用户名: 密码: 验证码:
纳米多孔材料吸附有害气体的巨正则蒙特卡罗模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,对纳米多孔材料如金属有机骨架化合物(MOF)和共价有机骨架化合物(COF)的研究成为了各国科研工作者关注的热点。这两种材料具有可设计的结构、可调控的孔隙以及高的热稳定性等诸多优点,被广泛应用在储气、分离、催化、及制药等领域。另外,氧化石墨烯材料作为石墨烯材料的一种衍生材料,其用途也是十分广泛的。由于石墨烯材料上存在大量的含氧基团,因此过渡金属原子可以很容易的担载在其表面,而使氧化石墨烯的性质发生一定的改变。
     本文采用第一性原理和巨正则蒙特卡罗模拟两种方法,研究了MOF和COF材料对有害气体的吸附属性,以及改性后的氧化石墨烯材料对CO气体分子的捕捉和分离特性,主要研究内容如下:
     1、通过巨正则蒙特卡罗方法研究了几种典型的骨架化合物(COF-105, COF-108, MOF-5和MOF-177)在298 K时,对CO, NO和NO2的吸附能力。结果表明这四种材料对NO2的吸附量都比较高,尤其是MOF-177,在温度和压强分别为298 K和10 bar时,对N02的吸附量可以达到10.7 mmol/g。根据模拟的吸附热结果,我们进一步讨论了四种气体(H2, CO, NO和NO2)和四种吸附剂材料(COF-105, COF-108, MOF-5和MOF-177)的相互作用。
     2、通过第一性原理和巨正则蒙特卡罗方法,研究了担载Ti的氧化石墨烯材料对CO的吸附和分离属性,结果表明在温度和压强分别为298 K和10 bar时,CO的吸附量可以达到7.5 mmol/g,是模拟的其它气体(CO2,N2和CH4)吸附量的2到6倍。因此担载Ti的氧化石墨烯可以作为良好的CO分离材料。所以我们也可以通过担载不同的原子来研究不同金属修饰的氧化石墨烯材料对其它气体的分离能力。
In recent years, the study of nanoporous materials such as metal organic framework and covalent organic framework, become a hot topic of researchers. Due to the excellent characteristics of the two materials such as large surface areas, adjustable pore sizes and controllable properties, as well as acceptable thermal stability, they are widely applied in gas storage, separation, catalyst and pharmacy, etc. Moreover, as a derivative product of graphene, graphene oxide (GO) has attracted resurgent interests. Owing to large amounts of oxygen groups on GO surface, transition metal atoms can be easily supported on the surface, and improve the capacity of GO.
     In this work, the first-principles computations and Grand Canonical Monte Carlo (GCMC) were performed to investigate the adsorption behaviors of nanoporous materials (MOFs and COFs) and the adsorption/separation capacities of CO in metal supported GO. The main contents are summarized as follows.
     1. The adsorption properties of CO, NO, and NO2 in several typical nanoporous materials (COF-105, COF-108, MOF-5 and MOF-177) at 298 K were investigated by Grand Canonical Monte Carlo (GCMC) simulations. The adsorption amounts of NO2 in these materials are higher than those of the other three gases because of the stronger gas-sorbent interaction. In particular, NOt adsorption amount in MOF-177 can reach as high as 10.7 mmol/g at 298 K and 10 bar. The interaction between the four gases (H2, CO, NO and NO2) and the COF/MOF adsorbents is further discussed in terms of the isosteric heat.
     2. The adsorption properties of selected gases (CO, N2, CO2 and CH4) on the Ti-decorated GO surface have been systematically studied by first-principles calculations and GCMC simulations. GCMC simulations of adsorption isotherms further demonstrate that the adsorption amount of CO can reach as high as 7.5 mmol/g at 10 bar and room temperature, the adsorption amount of CO is 2-6 times of the other gases (CO2, N2 and CH4). So the results show that the Ti-decorated GO materials can be ideal sorbents for CO capture and separation from mixtures with N2, CO2, and CH4. In addition to Ti, GO-based materials with other metal decoration may find potential applications for capture and separation of other gases.
引文
[1]FEREY G. Hybrid porous solids:past, present, future [J]. Chemical Society Reviews,2008,37: 191-214.
    [2]CHAMPNESS N R, SCHRODER M. Extended networks formed by coordination polymers in the solid state [J]. Current Opinion in Solid State & Materials Science,1998,3:419-424.
