用户名: 密码: 验证码:
基于脂质立方液晶相生物电催化体系的构筑及生物电子应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂质立方液晶相是由一定浓度的两亲性物质在水相中自组装成含双连续水道结构的闭合脂质双层,脂质双分子层进而扭曲成具有类生物膜性质的一种三维立体结构。脂质立方液晶相具有粘性大、生物相容性好、在水相中能稳定存在的特点。这些特点使得脂质立方液晶相可作为包埋生物催化剂(酶或蛋白质)的基质,建立生物电催化体系,进而构建生物电子装置(生物传感器、生物燃料电池等)。本论文选择单油酸甘油酯(Monoolein,MO)制备脂质立方液晶相,并以此作为包埋蛋白质(血红蛋白)、酶(乙醇脱氢酶、漆酶)的基质,构筑生物电子装置。具体概括如下:
     1、制备了脂质立方液晶相包埋氧化还原性蛋白质,血红蛋白(Hemoglobin,Hb)的修饰电极,考察了血红蛋白与电极间直接电子转移行为,进而构建了过氧化氢第三代生物传感器。结果表明,血红蛋白与电极间的电子转移动力学常数(Ks)为3.03 s-1,催化底物过氧化氢的表观米氏常数(ΚaMpp)为0.27 mM,所构建第三代过氧化氢传感器的线性范围为7~239μM,检测限为3.1μM。
     2、制备了脂质立方液晶相包埋四氯苯醌(Tetrachlorobenzoquinone,TCBQ)的碳纳米管修饰电极(MO-TCBQ/SWNT/GC),考察了该电极对NADH的电催化性能,对NADH检测的线性范围为5~1650μM,检测限为0.82μM。进一步制备了TCBQ和乙醇脱氢酶(Alcohol Dehydrogenase,ADH)共包埋于脂质立方液晶相的生物电极(MO-TCBQ-ADH/SWNT/GC),进而构建了基于脱氢酶的乙醇生物传感器,该生物电极对乙醇检测的线性范围为0.2~13 mM,检测限为0.05 mM。
     3、制备了甲苯胺蓝(Toluidine blue,TB)和乙醇脱氢酶(ADH)共包埋于脂质立方液晶相中的修饰电极(MO-TB-ADH/GC),基于该电极对乙醇良好的催化氧化性能构建了生物燃料电池的阳极。制备了漆酶(Laccase)包埋于脂质立方液晶相中的修饰电极(MO-Laccase/GC),基于该电极在ABTS溶液中对氧气良好的催化还原性能,构建了电池的阴极。基于此进一步构筑了基于脂质立方液晶相的无隔膜型乙醇/氧气生物燃料电池。研究表明,在室温和氧气饱和的条件下,电池的开路电位为0.38 V,在0.06 V的工作电压下,输出功率可达到0.2μW/cm~2。
Liquid-crystalline lipid cubic phase is formed by self-assembling of polar lipids in aqueous media.The internal structure consists of one congruent lipid bilayer, forming a three-dimensional and well-ordered structure interwoven by aqueous channels.The lipidic cubic phase is of high viscosity, good biocompatibility,and good stability in the presence of excess water.These special characteristics make it suitable for hosting the biocatalysts ( proteins or enzymes ) on electrode surface, and therefore establishing bioelectrocatalysis systems to build bioelectronic devices ( biosensors,biofuel cells etc. ).
     In this thesis,liquid crystal cubic phase formed with monoolein has been used as immobilizing matrix to host protein ( hemoglobin ),enzyme ( alcohol dehydrogenase, laccase ) on glass carbon electrode surface to construct bioelectronic devices.The details are summarized as follows:
     1. Liquid crystal cubic phase formed with monoolein has been used as immobilizing matrix to host redox protein hemoglobin. The direct electron transfer between hemoglobin and electrode was investigated and the third generation biosensor of hydrogen peroxide was constructed.Based on this system,the enhanced average kinetic electron transfer rate constant ks of 3.03 s?1 and the small apparent Michaelis-Menten constantΚaMpp of 0.27 mM were obtained. The proposed hydrogen peroxide biosensor showed a linear range of 7 ~239μM with a detection limit of 3.1μM.
     2. A modified electrode, MO-TCBQ/SWNT/GC, was constructed utilizing the lipidic cubic phase to immobilize Tetrachlorobenzoquinone ( TCBQ ) on SWNT-based electrode. A NADH sensor was constructed based on the electrocatalytic activity of TCBQ and NADH. The proposed NADH sensor showed a linear range of 5~1650μM with a detection limit of 0.82μM.A biosensor for the detection of ethanol was further constructed based on a bioelectrode MO-TCBQ-ADH/SWNT/GC utilizing the lipidic cubic phase to co-immobilize TCBQ and ADH on SWNT-modified electrode.The biosensor exhibits a wide linear dynamic range ( from 0.2 to 13 mM ),and low detection limit of 0.05 mM.
