranes for CO2/CH4Separation [J]. J.Am.Chem.Soc.,2010,132(1):76-78
    [177]Lomig H, Elsa J, Gerhard D P CO2and CH4Separation by Adsorption Using Cu-BTC Metal-Organic Framework[J].Ind.Eng.Chem.Res.,2010,49(16):7497-7503
    [178]Patrick S B, Laurent B, Eric J H, Jose A S, Alirio E R, Ballglin C. Signle and Multicomponent sorption of CO2, CH4and N2in a Microporous Metal-Organic Framework [J]. Sep. Sci. Tech.,2008,43(13):3494-3521
    [179]Rajamani K, Jasper M B. Investigating Cluster Formation in Adsorption of CO2, CH4and Ar in Zeolites and Metal Organic Frameworks at Subcritical Temperatures [J]. Langmuir,2010,26(6):3981-3992
    [180]An J, Geib S J, Rosi N L. High and Selective CO2Uptake in a Cobalt Adeninate Metal-Organic Framework Exhibiting Pyrimidine-and Amino-Decorated Pores [J]. J. Am. Chem. Soc.,2010,132(1):38-39
    [181]Omar K F, Alexander M S,Karen L M, Frederick M H, Chan A M, Joseph T H. Synthesis and Hydrogen Sorption Properties of Carborane Based Metal-Organic Framework Materials [J]. J. Am. Chem. Soc.,2007,129(42):12680-12681
    [182]Arijit M, Subhadeep S, Pradip P, Sudip R, Rahul B. Selective CO2and H2adsorption in a chiral magnesium-based metal organic framework (Mg-MOF) with open metal sites [J]. J. Mater. Chem.,2010,20,9030-9080
    [183]Seda K, David S S. Assessment of a Metal-Organic Framework Membrane for Gas Separations Using Atomically Detailed Calculations:CO2, CH4, N2, H2Mixtures in MOF-5[J]. Ind. Eng. Chem. Res.,2009,48(2):914-922
    [184]Li J R, Kuppler R J, Zhou H-C. Selective gas adsorption and separation in metal-organic frameworks [J]. Chem. Soc. Rev.,2009,38:1477-1504
    [185]Liu B, Smit B. Comparative Molecular Simulation Study of CO2/N2and CH4/N2Separation in Zeolites and Metal-Organic Frameworks [J]. Langmuir,2009,25(10):5918-5926
    [186]Jeffrey T C, Milton R S, Edward B, Bradley B. Hysteresis in the Physisorption of CO2and N2in a n Flexible Pillared Layer Nickel Cyanide [J]. J. Am. Chem. Soc.,2008,130(37):12427-12434
    [187]Dipengdu S, Bao Z, Jia F, Deng S. Adsorption of CO2, CH4, N2O and N2on MOF-5, MOF-177and Zeolite5A [J]. Environ. Sci. Technol.,2010,44(5):1820-1826
    [188]Youn-Sang B, Omar K F, Joseph T H, Randal Q S. Enhancement of CO2/N2selectivity in a metal-organic framework by cavity modification [J]. J. Mater. Chem.,2009,19:2131-2134
    [189]Laurent B, Patrick S B, Eric J H, Jose A C, Alieio W E, Banglin C. A Microporous Metal-Organic Framework for Separation of CO2/N2and CO2/CH4by Fixed-Bed Adsorption [J]. J. Phys. Chem. C,2008,112(5):1575-1581
    [190]闫继娜,施剑林,陈航榕,张玲霞,李蕾.纳米介孔材料的催化应用前景[J].无机材料学报,2003,18(4):725-730
    [191]李亮,施剑林介孔与介孔主客体材料在催化领域的应用[J].催化学报,2005,26(2):159-170
    [192]Lee J, Farha OK, Roberts J, Scheidt K, Nquven ST, Hupp JT. Metal-organic framework materials as catalysts [J]. Chem Soc Rev.2009,38(5):1450-1459
    [193]Wu C-D, Lin W. Heterogeneous Asymmetric Catalysis with Homochiral Metal-Organic Frameworks: Network-Structure-Dependent Catalytic Activity [J]. Angew. Chem.2007,119(7):1093-1096
    [194]Snurr R Q, Hupp J T, Nguyen S T. Prospects for nanoporous metal-organic materials in advanced separations processes [J]. AlChE J.,2004,50:1090-1095
    [195]Adeline Y R, Fromm K M. Coordination Polymer Networks with O-and N-donors:What They are. Why and How They are made [J]. Coord Chem Rev,2006,250(15/16):2127-2157.