    [3]林之恩,杨国昱.多孔材料化学:从无机微孔化合物到金属有机多孔骨架[J].结构化学,2004,23:1388-1398.
    [4]KITAGAWA S, KITAURA R, NORO S. Functional porous coordination polymers [J]. Angewandte Chemie-International Edition,2004,43:2334-2375.
    [5]JAMES S L. Metal-organic frameworks [J]. Chemical Society Reviews,2003,32:276-288.
    [6]LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework [J]. Nature,1999,402:276-279.
    [7]ROSI N L, ECKERT J, EDDAOUDI M, et al. Hydrogen storage in microporous metal-organic frameworks [J]. Science,2003,300:1127-1129.
    [8]CHEN B L, EDDAOUDI M, HYDE S T, et al. Interwoven metal-organic framework on a periodic minimal surface with extra-large pores [J]. Science,2001,291:1021-1023.
    [9]CHAE H K, SIBERIO-PEREZ D Y, KIM J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature,2004,427:523-527.
    [10]MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature [J]. Journal of the American Chemical Society,2005, 127:17998-17999.
    [11]EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage [J]. Science,2002,295:469-472.
    [12]KONDO M, OKUBO T, ASAMI A, et al. Rational synthesis of stable channel-like cavities with methane gas adsorption properties:{Cu(2)(pzdc)(2)(L)}(n) (pzdc=pyrazine-2,3-dicarboxylate; L=a pillar ligand) [J]. Angewandte Chemie-International Edition,1999,38:140-143.
    [13]NORO S, KITAGAWA S, KONDO M, et al. A new, methane adsorbent, porous coordination polymer{CuSiF(6)(4,4'-bipyridine)(2)}(n) [J]. Angewandte Chemie-International Edition,2000,39: 2082-2084.
    [14]FUJITA M, KWON Y J, WASHIZU S, et al. Preparation, clathration ability, and catalysis of a 2-dimensional square network material composed of cadmium(Ⅱ) and 4,4'-bipyridine [J]. Journal of the American Chemical Society,1994,116:1151-1152.
    [15]KEPERT C J, ROSSEINSKY M J. Zeolite-like crystal structure of an empty microporous molecular framework [J]. Chemical Communications,1999,375-376.
    [16]PAN L, OLSON D H, CIEMNOLONSKI L R, et al. Separation of hydrocarbons with a microporous metal-organic framework [J]. Angewandte Chemie-International Edition,2006,45:616-619.
    [17]BANERJEE R, PHAN A, WANG B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture [J]. Science,2008,319:939-943.
    [18]COTE A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks [J]. Science,2005,310:1166-1170.
    [19]EL-KADERI H M, HUNT J R, MENDOZA-CORTES J L, et al. Designed synthesis of 3D covalent organic frameworks [J]. Science,2007,316:268-272.
    [20]ASSFOUR B, SEIFERT G. Adsorption of hydrogen in covalent organic frameworks:Comparison of simulations and experiments [J]. Microporous and Mesoporous Materials,2010,133:59-65.
    [21]FURUKAWA H, YAGHI O M. Storage of Hydrogen, Methane, and Carbon Dioxide in highly porous Covalent Organic Frameworks for clean energy applications [J]. Journal of the American Chemical Society,2009,131:8875-8883.
    [22]GARBEROGLIO G. Computer simulation of the adsorption of light gases in covalent organic frameworks [J]. Langmuir,2007,23:12154-12158.
    [23]KLONTZAS E, TYLIANAKIS E, FROUDAKIS G E. Designing 3D COFs with enhanced hydrogen storage capacity [J]. Nano Letters,2010,10:452-454.
    [24]GAO W, ALEMANY L B, CI L, et al. New insights into the structure and reduction of graphite oxide [J]. Nature Chemistry,2009,1:403-408.
    [25]WANG L, LEE K, SUN Y-Y, et al. Graphene Oxide as an Ideal Substrate for Hydrogen Storage [J]. Acs Nano,2009,3:2995-3000.
    [26]FRENKEL D, SMIT B. Understanding Molecular Simulations:From algorithms to applications [M]. Academic Press, San Diego,2002.
    [27]THOMAS L H. The Calculation of Atomic Fields [J]. Proc Cambridge Philos Soc,1927,23:542.