     3. A bioelectrode, MO-TB-ADH/GC,was prepared based on lipid cubic phase to co-entrap alcohol dehydrogenase and toluidine blue ( TB ).A bioanode was constructed based on the good electrocatalytic oxidation activity of the prepared bioelectrode toward ethanol.A biocathode,MO-Laccase/GC,was prepared with a similar methode.The electrode with Laccase as biocatalyst to reduce oxygen reduction.A new type of membrane-less ethanol/O2 biofuel cell has been constructed.At room temperature and under oxygen-saturation condition,the biofuel cell was found to have a open potential of 0.38 V and a power output of 0.2μW/cm2 under the work potential of 0.06 V.
引文
[1] F.Renitzer,The history of liquid crystal ,Monatsh.Chem, 1888,9, 421-441.
    [2] O.Lehmann, Simple molecular model for the smectic A phase of liquid crystals,Z.physikal.Chem, 1889,4, 462-472.
    [3] Girma Biresaw and Dianne A. Zadnik, Temperature Effects on the Tribological Properties of Thermotropic Liquid Crystals, Tribology and the Liquid-Crystalline State, 1990,4, 83-90.
    [4] Guoquan Chen and Robert W. Lenz,Liquid crystal polymers: 21.Thermotropic properties and crystallization-induced reactions of aromatic copolyesters,1985,26, 1307-1311.
    [5] Seong Yun Kim, Seong Hun Kim, Seung Hwan Lee, Jae Ryoun Youn,Internal structure and physical properties of thermotropic liquid crystal polymer/poly(ethylene 2,6-naphthalate) composite fibers, Composites: Part A. 2009,40, 607-612.
    [6] Nathan A. Lockwood, Nicholas L. Abbott, Self-assembly of surfactants and phospholipids at interfaces between aqueous phases and thermotropic liquid crystal, Current Opinion in Colloid & Interface Science, 2005,10, 111-120.
    [7] Paul D. Frayer and Paul J. Huspeni, Shrinkage in Parts Molded from Thermotropic Liquid-Crystalline Polymers, Liquid-Crystalline Polymers, 1990, 27, 381-399.
    [8] Guillaume Toquer, Grégoire Porte, Maurizio Nobili, Jacqueline Appell, and Christophe Blanc,Lyotropic Structures in a Thermotropic Liquid Crystal, Langmuir, 2007, 23, 4081-4087.
    [9] Cristina Da Cruz, Olivier Sandre, and Valérie Cabuil, Phase Behavior of Nanoparticles in a Thermotropic Liquid Crystal, J. Phys. Chem. B.2005, 109, 14292-14299.
    [10] Masatoshi Tokita, Shin-ichiro Funaoka, and Junji Watanabe, Study on Smectic Liquid Crystal Glass and Isotropic Liquid Glass Formed by Thermotropic Main-Chain Liquid Crystal Polyester, Macromolecules.2004, 37, 9916-9921.
    [11] Kim Clausen, Joergen Kops, Kirsten Rasmussen, Knud H. Rasmussen, JetteSonne, Thermotropic liquid crystal aromatic/cycloaliphatic polyesters with flexible spacers, Macromolecules, 1987, 20, 2660-2664.
    [12] I. Campoy, C. Marco, M. A. Gomez, J. G. Fatou, Kinetics of three-dimensional ordering in the thermotropic liquid crystal poly(decamethylene-4,4'-diphenoxy terephthalate), Macromolecules, 1992, 25, 4392-4398.
    [13] Hiroyuki Ishida, Fumitaka Horii,Solid-state 13C-NMR analyses of the structure and chain conformation of thermotropic liquid crystalline polyether crystallized from the melt through the liquid crystalline state, Polymer.1999,40, 3781-3786.
    [14] Toshio Itahara,Yukiko Yokogawa,Self-organization of adenine and thymine derivatives in thermotropic liquid crystal, J. Molecular Structure, 2007,827, 95-100.
    [15] D. I. Green, T. L. D. Collins, G. R. Davies and I. M. Wardt,Structure and mechanical properties of a thermotropic liquid crystalline copolyester, Polymer.1997,38,5355-5361.
    [16] Seiji Ujiie, Eri Kurosawa, Masaya Moriyama,Thermotropic liquid crystalline amphiphilic materials with hydrophilic groups at both terminals, Thin Solid Films.2008,517, 1362-1366.
    [17] Glenn H B. Structures and properties of the liquid crystalline state of matter,J.Colloid Interf. Sci.1977,58,534 -548.
