用户名: 密码: 验证码:
新型多孔有机骨架材料的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有高比表面积和独特的孔结构,多孔材料在吸附,储存和分离小分子方面有广泛应用,随着世界发展,人们对清洁能源,环境保护以及气候生态的关注日益增长,越来越多的研究涉及多孔材料在这些领域的应用。近年来随着有机结构的引入,多孔材料在结构和功能的多样性方面取得了显著的进步,首先我们回顾了多孔有机骨架这一领域的研究进展以及一些实验方法,然后介绍我们的主要研究内容,即探索制备一些新型的多孔有机材料,并对其结构和性质加以分析。
     通过设计具有合理结构的分子,人们已经能以预期方式使用化学键将这些结构基元组装成多种多样的多孔骨架,这些材料能具有很高的表面积,然而相对空旷的骨架也有结构不稳定,缺少功能性的不足,因此人们考虑将更多的杂原子或官能团引入骨架中。其中聚苯并咪唑就是一类性能优异的聚合物,已有报道可以用这种化学结构制备出大表面积的多孔聚合物,能存储较多的CO2。这里,我们使用了一种商业化的芳香四胺原料,可以高产率地合成多孔PBI,有利于其应用于实际当中。经过实验,我们发现这种多孔有机骨架材料具有良好的物理化学稳定性,较高的表面积,均一的微孔分布和很大的H2,CH4,CO2吸附焓。
     对多孔材料性质的研究仍主要集中在对气体的吸附和储存上,其它如气体分离也有不少研究报道,而在催化方面的研究相对较少,原因之一是很多多孔有机骨架不具备化学活性,只能与客体发生物理作用。而PBIs上的苯并咪唑基团除具有CO2亲合性外,还具有弱碱性,再加上材料良好的稳定性,很适合作为异相催化反应的催化剂,实际上,已经有文献报道具有介孔结构的PBI在Knoevenagel反应中对很多底物都具有高转化率。经过实验,我们发现JUC-Z12作为催化剂在Knoevenagel反应中对不同底物具有很好的选择性,在后处理中可以很容易地与反应物分离,本身还可以多次重复使用,在对JUC-Z12催化选择性的研究中,我们发现微孔有机骨架作为有机反应催化剂,受到骨架亲合性,底物活性,骨架孔径和底物尺寸等多种因素影响,而JUC-Z12证明是一种具有选择性的催化剂。
     已报道的多孔有机骨架一般采用一锅法合成和制备,从基本结构基元组装成骨架材料,但除MOFs,COFs外,具有有序结构的材料仍不多见。因此我们设想是否可以通过二次制备的方法对有序骨架进行转变,使其在保持一定有序度的同时,产生新的结构和性质。这里我们采用两步法,首先通过氢键的自识别作用将分子结构基元组装成有序晶体,然后通过原位反应方法将羧酸基元间的连接方式从氢键连接转变为共价键连接。实验结果表明,在合适的条件下,可以制备出预期的聚酸酐型材料,通过优化晶体制备和实验方法,可以在很高温度下保持晶体的结晶度,这种转变后的材料结构仍在解析中,将有序结构和明确化学结构统一起来仍是一个挑战,也是后续研究的内容。
     除离子键,共价键等强化学键形成的三维扩展结构以外,还有一类通过分子间弱相互作用形成的多孔材料,由于在传感,催化等方面具有应用前景,同时在基础研究层面也具有挑战性,因此正受到人们越来越多的关注。这里,我们通过羧酸-脒盐桥的方式构造了一类氢键连接的有机骨架,其特点在于分子结构基元间依靠单纯的氢键联系,而在晶体层面,则借助π-π堆积形成稳定晶格。由于弱相互作用的复杂多变,结构基元没有按照预期的方式组装,但实验结果对我们接下来的研究仍具有参考价值。
Because of the high surface area and unique pore, porous materials have beenwidely applied to sorption, storage and separation for small molecules. As the worlddevelops, the concern of the public for clean energy, protection of environment andbalance of the climate grows rapidly, thus more and more researches about porousmaterials are involved into these fields. Porous materials have made obviousprogress for the varieties of structures and properties by introducing organicmoieties. At first we summary the development of porous materials and somemethods of research. During our own studies, we systematically explored some newtypes of porous organic materials.
     Varieties of porous frameworks have been constructed as expected frombuilding blocks with properly designed structure by chemical bonding. Thesematerials may possess large surface area, however, the rather void frameworks alsotake the weakness of unstable and lack of functions. Thus heteroatoms or functionalgroups have been brought into the frameworks. One of these examples ispolybenzeimidazole which is a polymer with outstanding properties. There havebeen reports that porous polymers with large surface area of this type can beprepared and large quantities of CO2can be stored in it. Here we synthesized anotherporous PBI quantitatively using a commercially available aromatic polyamine tofacilitate its applications. Experiments displayed that it poses physical and chemicalstability, large surface area, uniform pore size distribution and large sorptionenthalpy for CO2, CH4and H2.
     The research on properties of porous materials still focuses on the sorption andstorage of small molecules. Applications about separation were also widely reported,however, studies on catalysis are no so much. One reason is the lack of activity and only physical interactions occurred for most porous materials. For PBIs, besides theaffinity to CO2, imidazole moieties on the backbone also presents weak basicity.Considering the good stability of the material, it is suitable to be catalyst forheterogeneous reactions. JUC-Z12shows selective catalysis for different substratesfor the Knoevenagel reaction. It can also be easily separated from the reactionmixture and reused with high activity many times. The result of experiments showsthe catalysis of microporous organic materials can be affected by several factors likeaffinity of host, activity of guests, pore size of host and size of guests. JUC-Z12hasbeen proved to be a catalyst with selectivity.