    [28]FERMI E. Un metodo statistico per la determinazione di alcune priorieta dell'atome [J]. Rend Accad Naz Lincei,1927,6:602-607.
    [29]HOHENBERG P, W. K. Inhomogeneous Electron Gas [J]. Physical Review 1964,136:B864.
    [30]KOHN W, J. S L. Self-consistent equations including exchange and correlation effects [J]. Physical Review Letters,1965,140:1133-1138.
    [31]PETTI D A, MCCARTHY K A, GULDEN W, et al. An overview of safety and environmental considerations in the selection of materials for fusion facilities [J]. Journal of Nuclear Materials, 1996,233:37-43.
    [32]FRISCH M J E A. Gaussian 03, revision A [J]. Pittsburgh,Gaussian, Inc,2003,
    [33]KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B,1996,54:11169-11186.
    [34]COTE A P, EL-KADERI H M, FURUKAWA H, et al. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks [J]. Journal of the American Chemical Society,2007, 129:12914-12915.
    [35]HUNT J R, DOONAN C J, LEVANGIE J D, et al. Reticular synthesis of covalent organic borosilicate frameworks [J]. Journal of the American Chemical Society,2008,130:11872-11873.
    [36]SAHA D, WEI Z J, DENG S G. Equilibrium, kinetics and enthalpy of hydrogen adsorption in MOF-177 [J]. International Journal of Hydrogen Energy,2008,33:7479-7488.
    [37]ZOU R Q, ABDEL-FATTAH A I, XU H W, et al. Storage and separation applications of nanoporous metal-organic frameworks [J]. Crystengcomm,2010,12:1337-1353.
    [38]THOMAS K M. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications:comparison with other nanoporous materials [J]. Dalton Transactions,2009, 1487-1505.
    [39]MORRIS R E, WHEATLEY P S. Gas storage in nanoporous materials [J]. Angewandte Chemie-International Edition,2008,47:4966-4981.
    [40]WANG H L, GAO Q M, HU J. High Hydrogen Storage Capacity of Porous Carbons Prepared by Using Activated Carbon [J]. Journal of the American Chemical Society,2009,131:7016-7022.
    [41]YANG Z X, XIA Y D, MOKAYA R. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials [J]. Journal of the American Chemical Society,2007,129:1673-1679.
    [42]LANGMI H W, WALTON A, AL-MAMOURI M M, et al. Hydrogen adsorption in zeolites A, X, Y and RHO [J]. Journal of Alloys and Compounds,2003,356:710-715.
    [43]CAVENATI S, GRANDE C A, RODRIGUES A E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures [J]. Journal of Chemical and Engineering Data, 2004,49:1095-1101.
    [44]DUREN T, SARKISOV L, YAGHI O M, et al. Design of new materials for methane storage [J]. Langmuir,2004,20:2683-2689.
    [45]MA S Q, SUN D F, SIMMONS J M, et al. Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake [J]. Journal of the American Chemical Society,2008,130:1012-1016.
    [46]ZHOU W, WU H, HARTMAN M R, et al. Hydrogen and methane adsorption in metal-organic frameworks:A high-pressure volumetric study [J]. Journal of Physical Chemistry C,2007,111: 16131-16137.
    [47]XIAO B, WHEATLEY P S, ZHAO X B, et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework [J]. Journal of the American Chemical Society,2007,129: 1203-1209.
    [48]ZHAO X B, XIAO B, FLETCHER A J, et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks [J]. Science,2004,306:1012-1015.
    [49]SEAYAD A M, ANTONELLI D M. Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials [J]. Advanced Materials,2004,16:765-777.
    [50]MURRAY L J, DINCA M, LONG J R. Hydrogen storage in metal-organic frameworks [J]. Chemical Society Reviews,2009,38:1294-1314.
    [51]LI Y W, YANG R T. Hydrogen Storage in Metal Organic and covalent organic frameworks by spillover [J]. AIChE 2008,54:269-279.
    [52]XIANG Z H, LAN J H, CAO D P, et al. Hydrogen Storage in Mesoporous Coordination Frameworks:Experiment and Molecular Simulation [J]. Journal of Physical Chemistry C,2009,113: 15106-15109.
    [53]DUREN T, BAE Y S, SNURR R Q. Using molecular simulation to characterise metal-organic frameworks for adsorption applications [J]. Chemical Society Reviews,2009,38:1237-1247.