    [18] Chandrashekhar V. Kulkarni, Wolfgang Wachter, Guillermo Iglesias-Salto,Sandra Engelskirchen and Silvia Ahualli,Monoolein:A magic lipid?DOI: 10.1039/c0MO01539c.
    [19] J.Borne, T.Nylander, A.Khan, Phase Behavior and Aggregate Formation for the Aqueous Monoolein System Mixed with Sodium Oleate and Oleic Acid,Langmuir. 2001, 17, 7742-7751.
    [20] S. T. Hyde, K. Holmberg,Handbook of Applied Surface and Colloid Chemistry, John Wiley and Sons, Ltd.2001, 16, 299-332.
    [21] J. M. Seddon,R.H.Templer, Handbook of Biological Physics, Elsevier Science B.V., 1995, 1, 97-160.
    [22] M. Clerc, A new symmetry for the packing of amphiphilic direct micelles. J. Phy.II 1996, 6, 961-968.
    [23] Imai, M.; Yoshida, I.; Iwaki, T.; Nakaya, K. Static and dynamic structures of spherical nonionic surfactant micelles during the disorderorder transition. J. Chem. Phys. 2005, 122,4-10.
    [24] Soni, S. S.; Brotons, G.; Bellour, M.; Narayanan, T.; Gibaud, A.Quantitative SAXS analysis of the P123/water/ethanol ternary phase diagram. J. Phys. Chem. B. 2006, 110, 15157-15165.
    [25] Xiangbing Zeng,Yongsong Liu, and Marianne Impe′ror-Clerc,Hexagonal Close Packing of Nonionic Surfactant Micelles in Water,J. Phys. Chem. B. 2007, 111, 5174-5179.
    [26] Andreas S. Poulos, Doru Constantin,Patrick Davidson, Marianne Imperor,Brigitte Pansu, Pierre Panine,Lionel Nicole, and Cle′ment Sanchez, Photochromic Hybrid Organic-Inorganic Liquid-Crystalline Materials Built from Nonionic Surfactants and Polyoxometalates: Elaboration and Structural Study, Langmuir. 2008, 24, 6285-6291.
    [27] Idit Amar-Yuli,Ellen Wachtel,Deborah E. Shalev, Abraham Aserin, and Nissim Garti,Low Viscosity Reversed Hexagonal Mesophases Induced by Hydrophilic Additives, J. Phys. Chem. B. 2008,112,3971-3982.
    [28] Idit Amar-Yuli, Ellen Wachtel, Deborah E. Shalev, Hagai Moshe, Abraham Aserin, and Nissim Garti,Thermally Induced Fluid Reversed Hexagonal (HII) Mesophase, J. Phys. Chem. B 2007,111,13544-13553.
    [29] J. M. Seddon, Structure of the inverted hexagonal (HII) phase,and non-lamellar phase transitions of lipids,Biochim. Biophys. Acta, Rev. Biomembr. 1990,1031, 1-69.
    [30] Gemma C. Shearman, Arwen I. I. Tyler, Nicholas J. Brooks, Richard H. Templer, Oscar Ces,Robert V. Law,and John M. Seddon,A 3-D Hexagonal Inverse Micellar Lyotropic Phase, J. AM. CHEM. SOC. 2009,131,1678-1679.
    [31] V.Luzzati,A.tardieu,T.Gulik-kryzwicki,E.Rivas,F.Reiss Husson,Structure of the Cubic Phases of Lipid–Water Systems,Nature.1968,220,485-488.
    [32] Pawel Rowinski, Magdalena Rowinska, and Adam Heller, Liquid CrystalMembranes for Serum-Compatible Diabetes Management-Assisting Subcutaneously Implanted Amperometric Glucose Sensors, Anal. Chem. 2008,80,1746-1755.
    [33] Valdemaras Razumas , Zita Talaikyt, Justas Barauskas , Yvonne Miezis,Tommy Nylander,An FT-IR study of the effects of distearoylphosphatidylglycerol and cytochrome c on the molecular organization of the monoolein-water cubic liquid-crystalline phase, Vibrational Spectroscopy 1997,15,91-101.
    [34] Tommy Nylander, Charlotte Mattisson, Valdemaras Razumas Yvonne Miezis,Bjrn Hakansson,A study of entrapped enzyme stability and substrate diffusion in a monoglyceride-based cubic liquid crystalline phase, Colloids and Surfaces A: Physicochemical and Engineering Aspects.1996,114, 311-320.
    [35] Valdemaras Razumas, K?re Larsson, Yvonne Miezis, and Tommy Nylander,A Cubic Monoolein-Cytochrome c-Water Phase: X-ray Diffraction, FT-IR, Differential Scanning Calorimetric, and Electrochemical Studies, J. Phys. Chem. 1996,100, 11766-11774.