    [196]Bao H, Ming L T. Metal-Organic Molecular architectures with2.2-bipyridyl-like and carboxylate ligands [J]. Coord Chem Rev,2005,249:545-565
    [197]Oiu S L, Zhu G S. Molecular engineering for synthesizing novel structures of metal-organic frameworks with multifunctional properties [J]. Coord Chem Rev,2009,253:2891-2911
    [198]Kim J, Chem B, Yaghi O M. Assembly of metal-organic framework from large organic and inorganic secondary building units:new examples and simplifying principles for complex structures [J]. J. Am. Chem. Soc.,2001,123:8239-8247
    [199]Reineke T M, Eddaoudi M, Yaghi O M. Large free volume in maximally interpenetrating networks [J]. J. Am. Chem. Soc,2000,122:4843-4844
    [200]Eddaoudi M, Li H, Yaghi O M. Highly porous and stable metal-organic frameworks:structure design and sorption properties [J]. J Am. Chem. Soc.,2000,122(7):1391-1397
    [201]Chae H K, SiberioPerez D Y, Yaghi O M,et al. A route to high surface area porosity and inclusion of large molecules in crystals [J]. Nature,2004,427:523-527
    [202]贾超,原鲜霞,马紫峰..金属有机骨架材料(MOFs)作为储氢材料的研究进展[J].化学进展,2009,21(9):1954-1962
    [203]魏文英,方键,孔海宁,韩金玉.金属有机骨架材料的合成及应用[J].化学进展,2005,124,17(6):1110-1114
    [204]Ferey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unuaually large pore volumes and surface area [J]. Science,2005,309(23):2040-2042
    [205]Philip L L, Sandrine B, Christian S, Alexandre V, Marco Daruri, Lomig Hamon, Guy D W, Jong C,Do Y H, Young K H, Sung H J, Ferey G High Uptakes of CO2and CH4in Mesoporous Metal-Organic Frameworks MIL-100and MIL-101[J]. Langmuir,2008,24(14):7245-7250
    [206]Potoff J J, Siepmann J I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen [J]. AIChE J.,2001,47(7):1676-1682
    [207]Xu Q, Zhong C. A General Approach for Estimating Framework Charges in Metal-Organic Frameworks [J]. J. Phys. Chem. C,2010,114:5035-5042
    [208]匡社颖.天然气重整制氢工艺在大型粉末冶金企业中的应用及前景[J].稀有金属与硬质合金,2006,34(2):58-63
    [209]张斌,倪维斗,李政.考虑减排CO2的几种大规模制氢系统技术经济分析[J].天然气工业,2004,2:104-108
    [210]吴川,张华民,衣宝廉.化学制氢技术研究进展.[J].2005,17(3):423-428
    [211]Mueller U, Schubert M, Teich F, Puetter H, Schierle-Arndt K, Pastre J. Metal-organic frameworks-prospective industrial applications.[J] J. Mater. Chem.,2006(16):626-636
    [212]Farrusseng D, Aguado S, Pinel C. Metal-Organic Frameworks: Opportunities for Catalysis [J]. Angew. Chem. Int. Ed.2009,48(41):7502-7513
    [213]Czaja A, Trukhan N, Muller U. Industrial applications of metal-organic frameworks [J]. Chem. Soc.Rev.,2009,38:1284-1293
    [214]Cho S-H, Ma B, Nguyen S, Hupp J, Albrecht-Schmitt T. A metal-organic framework material that functions as an enantioselective catalyst for lkefin epoxidation [J]. Chem. Comm.,2006,24:2563-2565

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700