    [54]XIANG Z H, CAO D P, LAN J H, et al. Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks [J]. Energy & Environmental Science,2010,3:1469-1487.
    [55]YANG Q Y, ZHONG C L, CHEN J F. Computational study of CO2 storage in metal-organic frameworks [J]. Journal of Physical Chemistry C,2008,112:1562-1569.
    [56]WALTON K S, MILLWARD A R, DUBBELDAM D, et al. Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks [J]. Journal of the American Chemical Society,2008,130:406-407.
    [57]LI F, ZHAO J J, JOHANSSON B, et al. Improving hydrogen storage properties of covalent organic frameworks by substitutional doping [J]. International Journal of Hydrogen Energy,2010,35: 266-271.
    [58]XIE Y C, ZHANG J P, QIU J G, et al. Zeolites Modified by CuCI for Separating CO from Gas Mixtures Containing CO2 [J]. Adsorption,1996,3:27-32.
    [59]WHEATLEY P S, BUTLER A R, CRANE M S, et al. NO-releasing zeolites and their antithrombotic properties [J]. Journal of the American Chemical Society,2006,128:502-509.
    [60]SHIRAHAMA N, MOON S H, CHOI K H, et al. Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers [J]. Carbon,2002,40:2605-2611.
    [61]BROWN W A, GARDNER P, KING D A. The Adsorption of NO2 on Ag(111)-a low-temperature rairs study [J]. Surface Science,1995,330:41-47.
    [62]SAHA D, DENG S G. Adsorption Equilibria and Kinetics of Carbon Monoxide on Zeolite 5A,13X, MOF-5, and MOF-177 [J]. Journal of Chemical and Engineering Data,2009,54:2245-2250.
    [63]MAYO S L, OLAFSON B D, GODDARD W A. DREIDING-A GENERIC FORCE-FIELD FOR MOLECULAR SIMULATIONS [J]. Journal of Physical Chemistry,1990,94:8897-8909.
    [64]LIU J, LEE J Y, PAN L, et al. Adsorption and diffusion of hydrogen in a new metal-organic framework material:Zn(bdc)(ted)(0.5) [J]. Journal of Physical Chemistry C,2008,112:2911-2917.
    [65]GARBEROGLIO G, SKOULIDAS A I, JOHNSON J K. Adsorption of gases in metal organic materials:Comparison of simulations and experiments [J]. Journal of Physical Chemistry B,2005, 109:13094-13103.
    [66]KAYE S S, DAILLY A, YAGHI O M, et al. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)(3) (MOF-5) [J]. Journal of the American Chemical Society,2007,129:14176-14177.
    [67]LLEWELLYN P L, MAURIN G. Gas adsorption microcalorimetry and modelling to characterise zeolites and related materials [J]. Comptes Rendus Chimie,2005,8:283-302.
    [68]RAUB J A, MATHIEU-NOLF M, HAMPSON N B, et al. Carbon monoxide poisoning-a public health perspective [J]. Toxicology,2000,145:1-14.
    [69]STEELE B C H, A. H. Materials for fuel-cell technologies [J]. Nature,2001,414:345-352.
    [70]PARK E D, LEE D, LEE H C. Recent progress in selective CO removal in a H2-rich stream [J]. Catalysis Today,2009,139:280-290.
    [71]TANKSALE A, BELTRAMINI J N, LU G Q M. A review of catalytic hydrogen production processes from biomass [J]. Renewable and Sustainable Energy Reviews,2010,14:166-182.
    [72]SETHIA G, DANGI G P, JETWANI A L, et al. Equilibrium and Dynamic Adsorption of Carbon Monoxide and Nitrogen on ZSM-5 with Different SiO2/Al2O3 Ratio [J]. Separation Science and Technology,2010,45:413-420.
    [73]ACKLEY M W, REGE S U, H. S. Application of natural zeolites in the purification and separation of gases [J]. Microporous and Mesoporous Materials,2003,61:25-42.
    [74]PILLAI R S, SETHIA G, V. J R. Sorption of CO, CH4, and N2 in Alkali Metal Ion Exchanged Zeolite-X:Grand Canonical Monte Carlo Simulation and Volumetric Measurements [J]. Industrial Engineering Chemistry Research,2010,49:5816-5825.