    [36] Ewa Nazaruk, Renata Bilewicz,Catalytic activity of oxidases hosted in lipidic cubic phases on electrodes, Bioelectrochemistry.2007,71, 8-14.
    [37] Ewa Nazaruk, Kamila Sadowska, Karolina Madrak,Jan F. Biernat,Jerzy Rogalski,Renata Bilewicz, Composite Bioelectrodes Based on Lipidic Cubic Phase with Carbon Nanotube Network, Electroanalysis 2009, 21,507-511.
    [38] Nazaruk, Ewa; Michota, Agnieszka; Bukowska, Jolanta; Shleev, Sergey; Gorton, Lo; Bilewicz, Renata, Properties of native and hydrophobic laccases immobilized in the liquid-crystalline cubic phase on electrodes.Journal of Biological Inorganic Chemistry.2007, 12, 335-344.
    [39] Rowinski, Pawel; Kang, Chan; Shin, Hyosul; Heller, Adam,Mechanical and Chemical Protection of a Wired Enzyme Oxygen Cathode by a Cubic Phase Lyotropic Liquid Crystal. Department of Chemical Engineering, Analytical Chemistry.2007, 79, 1173-1180.
    [40] Rowinski, Pawel; Korytkowska, Agnieszka; Bilewicz, Renata,Diffusion of hydrophilic probes in bicontinuous lipidic cubic phase.Chemistry and Physics ofLipids.2003,124, 147-156.
    [41] Ropers, Marie-Helene; Bilewicz, Renata; Stebe, Marie-Jose; Hamidi, Atimad; Miclo, Andre; Rogalska, Ewa,Fluorinated and hydrogenated cubic phases as matrices for immobilisation of cholesterol oxidase on electrodes.Physical Chemistry Chemical Physics.2001, 3, 240-245.
    [42] Nazaruk Ewa; Bilewicz Renata, Catalytic activity of oxidases hosted in lipidic cubic phases on electrodes. Bioelectrochemistry (Amsterdam, Netherlands) 2007, 71, 8-14.
    [43] Nazaruk Ewa; Michota Agnieszka; Bukowska Jolanta; Shleev Sergey; Gorton Lo; Bilewicz Renata, Properties of native and hydrophobic laccases immobilized in the liquid-crystalline cubic phase on electrodes. Journal of biological inorganic chemistry .2007, 12,335-344.
    [44] Johanna Bender, Marica B. Ericson, Nadia Merclin, Vladimir Iani,Arne Rosen, Sven Engstrom, Johan Moan, ,Lipid cubic phases for improved topical drug delivery in photodynamic therapy, Journal of Controlled Release 106 (2005) 350-360.
    [45] Angelina Angelova, Michel Ollivon,Andrew Campitelli, and Claudie Bourgaux,Lipid Cubic Phases as Stable Nanochannel Network Structures for Protein Biochip Development:X-ray Diffraction Study, Langmuir. 2003, 19, 6928-6935.
    [46] M.Ehud landau and P. Jurg Rosenbusch,Lipidic cubic phases: A novel concept for the crystallization of membrane proteins, Proc. Natl. Acad. Sci. 1996,93, 14532-14535.
    [47] S.T. Hyde and S. Andersson, A systematic net description of saddle polyhedra and periodic minimal surfaces, Z. Kristallogr, 1984,168, 221-254.
    [48] Briggs J, Chung H, Caffrey M: The temperature-composition phase diagram and mesophase structure characterization of the monoolein/water system. J Phys II France 1996, 6,723-751.
    [49] S.T. Hyde, S. Anderson, B. Ericsson, K. Z.Larsson, A cubic structure consisting of a lipid bilayer forming an infinite periodic minimum surface of the gyroid type in the glycerolmonooleat-water system,Kristallogr. 1984,168, 213-219.
    [50] P. Nollert, A. Royant, E. Pebay-Peyroula, E.M. Landau, Detergent-freemembrane protein crystallization,FEBS Lett. 1999, 457, 205-208.
    [51] S. Engstrom, T.P. Norden, H. Nyquist, Cubic phases for studies of drug partition into lipid bilayers,Eur. J. Pharm. Sci. 1999,8, 243-254.
    [52] R. Koynova, M. Caffrey, An index of lipid phase diagrams,Chem. Phys. Lipids. 2002,115, 107-219.
    [53] T. Nylander, C. Mattisson, V.Razumas , Y, Miezis,B. Hfikansson, A study of entrapped enzyme stability and substrate diffusion in a monoglyceride-based cubic liquid crystalline phase,Colloids Surf., A .1996,114, 311-320.
    [54] Francesca Caboi,Johanna Borne, Tommy Nylander,Ali Khan,Allan Svendsen,Shamkant Patkar, Lipase action on a monoolein/sodium oleate aqueous cubic liquid crystalline phase-a NMR and X-ray diffraction study,Colloids and Surfaces B: Biointerfaces. 2002, 26 ,159-171.