     Porous organic frameworks previously reported were always be built frombuilding blocks using the one-pot synthesis procedure. Apart from MOFs and COFs,ordered extended porous materials are still rarely reported. We propose to transformthe ordered organic frameworks to produce new form and properties with certaindegrees of order saved. Here we prepared crystals built from molecular blocks byhydrogen bonding at first. Then the hydrogen bonding between carboxyl blocks willbe transformed to covalent bonding by in situ reaction. The result of experimentsshows the polyanhydride material can be prepared as expected. And the order ofproduct can be saved at440oC by adjusting the experiment conditions. Thetopology after transformation is being analyzed and it is still a challenge to unify theorder and the definite chemical connection which needs further investigation.
     Besides extended frameworks constructed by strong chemical interactions likeionic or covalent bond, there is another type of porous material built by the weakreactions among molecules like hydrogen bonding. Research on this field growsrapidly because of the potential applications in sensors and catalysis. It is also achallenge for basic research. Here we prepared an organic framework built with thehydrogen bond of amidinium-carboxylate salt bridge. Molecules in the crystal were connected by hydrogen bonds and the crystal was stabilized by the π-π stacking. Thearrangement of molecular blocks in the crystal is different from our expectationwhich reminds us the complex and volatile of weak interactions. It brings somereference value to our further research.
引文
[1](a) YAGHI O M, LI H, DAVIS C, RICHARDSON D, GROY T L, SyntheticStrategies, Structure Patterns, and Emerging Properties in the Chemistry ofModular Porous Solids,[J]. Acc. Chem. Res.,1998,31:474-484;(b)REINEKE T M, EDDAOUDI M, O'KEEFFE M, YAGHI O M, A microporouslanthanide–organic framework [J]. Angew. Chem. Int. Ed.,1999,38:2590-2594;(c) LI H, EDDAOUDI M, O'KEEFFE M, YAGHI O M, Design and synthesis ofan exceptionally stable and highly porous metal-organic framework [J]. Nature,1999,402:276-279.
    [2] EDDAOUDI M, MOLER D B, LI H, CHEN B, REINEKE T M, O'KEEFFE M,YAGHI O M, Modular chemistry: secondary building units as a basis for thedesign of highly porous and robust metal organic carboxylate frameworks [J].Acc. Chem. Res.,2001,34:319-330.
    [3] EDDAOUDI M, KIM J, ROSI N, VODAK D, WACHTER J, O'KEEFFE M,YAGHI O M, Systematic design of pore size and functionality in isoreticularMOFs and their application in methane storage [J]. Science,2002,295:469-472.
    [4](a) HUANG X-C, LIN Y-Y, ZHANG J-P, CHEN X-M, Ligand-directedstrategy for zeolite-type metal–organic frameworks: zinc(II) imidazolates withunusual zeolitic topologies [J]. Angew. Chem. Int. Ed.,2006,45:1557–1559;(b)PARK K S, NI Z, C Té A P, CHOI J Y, HUANG R D, URIBE-ROMO F J,CHAE H K, O'KEEFFE M, YAGHI O M, Exceptional chemical and thermalstability of zeolitic imidazolate frameworks [J]. Proc. Natl. Acad. Sci.,2006,103:10186-10191.
    [5] ROSI N L, EDDAOUDI M, VODAK D T, ECKERT J, O'KEEFFE M, YAGHI OM, Hydrogen storage in microporous metal-organic frameworks [J]. Science,2003,300:1127-1129.
    [6](a) HAYASHI H, C Té A P, FURUKAWA H, O'KEEFFE M, YAGHI O M,Zeolite a imidazolate frameworks [J]. Nature Mater.,2007,6:501-506;(b)PHAN A, DOONAN C J, URIBE-ROMO F J, KNOBLER C B, O'KEEFFE M,YAGHI O M, Synthesis, structure, and carbon dioxide capture properties ofzeolitic imidazolate frameworks [J]. Acc. Chem. Res.,2010,43:58-67;(c)MORRIS W, LEUNG B, FURUKAWA H, YAGHI O K, HE N, HAYASHI H,HOUNDONOUGBO Y, ASTA M, LAIRD B B, YAGHI O M, A combinedexperimental computational investigation of carbon dioxide capture in a seriesof isoreticular zeolitic imidazolate frameworks [J]. J. Am. Chem. Soc.,2010,132:11006-11008.
    [7] BUDD P M, ELABAS E S, GHANEM B S, MAKHSEED S, MCKEOWNN B, MSAYIB K J, TATTERSHALL C E, WANG D, Solution-processed,organophilic membrane derived from a polymer of intrinsic microporosity [J].Adv. Mater.,2004,16:456–459.
    [8] BUDD P M, GHANEM B S, MAKHSEED S, MCKEOWN N B, MSAYIB K J,TATTERSHALL C E, Polymers of intrinsic microporosity (PIMs): robust,solution-processable, organic nanoporous materials [J]. Chem. Commun.,2004,2:230-231.
    [9](a) BUDD P M, MCKEOWN N B, FRITSCH D, Free volume and intrinsicmicroporosity in polymers [J]. J. Mater. Chem.,2005,15:1977-1986;(b)MCKEOWN N B, BUDD P M, Polymers of intrinsic microporosity (PIMs):organic materials for membrane separations, heterogeneous catalysis andhydrogen storage [J]. Chem. Soc. Rev.,2006,35:675-683.
    [10] GHANEM B S, HASHEM M, HARRIS K D M, MSAYIB K J, XU M, BUDD PM, CHAUKURA N, BOOK D, TEDDS S, WALTON A, MCKEOWN N B,Triptycene-based polymers of intrinsic microporosity: organic materials that canbe tailored for gas adsorption [J]. Macromolecules,2010,43:5287-5294.
    [11] GHANEM B S, MCKEOWN N B, BUDD P M, AL-HARBI N M, FRITSCH D,HEINRICH K, STARANNIKOVA L, TOKAREV A, YAMPOLSKII Y, Synthesis,characterization, and gas permeation properties of a novel group of polymerswith intrinsic microporosity: PIM-polyimides [J]. Macromolecules,2009,42:7881-7888.