    [75]HUANG Y Y. Selective adsorption of carbon-monoxide and complex-formation of cuprous-mmines in Cu(I)Y Zeolites [J]. Journal of Catalysis,1973,30:187-194.
    [76]MONTANARI T, SALLA I, BUSCA G. Adsorption of CO on LTA zeolite adsorbents:An IR investigation [J]. Microporous and Mesoporous Materials,2008,109:216-222.
    [77]SIRCAR S, GOLDEN T C, B. R M. Activated carbon for gas separation and storage [J]. Carbon, 1996,34:1-12.
    [78]TAMON H, KITAMURA K, OKAZAKI M. Adsorption of carbon monoxide on activated carbon impregnated with metal halide [J]. Aiche Journal,1996,42:422-430.
    [79]IYUKE S E, MOHAMAD A B, DAUD W R W, et al. Removal of CO from process gas with Sn-activated carbon in pressure swing adsorption [J]. Journal of Chemical Technology and Biotechnology,2000,75:803-811.
    [80]GRANDE C A L F V S, RIBEIRO A M, LOUREIRO J M, RODRIGUES A E. Adsorption of off-ases from Steam Methane Reforming (H2, CO2, CH4, CO and N2) on Activated Carbon [J]. Separation Science and Technology 2008,43:1338-1364.
    [81]MOHAMAD A B, IYUKE S E, DAUD W R W, et al. Adsorption of carbon monoxide on activated carbon-tin ligand [J]. Journal of Molecular Structure,2000,550:511-519.
    [82]TRIEBE R W, TEZEL F H. Adsorption of nitrogen, carbon-monoxide, carbon-dioxide and nitric-oxide on molecular-sieves [J]. Gas Separation & Purification,1995,9:223-230.
    [83]PREDESCU L, TEZEL F H, CHOPRA S. Adsorption of nitrogen, methane, carbon monoxide, and their binary mixtures on aluminophosphate molecular sieves [J]. Adsorption-Journal of the International Adsorption Society,1996,3:7-25.
    [84]WANG Q M, SHEN D M, BULOW M, et al. Metallo-organic molecular sieve for gas separation and purification [J]. Microporous and Mesoporous Materials,2002,55:217-230.
    [85]BRITT D, TRANCHEMONTAGNE D, YAGHI O M. Metal-organic frameworks with high capacity and selectivity for harmful gases [J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105:11623-11627.
    [86]LI J R K R J, ZHOU H C.. Selective gas adsorption and separation in metal-organic frameworks [J]. Chemical Society Reviews 2009,38:1477-1504.
    [87]ZOU R, ABDEL-FATTAH A I, XU H, et al. Storage and separation applications of nanoporous metal-organic frameworks [J]. Crystengcomm,2010,12:1337-1353.
    [88]VALENZANO L C B, CHAVAN S, PALOMINO G T, AREAN C O, BORDIGA S. Computational and Experimental Studies on the Adsorption of CO, N2, and CO2 on Mg-MOF-74 [J]. Journal of Physical Chemistry C,2010,114:11185-11191.
    [89]JI WOONG Y, YOU-KYONG S, YOUNG KYU H, et al. Controlled Reducibility of a Metal-Organic Framework with Coordinatively Unsaturated Sites for Preferential Gas Sorption [J]. Angewandte Chemie International Edition,2010,49:5949-5952.
    [90]KISHAN M R, TIAN J, THALLAPALLY P K, et al. Flexible metal-organic supramolecular isomers for gas separation [J]. Chemical Communications,2010,46:538-540.
    [91]BANERJEE R, FURUKAWA H, BRITT D, et al. Control of Pore Size and Functionality in Isoreticular Zeolitic Imidazolate Frameworks and their Carbon Dioxide Selective Capture Properties [J]. Journal of the American Chemical Society,2009,131:3875-3877.
    [92]VENNA S R, CARREON M A. Highly Permeable Zeolite Imidazolate Framework-8 Membranes for CO2/CH4 Separation [J]. Journal of the American Chemical Society,2010,132:76-78.
    [93]GEIM A K. Graphene:Status and Prospects [J]. Science,2009,324:1530-1534.
    [94]GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials,2007,6:183-191.
    [95]DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide [J]. Chemical Society Reviews,2010,39:228-240.
    [96]WEI Z, WANG D, KIM S, et al. Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics [J]. Science,2010,328:1373-1376.