    [55] L.B.Lopes et al,Reverse hexagonal phase nanodispersion of monoolein and oleic acid for topical delivery of peptides: in vitro and in vivo skin penetration of cyclosporin A,Pharm. Res.2006, 23, 1332-1342.
    [56] Keisuke Yamada,Jun Yamashita,Hiroaki Todo,Keiko Miyamoto,Satoru Hashimoto , Yoshihiro Tokudome , Fumie Hashimoto and Kenji Sugibayashi,Preparation and Evaluation of Liquid-Crystal Formulations with Skin-permeation-enhancing Abilities for Entrapped Drugs,Journal of Oleo Science 2011,60,31-40.
    [57] Caffrey M, A lipid’s eye view of membrane p rotein crystallization in mesophases,Curr Opin Struct Biol, 2000, 10,486-497.
    [58] Chenyu Guo, Jun Wang, Fengliang Cao, Robert J. Lee, and Guangxi Zhai, Lyotropic liquid crystal systems in drug delivery, Drug Discovery Today,2010,15,1032-1040.
    [59] Amar-Yuli, I. et al. Solubilization of food bioactives within lyotropic liquid crystalline mesophases.Curr. Opin. Colloid Interface Sci. 2009,14, 21-32.
    [60] Dong, Y.D. et al. , Bulk and dispersed aqueous phase behavior of phytantriol: effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure.Langmuir. 2006,22, 9512-9518.
    [61] Dong,Y.D.et al. Impurities in commercial phytantriol significantly alter its lyotropic liquid-crystalline phase behavior. Langmuir. 2008,24, 6998-7003.
    [62] Engstrom S. Cubic phases as drug delivery systems.Polymer Preprint, 1990,31,157-158.
    [63] D.M.Wyatt,D.Dorsehel,A cubic-phase delivery system composed of glyceryl monooleate and water for sus- tained release of water-soluble drugs,Pharmaceutical Teehnology,1992,16,116-130.
    [64] Sadhale Y, Shah J C. Stabilization of insulin against agitation-induced aggregation by the GMO cubic phase gel. International J Pharm,1999,191, 51-64.
    [65] Sadhale Y, Shah J C. Biological activity of insulin in GMO gels and the effect of agitation. Int J Pharm,1999,191,65-74.
    [66] B.Eriesson,P.O.Eriksson J.E. Leoorfht,etal ACS Symp. Ser, 1991, 469: 251-265.
    [67] Luciana B. Lopes, John H. Collett, M. Vitoria L.B. Bentley,Topical delivery of cyclosporin A: an in vitro study using monoolein as a penetration enhancer,European Journal of Pharmaceutics and Biopharmaceutics.2005,60, 25-30.
    [68] Luciana B. Lopes , Joao L.C. Lopes , Dioneia C.R. Oliveira, Jose A. Thomazini ,M. Tereza J. Garcia , Marcia C.A. Fantini, John H. Collett , M. Vitoria L.B. Bentley,Liquid crystalline phases of monoolein and water for topical delivery of cyclosporin A: Characterization and study of in vitro and in vivo delivery, European Journal of Pharmaceutics and Biopharmaceutics.2006, 63,146-155.
    [69] D. Wyatt, D. Dorschel, A cubic-phase delivery system composed of glyceryl monooleate and water for sustained release of water-soluble drugs, Pharm. Technol. 1992, 16 , 116-130.
    [70] P.B. Geraghty, D. Attwood, J.H. Collett,Y. Dandiker, In vitro release of some antimuscarinic drugs from monoolein/ water lyotropic liquid crystalline gels, Pharm. Res. 1996,13,1265–1271.
    [71] T. Norling, P. Landing, S. Engstrom, K. Larsson, N. Krog, S.S. Nissen, Formulation of a drug delivery system based on a mixture of monoglycerides and triglycerides for use in the treatment of peiodontal disease, J. Clin. Periodontol. 1992,19, 687–692.
    [72] E. Esposito, V. Carotta, A. Scabbia, L. Trombelli, P. D’Antona, E. Menegatti, C. Nastruzzi, Comparative analysis of tetracycline-containing dental gels: poloxamer- and monosystems glyceride-based formulations, Int. J. Pharm. 1996,142, 9-23.
    [73] K. Lindell, J. Engblom, M. Jonstroemer, A. Carlsson, S.Engstroem, Influence of a charged phospholipid on the release pattern of timolol maleate from cubic liquid crystalline phases, Prog. Colloid. Polym. Sci.1998,108, 111–118.
    [74] Y. Sadhale, J.C. Shah, Glyceryl monooleate cubic phase gel as chemical stability enhancer of cefazolin and cefuroxime, Pharm. Dev. Tech. 1998,3, 549-556.