    [12](a) BUDD P M, MCKEOWN N B, FRITSCH D, Polymers of intrinsicmicroporosity (PIMs): high free volume polymers for membrane applications,[J].Macrom. Symp.,2006,245:403-405;(b) GHANEM B S, MCKEOWN N B,BUDD P M, FRITSCH D, Polymers of intrinsic microporosity (PIMs) derivedfrom bis(phenazyl) monomers [J]. Macromolecules,2008,41:1640-1646.
    [13](a) BUDD P M, MCKEOWN N B, GHANEM B S, MSAYIB K J, FRITSCH D,STARANNIKOVA L, BELOV N, SANFIROVA O, YAMPOLSKII Y,SHANTAROVICH V, Gas permeation parameters and other physicochemicalproperties of a polymer of intrinsic microporosity: polybenzodioxane PIM-1[J].J. Membr. Sci.,2008,325:851-860;(b) ROGAN Y, STARANNIKOVA L,RYZHIKH V, YAMPOLSKII Y, BERNARDO P, BAZZARELLI F, JANSEN J C,MCKEOWN N B, Synthesis and gas permeation properties of novelspirobisindane-based polyimides of intrinsic microporosity [J]. Polym. Chem.,2013,4:3813-3820.
    [14] HART K E, ABBOTT L J, MCKEOWN N B, COLINA C M, Toward effectiveCO2/CH4separations by sulfur-containing PIMs via predictive molecularsimulations [J]. Macromolecules,2013,46:5371-5380.
    [15] C Té A P, BENIN A I, OCKWIG N W, O’KEEFFE M, MATZGER A J, YAGHIO M, Porous, crystalline, covalent organic frameworks [J]. Science,2005,310:1166-1170.
    [16] EL-KADERI H M, HUNT J R, MENDOZA-CORTéS J L, COTé A P, TAYLORR E, O’KEEFFE M, YAGHI O M, Designed synthesis of3D covalent organicframeworks [J]. Science,2007,316:268-272.
    [17] URIBE-ROMO F J, HUNT J R, FURUKAWA H, KL CK C, O’KEEFFE M,YAGHI O M, A crystalline imine-linked3-D porous covalent organic framework[J]. J. Am. Chem. Soc.,2009,131:4570-4571.
    [18](a) KUHN P, ANTONIETTI M, THOMAS A, Porous, covalent triazine-basedframeworks prepared by ionothermal synthesis [J]. Angew. Chem. Int. Ed.,2008,47:3450–3453;(b) REN S, BOJDYS M J, DAWSON R, LAYBOURN A,KHIMYAK Y Z, ADAMS D J, COOPER A I, Porous, fluorescent, covalenttriazine-based frameworks via room-temperature and microwave-assistedsynthesis [J]. Adv. Mater.,2012,24:2357-2361.
    [19] WAN S, GUO J, KIM J, IHEE H, JIANG D, A belt-shaped, blue luminescent,and semiconducting covalent organic framework [J]. Angew. Chem. Int. Ed.,2008,47:8826–8830.
    [20] WAN S, GUO J, KIM J, IHEE H, JIANG D, A photoconductive covalent organicframework: self-condensed arene cubes composed of eclipsed2D polypyrenesheets for photocurrent generation [J]. Angew. Chem. Int. Ed.,2009,48:5439–5442.
    [21](a) DAVANKOV V A, TSYURUPA M P, Structure and properties ofhypercrosslinked polystyrene—the first representative of a new class of polymernetworks [J]. React. Polym.,1990,13:27-42;(b) TSYURUPA M P,DAVANKOV V A, Hypercrosslinked polymers: basic principle of preparing thenew class of polymeric materials [J]. React. Funct. Polym.,2002,53:193-203.
    [22](a) VEVERKA P, JERABEK K, Mechanism of hypercrosslinking ofchloromethylated styrene–divinylbenzene copolymers [J]. React. Funct. Polym.,1999,41:21-25;(b) VEVERKA P, JERABEK K, Influence of hypercrosslinkingon adsorption and absorption on or in styrenic polymers [J]. React. Funct. Polym.,2004,59:71-79.
    [23](a) AHN J H, JANG J E, OH C G, IHM S K, CORTEZ J, SHERRINGTON D C,Rapid generation and control of microporosity, bimodal pore size distribution,and surface area in Davankov-type hyper-cross-linked resins [J].Macromolecules,2006,39:627-632;(b) MACINTYRE F S, SHERRINGTON DC, TETLEY L, Synthesis of ultra-high surface area monodisperse polymernanoparticles [J]. Macromolecules,2006,39:5381-5384.
    [24] LI B, HUANG X, LIANG L, TAN B, Synthesis of uniform microporous polymernanoparticles and their applications for hydrogen storage [J]. J. Mater. Chem.,2010,20:7444-7450.
    [25]WOOD C D, TAN B, TREWIN A, NIU H, BRADSHAW D, ROSSEINSKY M J,KHIMYAK Y Z, CAMPBELL N L, KIRK R, STOCKEL E, COOPER A I,Hydrogen storage in microporous hypercrosslinked organic polymer networks [J].Chem. Mater.,2007,19:2034-2048.
    [26] MARTIN C F, STOCKEL E, CLOWES R, ADAMS D J, COOPER A I, PIS J J,RUBIERA F, PEVIDA C, Hypercrosslinked organic polymer networks aspotential adsorbents for pre-combustion CO2capture [J]. J. Mater. Chem.,2011,21:5475–5483.
    [27](a) LI B, GONG R, WANG W, HUANG X, ZHANG W, LI H, HU C, TAN B, Anew strategy to microporous polymers: knitting rigid aromatic building blocks byexternal cross-Linker [J]. Macromolecules,2011,44:2410–2414;(b) LUO Y, LIB, WANG W, WU K, TAN B, Hypercrosslinked aromatic heterocyclicmicroporous polymers: a new class of highly selective CO2capturing materials[J]. Adv. Mater.,2012,24:5703–5707.
    [28] DAWSON R, STOCKEL E, HOLST J R, ADAMS D J, COOPER A I,Microporous organic polymers for carbon dioxide capture [J]. Energy Environ.Sci.,2011,4:4239–4245.