    [97]ZHU Y, MURALI S, CAI W, et al. Graphene and Graphene Oxide:Synthesis, Properties, and Applications [J]. Advanced Materials,2010,22:5226-5226.
    [98]SEREDYCH M, BANDOSZ T J. Adsorption of ammonia on graphite oxide/aluminium polycation and graphite oxide/zirconium-aluminium polyoxycation composites [J]. Journal of Colloid and Interface Science,2008,324:25-35.
    [99]PETIT C, BANDOSZ T J. MOF-graphite oxide nanocomposites:surface characterization and evaluation as adsorbents of ammonia [J]. Journal of Materials Chemistry,2009,19:6521-6528.
    [100]PETIT C, BANDOSZ T J. Graphite Oxide/Polyoxometalate Nanocomposites as Adsorbents of Ammonia [J]. Journal of Physical Chemistry C,2009,113:3800-3809.
    [101]PETIT C, MENDOZA B, BANDOSZ T J. Reactive Adsorption of Ammonia on Cu-Based MOF/Graphene Composites [J]. Langmuir,2010,26:15302-15309.
    [102]PETIT C, BANDOSZ T J. Enhanced asorption of ammonia on Metal-Organic Framework/Graphite Oxide composites:analysis of surface interactions [J]. Advanced Functional Materials,2010,20: 111-118.
    [103]PETIT C, MENDOZA B, BANDOSZ T J. Hydrogen sulfide adsorption on MOFs and MOF/Graphite Oxide Composites [J]. Chemphyschem,2010,11:3678-3684.
    [104]SEREDYCH M, BANDOSZ T J. Effects of Surface Features on Adsorption of SO2 on Graphite Oxide/Zr(OH)4 Composites [J]. Journal of Physical Chemistry C,2010,114:14552-14560.
    [105]BASHKOVA S B T J. Adsorption/Reduction of NO2 on Graphite Oxide/Iron Composites [J]. Industrial Engineering Chemistry Research,2009,48:10884-10891.
    [106]MORISHIGE K, HAMADA T. Iron oxide pillared graphite [J]. Langmuir,2005,21:6277-6281.
    [107]BURRESS J W, GADIPELLI S, FORD J, et al. Graphene Oxide Framework Materials:Theoretical Predictions and Experimental Results [J]. Angewandte Chemie-International Edition,2010,49: 8902-8904.
    [108]KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B,1999,59:1758-1775.
    [109]PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters,1996,77:3865-3868.
    [110]WANG L, SUN Y Y, LEE K, et al. Stability of graphene oxide phases from first-principles calculations [J]. Physical Review B,2010,82:
    [111]XIANG H J, WEI S-H, GONG X G. Structural motifs in oxidized graphene:A genetic algorithm study based on density functional theory [J]. Physical Review B,2010,82:
    [112]YAN J-A, XIAN L, CHOU M Y. Structural and Electronic Properties of Oxidized Graphene [J]. Physical Review Letters,2009,103:
    [113]BOUKHVALOV D W K M I. Modeling of Graphite Oxide [J]. Jounal of American Chemical Society,2008,130:10697-10701.
    [114]LAHAYE R J W E, JEONG H K, PARK C Y, et al. Density functional theory study of graphite oxide for different oxidation levels [J]. Physical Review B,2009,79:
    [115]LU N, HUANG Y, LI H-B, et al. First principles nuclear magnetic resonance signatures of graphene oxide [J]. Journal of Chemical Physics,2010,133:
    [116]SZABO T, BERKESI O, FORGO P, et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides [J]. Chemistry of Materials,2006,18:2740-2749.
    [117]DAVIDOVA M, NACHTIGALLOVA D, BULANEK R, et al. Characterization of the Cu+ sites in high-silica zeolites interacting with the CO molecule:Combined computational and experimental study [J]. Journal of Physical Chemistry B,2003,107:2327-2332.
    [118]BATES S, DWYER J. ABINITIO STUDY OF CO ADSORPTION ON ZEOLITES [J]. Journal of Physical Chemistry,1993,97:5897-5900.
    [119]SUN Y Y, KIM Y-H, LEE K, et al. Altering the spin state of transition metal centers in metal-organic frameworks by molecular hydrogen adsorption:a first-principles study [J]. Physical Chemistry Chemical Physics,2011,13:5042-5046.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700