    [75] Rowinski P, Korytkowska A, Bilewicz R, Diffusion of hydrophilic probes in bicontinuous lipidic cubic phase, Chem Phys Lip. 2003,124,147-156.
    [76] Martin, C.R., Dollard, K.A,Effect of hydrophobic interactions on the rates of ionic diffusion in Nafion films at electrode surfaces, J. Electroanal. Chem. 1983. 159, 127-135.
    [77] Johan Kostela,Maja Elmgren, Mari Kadi, and Mats Almgren,Redox Activity and Diffusion of Hydrophilic, Hydrophobic, and Amphiphilic Redox Active Molecules in a Bicontinuous Cubic Phase, J. Phys. Chem. B.2005, 109, 5073-5078.
    [78] Razumas V, Kanapieniene J, Nylander T, Engstr?m S, Larsson K , Electrochemical biosensors for glucose, lactate, urea,and creatinine based on enzymes entrapped in a cubic liquid crystalline phase. Anal Chim Acta.1994,289:155-162.
    [79] M.H. Ropers, R. Bilewicz, M.J. Stebe, A. Hamidi,A.Miclo, E.Rogalska, Fluorinated and hydrogenated cubic phases as matrices for immobilisation of cholesterol oxidase on electrodes, Phys. Chem.,Chem. Phys. 2001,3,240-245.
    [80] Rowinski P, Bilewicz R, Stebe M.J, Rogalska E, Electrodes Modified with Monoolein Cubic Phases Hosting Laccases for the Catalytic Reduction of Dioxygen, Anal Chem. 2004,76,283-291.
    [81] Nazaruk E, Bilewicz R, Catalytic activity of oxidases hosted in lipidic cubic phases on electrodes, Bioelectrochemistry,2007, 71,8-14.
    [1] E.J. Eddowes, H.A.O. Hill, A novel method for the investigation of the electrochemistry of metallo proteins: cytochrome c ,J. Chem. Soc., Chem. Commun.1977,p.3154.
    [2] P.Yeh,T.Kuwana, Reversible electrode reaction of cytochrome C,Chem.Lett.1977,6,1145- 1148.
    [3] J. A. Cracknell, K. A. Vincent, F. A. Armstrong, Enzymes as Working or Inspirational Electro- catalysts for Fuel Cells and Electrolysis,Chem. Rev. 2008,108 2439-2461.
    [4] L. Gorton, A. Lindgren, T. Larrson, F.D. Munteanu, T. Ruzgas, I. Gazaryan, Direct electron transfer between heme-containing enzymes and electrodes as basis for thirdgeneration biosensors, Anal. Chim. Acta 1999,400, 91-108.
    [5] N. Hu, Direct electrochemistry of redox proteins or enzymes at various film electrodes and their possible applications in monitoring some pollutants,Pure Appl. Chem. 2001,73,1979-1991.
    [6] J.F. Rusling, Enzyme Bioelectrochemistry in Cast Biomembrane-Like Films,Acc. Chem. Res. 1998,31,363-369.
    [7] A. Heller, Electrical wiring of redox enzymes,Acc. Chem. Res. 23,1990,128-134.
    [8] Y. Zhao, Y. Bi, W. Zhang, Q. Luo, The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2Talanta. 2005,65,489-494.
    [9] X. Han, W. Cheng, Z. Zhang, S. Dong, E. Wang, Direct electron transfer between hemoglobin and a glassy carbon electrode facilitated by lipid-protected gold nanoparticles,Biochim. Biophys. Acta .1556, 2002,273-277.
    [10] Y. Liu, R. Yuan, Y. Chai, D. Tang, J. Dai, X. Zhong, Direct electrochemistry of horseradish peroxidase immobilized on gold colloid/cysteine/nafion-modified platinum disk electrode,Sens. Actuators. B. Chem. 115, 2006,109-115.
    [11] C.A. Paddon, F. Marken, Hemoglobin adsorption into TiO2 phytate multi-layer films:particle size and conductivity effects,Electrochem. Commun. 6, 2004,1249-1253.
    [12] A. Liu, M. Wei, I. Honma, H. Zhou, Direct Electrochemistry of Myoglobin in Titanate Nanotubes Film,Anal. Chem. 77, 2005,8068-8074.
    [13] X. Lu, J. Hu, X. Yao, Z. Wang, J. Li, Composite System Based on Chitosan and Room-Temperature Ionic Liquid:Direct Electrochemistry and Electrocatalysis of Hemoglobin, Bi- omacromolecules 2006,7,975-980.