    [29] CHAIKITTISILP W, KUBO M, MOTEKI T, SUGAWARA-NARUTAKI A,SHIMOJIMA A, OKUBO T, Porous siloxane–organic hybrid with ultrahighsurface area through simultaneous polymerization–destruction of functionalizedcubic siloxane cages [J]. J. Am. Chem. Soc.,2011,133:13832-13835.
    [30] LUO Y, ZHANG S, MA Y, WANG W, TAN B, Microporous organic polymerssynthesized by self-condensation of aromatic hydroxymethyl monomers [J].Polym. Chem.,2013,4:1126-1131.
    [31] COOPER A I, Conjugated microporous polymers [J]. Adv. Mater.,2009,21:1291–1295.
    [32] JIANG J-X, SU F, TREWIN A, WOOD C D, CAMPBELL N L, NIU H,DICKINSON C, GANIN A Y, ROSSEINSKY M J, KHIMYAK Y Z, COOPER AI, Conjugated microporous poly(aryleneethynylene) networks [J]. Angew. Chem.Int. Ed.,2007,46:8574–8578.
    [33] JIANG J-X, TREWIN A, SU F, WOOD C D, NIU H, JONES J T A, KHIMYAKY Z, COOPER A I, Microporous poly(tri(4-ethynylphenyl)amine) networks:synthesis, properties, and atomistic simulation [J]. Macromolecules,2009,42:2658-2666.
    [34] JIANG J-X, WANG C, LAYBOURN A, HASELL T, CLOWES R, KHIMYAKY Z, XIAO J, HIGGINS S J, ADAMS D J, COOPER A I, Metal–organicconjugated microporous polymers [J]. Angew. Chem. Int. Ed.,2011,50:1072–1075.
    [35] BEN T, REN H, MA S, CAO D, LAN J, JING X, WANG W, XU J, DENG F,SIMMONS J M, QIU S, ZHU G, Targeted synthesis of a porous aromaticframework with high stability and exceptionally high surface area [J]. Angew.Chem. Int. Ed.,2009,48:9457–9460.
    [36] BEN T, PEI C, ZHANG D, XU J, DENG F, JING X, QIU S, Gas storage inporous aromatic frameworks (PAFs)[J]. Energy Environ. Sci.,2011,4:3991–3999.
    [37] BEN T, SHI K, CUI Y, PEI C, ZUO Y, GUO H, ZHANG D, XU J, DENG F,TIAN Z, QIU S, Targeted synthesis of an electroactive organic framework [J]. J.Mater. Chem.,2011,21:18208–18214.
    [38] PEI C, BEN T, GUO H, XU J, DENG F, XIANG Z, CAO D, QIU S, Targetedsynthesis of electroactive porous organic frameworks containing triphenylphosphine moieties [J]. Phil. Trans. R. Soc. A.,2013,371:20120312.
    [39] COOPER A I, POLIAKOFF M, Hydrogen storage using polymer-supportedorganometallic dihydrogen complexes: a mechanistic study [J]. Chem. Commun.,2007,28:2965-2967.
    [40] LU W, SCULLEY J, YUAN D-Q, KRISHNA R, ZHOU H-C, Carbon dioxidecapture from air using amine-grafted porous polymer networks [J]. J. Phys.Chem. C.,2013,117:4057–4061.
    [41] TYLIANAKIS E, KLONTZASA E, FROUDAKIS G E, Multi-scale theoreticalinvestigation of hydrogen storage in covalent organic frameworks [J]. Nanoscale,2011,3:856-869.
    [42] LAN J, CAO D, WANG W, BEN T, ZHU G, High-capacity hydrogen storage inporous aromatic frameworks with diamond-like structure [J]. J. Phys. Chem.Lett.,2010,1:978-981.
    [43] LANGMUIR I, The constitution and fundamental properties of solids and liquids[J]. J. Am. Chem. Soc.,1916,38:2221-2295.
    [44] BRUNAUER S, EMMETT P H AND TELLER E, Adsorption of gases inmultimolecular layers [J]. J. Am. Chem. Soc.,1938,60:309-319.
    [45] LASTOSKIE C, GUBBINS K E, QUIRKE N, Pore size distribution analysis ofmicroporous carbons: a density functional theory approach [J]. J. Phys. Chem.,1993,97:4786-4796.
    [46] RAVIKOVITCH P I, AND NEIMARK A V, Density functional theory model ofadsorption on amorphous and microporous silica materials [J]. Langmuir,2006,22,11171-11179.
    [47] FURUKAWA H, KO N, GO Y B, ARATANI N, CHOI S B, CHOI E,YAZAYDIN A O, SNURR R Q, O'KEEFFE M, KIM J, YAGHI O M, Ultrahighporosity in metal-organic frameworks [J]. Science,2010,329:424-428.
    [48] FARHA O K, YAZAYDIN A, ERYAZICI I, MALLIAKAS C D, HAUSER B G,KANATZIDIS M G, NGUYEN S-B T, SNURR R Q AND HUPP J T, De novosynthesis of a metal–organic framework material featuring ultrahigh surface areaand gas storage capacities [J]. Nature Chemistry,2010,2:944–948.
    [49] PARK H J, LIM D W, YANG W S, OH T R, SUH M P, A highly porousmetal-organic framework: structural transformations of a guest-free MOFdepending on activation method and temperature [J]. Chemistry,2011,17:7251-7260.
    [50] KONSTAS K, TAYLOR J W, THORNTON A W, LIM W X, COX B J, HILL J M,BASTOW T J, HILL A J, KENNEDY D F, DOHERTY C M, WOOD C D, HILLM R, Lithiated porous aromatic frameworks with exceptional gas storagecapacity [J]. Angew. Chem. Int. Ed.,2012,51:6639-6642.
    [51] YUAN D, LU W, ZHAO D, AND ZHOU H-C, Highly stable porous polymernetworks with exceptionally high gas-uptake capacities [J]. Adv. Mater.,2011,23:3723–3725.