    [14] A. Safavi, N. Maleki, O. Moradlou, M. Sorouri, Direct electrochemistry of hemoglobin and its electrocatalytic effect based on its direct immobilization on carbon ionic liquid electrode, Electrochem. Commun. 2008,10,420-423.
    [15] G. Li, L. Du, H. Chen, L.Zhang, E. Wang, Direct Electrochemistry and Electrocatalysis of Hemoglobin in Liquid Film Incorporated with Room-Temperature Ionic Liquid, Electroanalysis ,2008,20, 2171-2176.
    [16] Y. Zhang, R. Yan, F. Zhao, B. Zeng, Polyvinyl alcohol–ionic liquid composition for promoting the direct electron transfer and electrocatalysis of hemoglobin,Colloid Surf., B.2009,71,288-292.
    [17] Y. Li, X. Zeng, X. Liu, X. Liu, W. Wei, S. Luo, Direct electrochemistry and electrocatalytic properties of hemoglobin immobilized on a carbon ionic liquid electrode modified with mesoporous molecular sieve MCM-41,Colloids Surf., B. 2010, 79, 241-245.
    [18] J.F. Rusling, A.E.F. Nassar, Enhanced electron transfer for myoglobin in surfactant films on electrodes,J. Am. Chem. Soc. 115,1993,11891-11897.
    [19] J. Yang, N. Hu, Direct electron transfer for hemoglobin in biomembrane-like dimyristoyl phosphatidylcholine films on pyrolytic graphite electrodes,Biosens. Bioelectron. 1999,48, 117-127.
    [20] F. Wang, S. Hu, Direct electron-transfer of myoglobin within a new zwitterionic gemini surfactant film and its analytical application for H2O2 detection,Colloids Surf.,B.2008,63, 262-268.
    [21] M. Li, S. Chen, F. Ni, Y. Wang, L. Wang, Layered double hydroxides functionalized with anionic surfactant:Direct electrochemistry and electrocatalysis of hemoglobin,Electrochimica. Acta.2008,53,7255-7260.
    [22] K. Charradi, C.Forano, V. Prevot, A.B.H. Amara, C. Mousty, Direct Electron Transfer and Enhanced Electrocatalytic Activity of Hemoglobin at Iron-Rich Clay Modified Electrodes,Langmuir 25 (2009) 10376-10383.
    [23] Y. Zhou, N. Hu, Y. Zeng, J.F. Rusling, Heme Protein?Clay Films: Direct Electrochemistry and Electrochemical Catalysis,Langmuir. 2002, 18, 211-219.
    [24] Z. Li, N. Hu, Effect of new O-superfamily conotoxin SO3 on sodium and potassium currents of cultured hippocampal neurons,J. Electroanal. Chem. 2003,558, 155-158.
    [25] S.T. Hyde, S. Anderson, B. Ericsson, K. Z.Larsson, A cubic structure consisting of a lipid bilayer forming an infinite periodic minimum surface of the gyroid type in the glycerolmonooleat-water system,Kristallogr. 1984,168, 213-219.
    [26] P. Nollert, A. Royant, E. Pebay-Peyroula, E.M. Landau, Detergent-free membrane protein crystallization,FEBS Lett. 1999, 457, 205-208.
    [27] S. Engstrom, T.P. Norden, H. Nyquist, Cubic phases for studies of drug partition into lipid bilayers,Eur. J. Pharm. Sci. 1999,8, 243-254.
    [28] R. Koynova, M. Caffrey, An index of lipid phase diagrams,Chem. Phys. Lipids. 2002,115, 107-219.
    [29] T. Nylander, C. Mattisson, V.Razumas , Y, Miezis,B. Hfikansson, A study of entrapped enzyme stability and substrate diffusion in a monoglyceride-based cubic liquid crystalline phase,Colloids Surf., A .1996,114, 311-320.
    [30] V. Razumas, J. Kanapieniené,T. Nylander, S. Engstr?m, K.Larsson, Electrochemical biosensors for glucose,lactate,urea,and creatinine based on enzymes entrapped in a cubic liquid crystalline phase,Anal. Chim. Acta.1994,289, 155-162.
    [31] M.Popers, R. Bilewicz, M. Stébé, A. Hamidi, A. Miclo, E. Rogalska, Phys.Chem.Chem.Phys. 2001,3, p.240.
    [32] P. Rowiński, R. Bilewicz, M.J. Stébé, E. Rogalska, Electrodes Modified with Monoolein Cubic Phases Hosting Laccases for the Catalytic Reduction of Dioxygen,Anal.Chem. 2004,76, 283-291.
    [33] E. Nazaruk, A. Michota, J. Bukowska, S. Shleev, L. Gorton, R. Bilewicz, Properties of native and hydrophobic laccases immobilized in the liquid-crystalline cubic phase on electrodes, J. Biol. Inorg. Chem. 2007,12, 335-344.