    [52] YAGHI O M, O’KEEFFE M, OCKWIG N W, CHAE H K, EDDAOUDI MAND KIM J, Reticular synthesis and the design of new materials [J]. Nature,2003,423:705–714.
    [53](a) C Té A P, BENIN A I, OCKWIG N W, O’KEEFFE M, MATZGER A JAND YAGHI O M, Porous, crystalline, covalent organic frameworks [J]. Science,2005,310:1166–1170;(b) EL-KADERI H M, HUNT J R,MENDOZA-CORTéS J L, C Té A P, TAYLOR R E, O’KEEFFE M ANDYAGHI O M, Designed synthesis of3D covalent organic frameworks [J].Science,2007,316:268–272;(c) KUPPLER R J, TIMMONS D J, FANG Q R,LI J R, MAKAL T A, YOUNG M D, YUAN D, ZHAO D, ZHUANG W ANDZHOU H C, Potential applications of metal-organic frameworks [J]. Coord.Chem. Rev.,2009,253:3042–3066.
    [54](a) JIANG J X, SU F, TREWIN A, WOOD C D, CAMPBELL N L, NIU H,DICKINSON C, GANIN A Y, ROSSEINSKY M J, KHIMYAK Y Z ANDCOOPER A I, Conjugated microporous poly(aryleneethynylene) networks [J].Angew. Chem., Int. Ed.,2007,46:8574–8578;(b) COOPER A I, Conjugatedmicroporous polymers [J]. Adv. Mater.,2009,21:1291–1295.
    [55](a) TSYURUPA M P AND DAVANKOV V A, Hypercrosslinked polymers:basic principle of preparing the new class of polymeric materials [J]. React.Funct. Polym.,2002,53:193–203;(b) WOOD C D, TAN B, TREWIN A, NIU H,BRADSHAW D, ROSSEINSKY M J, KHIMYAK Y Z, CAMPBELL N L, KIRKR, ST CKEL E AND COOPER A I, Hydrogen storage in microporoushypercrosslinked organic polymer networks [J]. Chem. Mater.,2007,19:2034–2048;(c) JIANG J X, TREWIN A, SU F, WOOD C D, NIU H, JONES J TA, KHIMYAK Y Z AND COOPER A I, Microporouspoly(tri(4-ethynylphenyl)amine) networks: synthesis, properties, and atomisticsimulation [J]. Macromolecules,2009,42:2658–2666;(d) JIANG J X,LAYBOURN A, CLOWES R, KHIMYAK Y Z, BACSA J, HIGGINS S J,ADAMS D J AND COOPER A I, High surface area contorted conjugatedmicroporous polymers based on spiro-bipropylenedioxythiophene [J].Macromolecules,2010,43:7577–7582;(e) JIANG J X AND COOPER A I,Microporous organic polymers: design, synthesis, and function [J]. Top. Curr.Chem.,2010,293:1–33.
    [56](a) KUHN P, ANTONIETTI M AND THOMAS A, Porous, covalenttriazine-based frameworks prepared by ionothermal synthesis [J]. Angew. Chem.,Int. Ed.,2008,47:3450–3453;(b) KUHN P, FORGET A, SU D, THOMAS A.AND ANTONIETTI M, From microporous regular frameworks to mesoporousmaterials with ultrahigh surface area: dynamic reorganization of porous polymernetworks [J]. J. Am. Chem. Soc.,2008,130:13333–13337.
    [57](a) MCKEOWN N B, BUDD P M, MSAYIB K J, GHANEM B S, KINGSTONH J, TATTERSHALL C E, MAKHSEED S, REYNOLDS K J AND FRITSCH D,Polymers of intrinsic microporosity (PIMs): bridging the void betweenmicroporous and polymeric materials [J]. Chem.–Eur. J.,2005,11:2610–2620;(b) MCKEOWN N B AND BUDD P M, Polymers of intrinsic microporosity(PIMs): organic materials for membrane separations, heterogeneous catalysis andhydrogen storage [J]. Chem. Soc. Rev.,2006,35:675–683;(c) CHAIKITTISILPW, SUGAWARA A, SHIMOJIMA A AND OKUBO T, Hybrid porous materialswith high surface area derived from bromophenylethenyl-functionalized cubicsiloxane-based building units [J]. Chem.–Eur. J.,2010,16:6006–6014;(d)TILFORD R W, GEMMILL W R, LOYE H-C Z AND LAVIGNE J J, Facilesynthesis of a highly crystalline, covalently linked porous boronate network [J].Chem. Mater.,2006,18:5296–5301.
    [58](a) WAN S, GUO J, KIM J, IHEE H AND JIANG D, A belt-shaped, blueluminescent, and semiconducting covalent organic framework [J]. Angew. Chem.,Int. Ed.,2008,47:8826–8830;(b) WAN S, GUO J, KIM J, IHEE H ANDJIANG D, A photoconductive covalent organic framework: self-condensed arenecubes composed of eclipsed2D polypyrene sheets for photocurrent generation[J]. Angew. Chem., Int. Ed.,2009,48:5439–5442.
    [59](a) MURRAY L J, DINC M AND LONG J R, Hydrogen storage inmetal–organic frameworks [J]. Chem. Soc. Rev.,2009,38:1294–1314;(b)MULFORT K L, X FARHA K L, MALLIAKAS C D, KANATZIDIS M G ANDHUPP J T, An interpenetrated framework material with hysteretic CO2uptake [J].Chem.–Eur. J.,2010,16:276–281.
    [60](a) FURUKAWA H AND YAGHI O M, Storage of hydrogen, methane, andcarbon dioxide in highly porous covalent organic frameworks for clean energyapplications [J]. J. Am. Chem. Soc.,2009,131:8875–8883;(b) BEN T, REN H,MA S, CAO D, LAN J, JING X, WANG W, XU J, DENG F, SIMMONS J M,QIU S AND ZHU G, Targeted synthesis of a porous aromatic framework withhigh stability and exceptionally high surface area [J]. Angew. Chem., Int. Ed.,2009,48:9457–9460.
    [61](a) ASENSIO J A, SáNCHEZ E M AND GóMEZ-ROMERO P,Proton-conducting membranes based on benzimidazole polymers forhigh-temperature PEM fuel cells. A chemical quest [J]. Chem. Soc. Rev.,2010,39:3210–3239;(b) WEBER J, KREUER K-D, MAIER J AND THOMAS A, Protonconductivity enhancement by nanostructural control ofpoly(benzimidazole)-phosphoric acid adducts [J]. Adv. Mater.,2008,20:2595–2598.
    [62] MAKOWSKI P, WEBER J, THOMAS A, GOETTMANN F, A mesoporouspoly(benzimidazole) network as a purely organic heterogeneous catalyst for theKnoevenagel condensation [J]. Catalysis Communications.,2008,10:243–247.
    [63](a) RABBANI M G AND EL-KADERI H M, Template-free synthesis of ahighly porous benzimidazole-linked polymer for CO2capture and H2storage [J].Chem. Mater.,2011,23:1650–1653;(b) RABBANI M G AND EL-KADERI HM, Synthesis and characterization of porous benzimidazole-linked polymers andtheir performance in small gas storage and selective uptake [J]. Chem. Mater.,2012,24:15111517;(c) RABBANI M G, REICH T E, KASSAB R M,JACKSON K T AND EL-KADERI H M, High CO2uptake and selectivity bytriptycene-derived benzimidazole-linked polymers [J]. Chem. Commun.,2012,48:1141–1143;(d) RABBANI M G, SEKIZKARDES A K, EL-KADRI O M,KAAFARANI B R AND EL-KADERI H M, Pyrene-directed growth ofnanoporous benzimidazole-linked nanofibers and their application to selectiveCO2capture and separation [J]. J. Mater. Chem.,2012,22:25409-25417.
    [64] FOURNIER J-H, WANG X AND WUEST J D, Derivatives oftetraphenylmethane and tetraphenylsilane: Synthesis of new tetrahedral buildingblocks for molecular construction [J]. Can. J. Chem.,2003,81:376-380.
    [65] SCHMIDT J, WEBER J, EPPING J D, ANTONIETTI M AND THOMAS A,Microporous conjugated poly(thienylene arylene) networks [J]. Adv. Mater.,2009,21:702-705.
    [66] PEI C, BEN T, GUO H, XU J, DENG F, XIANG Z, CAO D AND QIU S,Targeted synthesis of electroactive porous organic frameworks containingtriphenyl phosphine moieties [J]. Phil. Trans. R. Soc. A.,2013,371: no.2000.
    [67] WOOD C D, TAN B, TREWIN A, SU F, ROSSEINSKY M J, BRADSHAW D,SUN Y, ZHOU L, COOPER A I, Microporous organic polymers for methanestorage [J]. Adv Mater.,2008,20:1916-1921.
    [68] BLOCH E D, QUEEN W L, KRISHNA R, ZADROZNY J M, BROWN C M,LONG J R, Hydrocarbon separations in a metal-organic framework with openiron(II) coordination sites [J]. Science,2012,335:1606-1610.
    [18] CUI P, MA Y, LI H, ZHAO B, LI J, CHENG P, BALBUENA P B AND ZHOU HC, Multipoint Interactions Enhanced CO2Uptake: A zeolite-like zinc–tetrazole frameworkwith24-nuclear zinc cages [J]. J. Am. Chem. Soc.,2012,134:18892-18895.
    [69] DUREN T, SARKISOV L, YAGHI O M AND SNURR R Q, Design of NewMaterials for Methane Storage [J]. Langmuir,2004,20:2683-2689.
    [70] BOURRELLY S, LLEWELLYN P L, SERRE C, MILLANGE F, LOISEAU TAND FEREY G, Different adsorption behaviors of methane and carbon dioxidein the isotypic nanoporous metal terephthalates MIL-53and MIL-47[J]. J. Am.Chem. Soc.,2005,127:13519-13521.
    [71] BHATIA S K, MYERS A L, Optimum conditions for adsorptive storage [J].Langmuir,2006,22:1688-1700.
    [72] COMOTTI A, BRACCO S, DISTEFANO G AND SOZZANI P, Methane, carbondioxide and hydrogen storage in nanoporous dipeptide-based materials [J]. Chem.Commun.,2009,3:284–286.
    [73] ZHANG Y, RIDUAN S N AND YING J Y, Microporous polyisocyanurate and itsapplication in heterogeneous catalysis [J]. Chem.–Eur. J.,2009,15:1077–1081.
    [74] YANG L, KINOSHITA S, YAMADA T, KANDA S, KITAGAWA H,TOKUNAGA M, ISHIMOTO T, OGURA T, NAGUMO R, MIYAMOTO AAND KOYAMA M, A metal–organic framework as an electrocatalyst for ethanoloxidation [J]. Angew. Chem., Int. Ed.,2010,49:5348–5351.
    [75] CHEN L, YANG Y, JIANG D L, CMPs as scaffolds for constructing porouscatalytic frameworks: a built-in heterogeneous catalyst with high activity andselectivity based on nanoporous metalloporphyrin polymers [J]. J. Am. Chem.Soc.,2010,132:9138-9143.
    [76] JIANG J-X, WANG C, LAYBOURN A, HASELL T, CLOWES R, KHIMYAK YZ, XIAO J, HIGGINS S J, ADAMS D J, AND COOPER A I, Metal-organicconjugated microporous polymers [J]. Angew. Chem. Int. Ed.,2011,50:1072-1075.
    [77] JIN R, BIAN Z, LI J, DING M AND GAO L, ZIF-8crystal coatings on apolyimide substrate and their catalytic behaviours for the Knoevenagel reaction[J]. Dalton Trans.,2013,42:3936-3940.
    [78] NGUYEN L T L, LE K K A, TRUONG H X AND PHAN N T S, Metal–organicframeworks for catalysis: the Knoevenagel reaction using zeolite imidazolateframework ZIF-9as an efficient heterogeneous catalyst [J]. Catal. Sci. Technol.,2012,2:521-528.
    [79] DEB M L, BHUYAN P J, Uncatalysed Knoevenagel condensation in aqueousmedium at room temperature [J]. Tetrahedron Lett.,2005,46:6453–6456.
    [80] BALALAIE S, BARARJANIAN M, HEKMAT S, SALEHI P, Novel, efficient,and green procedure for the Knoevenagel condensation catalyzed bydiammonium hydrogen phosphate in water [J]. Syn. Commun.,2006,36:2549-2557.
    [81] GUPTA M, GUPTA R, ANAND M, Hydroxyapatite supported caesiumcarbonate as a new recyclable solid base catalyst for the Knoevenagelcondensation in water [J]. Beilstein. J. Org. Chem.,2009,5: No.68.
    [82] YAMABE S, YAMAZAKI S, Is the neutral Knoevenagel reaction initiated by thecarbanion formation?[J]. J. Phys. Org. Chem.,2011,24:663-671.
    [83] SAMANTA D, MUKHERJEE S, PATIL Y P, MUKHERJEE P S, Self-assembledPd6open cage with triimidazole walls and the use of its confined nanospace forcatalytic Knoevenagel-and Diels–Alder reactions in aqueous medium [J]. Chem.Eur. J.,2012,18:12322-12329.
    [84] SAMANTA D, MUKHERJEE P S, Multicomponent self-sorting of aPd7molecular boat and its use in catalytic Knoevenagel condensation [J]. Chem.Commun.,2013,49:4307-4309.
    [85] XU D-Z, SHI S, WANG Y, Polystyrene-immobilized DABCO as a highlyefficient and recyclable organocatalyst for the Knoevenagel condensationreaction [J]. RSC Adv.,2013,3:23075–23079.
    [86] EICHER T, HAUPTMANN S, The chemistry of heterocycles: structures,reactions, synthesis and applications [M].2nd ed. WILEY-VCH GmbH&Co.KGaA,2003.
    [87] MAKOWSKI P, WEBER J, THOMAS A, GOETTMANN F, A mesoporouspoly(benzimidazole) network as a purely organic heterogeneous catalyst for theKnoevenagel condensation [J]. Catalysis Communications.,2008,10:243–247.
    [88] GUPTA R, GUPTA M, PAUL S AND GUPTA R, Silica supported ammoniumacetate: an efficient and recyclable heterogeneous catalyst for Knoevenagelcondensation between aldehydes or ketones and active methylene group in liquidphase [J]. Bull. Korean Chem. Soc.,2009,30:2419-2421.
    [89] MUSTO P, KARASZ F E, MACKNIGHT W J, Hydrogen bonding inpolybenzimidazole/polyimide systems: a Fourier-transform infra-redinvestigation using low-molecular-weight monofunctional probes [J]. Polymer,1989,30:1012-1021.
    [90] LI Q, JENSEN J O, SAVINELL R F, BJERRUM N J, High temperature protonexchange membranes based on polybenzimidazoles for fuel cells [J]. Progress inPolymer Science.,2009,34:449-477.
    [91] HE R, SUN B, YANG J, CHE Q, Synthesis ofpoly[2,2′-(m-phenylene)-5,5′-bibenzimidazole] and poly(2,5-benzimidazole) bymicrowave irradiation [J]. Chem. Res. Chinese Universities.,2009,4:585-589.
    [92] C Té A P, BENIN A I, OCKWIG N W, O’KEEFFE M, MATZGER A J, YAGHIO M, Porous, crystalline, covalent organic frameworks [J]. Science,2005,310:1166-1170.
    [93] EL-KADERI H M, HUNT J R, MENDOZA-CORTéS J L, COTé A P, TAYLORR E, O’KEEFFE M, YAGHI O M, Designed synthesis of3D covalent organicframeworks [J]. Science,2007,316:268-272.
    [94] WAN S, GUO J, KIM J, IHEE H, JIANG D, A belt-shaped, blue luminescent,and semiconducting covalent organic framework [J]. Angew. Chem. Int. Ed.,2008,47:8826–8830.
    [95] KUHN P, ANTONIETTI M, THOMAS A, Porous, covalent triazine-basedframeworks prepared by ionothermal synthesis [J]. Angew. Chem. Int. Ed.,2008,47:3450–3453.
    [96] WAN S, GUO J, KIM J, IHEE H, JIANG D, A photoconductive covalent organicframework: self-condensed arene cubes composed of eclipsed2D polypyrenesheets for photocurrent generation [J]. Angew. Chem. Int. Ed.,2009,48:5439–5442.
    [97] URIBE-ROMO F J, HUNT J R, FURUKAWA H, KL CK C, O’KEEFFE M,YAGHI O M, A crystalline imine-linked3-D porous covalent organic framework[J]. J. Am. Chem. Soc.,2009,131:4570-4571.
    [98] REN S, BOJDYS M J, DAWSON R, LAYBOURN A, KHIMYAK Y Z, ADAMSD J, COOPER A I, Porous, fluorescent, covalent triazine-based frameworks viaroom-temperature and microwave-assisted synthesis [J]. Adv. Mater.,2012,24:2357-2361.
    [99] CAO M-L, MO H-J, LIANG J-J, AND YE B-H, Reversiblesingle-crystal-to-single-crystal transformation driven by adsorption/desorption ofwater over organic solvents and thermal stimulation [J]. CrystEngComm,2009,11:784-790.
    [100] SU Z, CHEN M, OKAMURA T, CHEN M-S, CHEN S-S, AND SUN W-Y,Reversible single-crystal-to-single-crystal transformation and highly selectiveadsorption property of three-dimensional cobalt(II) frameworks [J]. Inorg.Chem.,2011,50:985–991.
    [101] CHEN M-S, CHEN M, TAKAMIZAWA S, OKAMURA T, FAN J, AND SUNW-Y, Single-crystal-to-single-crystal transformations and selective adsorption ofporous copper(II) frameworks [J]. Chem. Commun.,2011,47:3787-3789.
    [102] WEN L, CHENG P, AND LIN W, Solvent-induced single-crystal tosingle-crystal transformation of a2D coordination network to a3Dmetal–organic framework greatly enhances porosity and hydrogen uptake [J].Chem. Commun.,2012,48:2846-2848.
    [103] IMAZ I, MOUCHAHAM G, ROQUES N, BRANDèS S, AND SUTTER J-P,Tetradihydrobenzoquinonate and tetrachloranilate Zr(IV) complexes:single-crystal-to-single-crystal phase transition and open-framework behavior forK4Zr(DBQ)4[J]. Inorg. Chem.,2013,52:11237–11243.
    [104] HOHEISEL T N, SCHRETTL S, MARTY R, TODOROVA T K,CORMINBOEUF C, SIENKIEWICZ A, SCOPELLITI R, SCHWEIZER W B,FRAUENRATH H, A multistep single-crystal-to-single-crystal bromodiacetylenedimerization [J]. Nature Chemistry,2013,5:327–334.
    [105] LEE J, KIM J, AND HYEON T, Recent progress in the synthesis of porouscarbon materials [J]. Adv. Mater.2006,18:2073–2094.
    [106] LU A-H AND SCHüTH F, Nanocasting: a versatile strategy for creatingnanostructured porous materials [J]. Adv. Mater.2006,18:1793–1805.
    [107] LIU B, SHIOYAMA H, AKITA T, AND XU Q, Metal-organic framework as atemplate for porous carbon synthesis [J]. J. Am. Chem. Soc.2008,130:5390–5391.
    [108] THOMAS A, GOETTMANN F, AND ANTONIETTI M, Hard templates forsoft materials: creating nanostructured organic materials [J]. Chem. Mater.2008,20:738–755.
    [109] LIANG C, LI Z, AND DAI S, Mesoporous carbon materials: synthesis andmodification [J]. Angew. Chem. Int. Ed.2008,47:3696–3717.
    [110] THOMAS A, KUHN P, WEBER J, TITIRICI M-M, ANTONIETTI M, Porouspolymers: enabling solutions for energy applications [J]. Macromol. RapidCommun.2009,30:221–236.
    [111] WHITE R J, BUDARIN V, LUQUE R, CLARK J H, AND MACQUARRIE D J,Tuneable porous carbonaceous materials from renewable resources [J]. Chem.Soc. Rev.,2009,38:3401–3418.
    [112] JIANG H-L, LIU B, LAN Y-Q, KURATANI K, AKITA T, SHIOYAMA H,ZONG F, AND XU Q, From metal-organic framework to nanoporous carbon:toward a very high surface area and hydrogen uptake [J]. J. Am. Chem. Soc.2011,133:11854–11857.
    [113] HU M, REBOUL J, FURUKAWA S, TORAD N L, JI Q, SRINIVASU P,ARIGA K, KITAGAWA S, AND YAMAUCHI Y, Direct carbonization ofAl-based porous coordination polymer for synthesis of nanoporous carbon [J]. J.Am. Chem. Soc.2012,134:2864-2867.
    [114] BEN T, LI Y, ZHU L, ZHANG D, CAO D, XIANG Z, YAO X, AND QIU S,Selective adsorption of carbon dioxide by carbonized porous aromaticframework (PAF)[J]. Energy Environ. Sci.,2012,5:8370–8376.
    [115] LI Y, BEN T, ZHANG B, FU Y, AND QIU S, Ultrahigh gas storage both at lowand high Pressures in KOH-activated carbonized porous aromatic frameworks [J].Sci. Rep.,2013,3:2420.
    [116] ZHAO D, SHUI J-L, GRABSTANOWICZ L R, CHEN C, COMMET S M, XUT, LU J, AND LIU D-J, Highly efficient non-precious metal electrocatalystsprepared from one-pot synthesized zeolitic imidazolate frameworks [J]. Adv.Mater.2014,26:1093–1097.
    [117] G PFERICH A, TESSMAR J, Polyanhydride degradation and erosion, Adv.Drug Deliv. Rev.,[J].2002,54:911–931.
    [118] FOGA A R, OUIMET M A, CATALANI L H, UHRICH K E, Bioactive-basedpoly(anhydride-esters) and blends for controlled drug delivery [M]. Tailoredpolymer architectures for pharmaceutical and biomedical applications,2013,C3:27–37.
    [119] HONG D-W, LAI P-L, LIU T-H, CHU I-M, Development of novelpolyanhydride/nanoceramics composite bone grafts with suitable mechanicalstrength and long durability [J]. Adv. Mater. Res.,2013,622-623:551-555.
    [120] SIMARD M, SU D, AND WUEST J D,Use of hydrogen bonds to controlmolecular aggregation. Self-assembly of three-dimensional networks with largechambers [J]. J. Am. Chem. Soc.,1991,113:4696-4698.
    [121] BRUNET P, SIMARD M, AND WUEST J D, Molecular tectonics. Poroushydrogen-bonded networks with unprecedented structural integrity [J]. J. Am.Chem. Soc.,1997,119:2737-2738.
    [122] HE Y, XIANG S, AND CHEN B, A microporous hydrogen-bonded organicframework for highly selective C2H2/C2H4separation at ambient temperature [J].J. Am. Chem. Soc.,2011,133:14570–14573.
    [123] ENDO K,SAWAKI T, KOYANAGI M, KOBAYASHI K, MASUDA H ANDAOYAMA Y,Guest-binding properties of organic crystals having an extensivehydrogen-bonded network: an orthogonal anthracene-bis(resorcinol) derivativeas a functional organic analog of zeolites [J]. J. Am. Chem. Soc.,1995,117:8341-8352.
    [124] YANG W, GREENAWAY A, LIN X, MATSUDA R, BLAKE A J, WILSON C,LEWIS W, HUBBERSTEY P, KITAGAWA S, CHAMPNESS N R, ANDSCHR DER M,Exceptional thermal stability in a supramolecular organicframework: porosity and gas storage [J]. J. Am. Chem. Soc.,2010,132:14457–14469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700