    [34] E. Nazaruk, R. Bilewicz, G. Lindblom, B. Lindholm-Sethson, Cubic phases in biosensing systems, Anal. Bioanal. Chem. 2008, 391, 1569-1578.
    [35] P. Rowiński, R. Bilewicz, M.J. Stébé, E. Rogalska, A Concept for Immobilizing Catalytic Complexes on Electrodes: Cubic Phase Layers for Carbon Dioxide Sensing,Anal. Chem. 2002, 74 , 1554-1559.
    [36] P. Rowinski, C. Kang, H. Shin, A. Heller, Mechanical and Chemical Protection of a Wired Enzyme Oxygen Cathode by a Cubic Phase Lyotropic Liquid Crystal,Anal. Chem. 2007,79, 1173-1180.
    [37] E. Nazaruk, K. Sadowska, K. Madrak, J. F. Biernat, J. Rogalsko, R. Bilewicz, Composite Bioelectrodes Based on Lipidic Cubic Phase with Carbon Nanotube Network,Electroanalysis 2009,21, 507-511.
    [38] E. Rogalska,S.Smolinski, M. Swatko-Ossor, G. Ginalska, J. Fiedurek, J. Rogalski, R. Bilewicz, J. Power Sources 2008,183, p.533.
    [39] I. Taniguchi, K. Watanabe, M. Tominaga,F.M. Hawkridge, Direct electron transfer of horse heart myoglobin at an indium oxide electrode,J. Electroanal. Chem. 1992,333, 331-338.
    [40] K. Larsson, Cubic lipid-water phases: structures and biomembrane aspects,J. Phys. Chem. 1989,93, 7304-7314.
    [41] P.O. Eriksson, G. Lindblom, Lipid and water diffusion in bicontinuous cubic phases measured by NMR,Biophys. J. 1993,64, 129-136.
    [42] S.B. Leslie, S. Puvvada, B.R.Ratna, A.S. Rudolph, Biochim. Encapsulation of hemoglobin in a bicontinuous cubic phase lipid,Biophy. Acta. 1996,1285, 246-254.
    [43] K. Larsson, Y. Miezis, T. Nylander, J. Phys. Chem. 1996,100, p.11766.
    [44] J. Kraineva, R.A. Narayanan, E. Kondrashkina, P. Thiyagarajan, R. Winter, Kinetics of Lamellar-to-Cubic and Intercubic Phase Transitions of Pure and Cytochrome c Containing Monoolein Dispersions Monitored by Time-Resolved Small-Angle X-ray Diffraction,Langmuir 2005,21, 3559-3571.
    [45] G. Rummel, A. Hardmeyer, C. Widmer, M.L. Chiu, P. Nollert, K.P. Locher, I. Pedruzzi, E. M. Landau, J.P.Rosenbusch, Lipidic Cubic Phases: New Matrices for the Three-Dimensional Crystallization of Membrane Proteins,J. Struct. Biol. 1998,121, 82-91.
    [46] H. Xu, H. Dai, G. Chen, Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film,Talanta. 2010,81, 334-338.
    [47] J. Feng, J. Xu, H. Chen, Synergistic effect of zirconium phosphate and Au nanoparticles on direct electron transfer of hemoglobin on glassy carbon electrode,J. Electroanal. Chem. 2005,585, 44-50.
    [48] H. Guo, D. Liu, X. Yu, X. Xia, Direct electrochemistry and electrocatalysis of hemoglobin on nanostructured gold colloid-silk fibroin modified glassy carbon electrode,Sens. Actuators. B. Chem. 2009,139, 598-603.
    [49] E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems,J. Electroanal. Chem. 1979,101, 19-28.
    [50] E. Laviron, L. Roullier, General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules. Applications to modified electrodes,J. Electroanal. Chem. 1980, 115, 65-74.
    [51] N. Jia, Y. Wen, G. Yang, Q. Lian, C. Xu, H. Shen, Direct electrochemistry and enzymatic activity of hemoglobin immobilized in ordered mesoporous titanium oxide matrix,Electrochem. Commun. 2008,10, 774-777.
    [52] L. Chen, G. Lu, Computational Methods for Multiphase Flows in Porous Media,J. Electroanal. Chem. 2006,597, 51-56.
    [53] A . J . Bard, L . R . Faulkner, Electrochemical Methods:Fundamentals and Applications ( John Wiley and Sons, NewYork , 2001 ) .
    [54] C.H.Wang, C. Yang, Y.Y.Song, W.Gao, X.H.Xia, Adsorption and Direct Electron Transfer from Hemoglobin into a Three-Dimensionally Ordered Macroporous Gold Film,Adv. Funct. Mater. 2005,15, 1267-1275.
    [55] H.Yao, N. Li, J.Z.Xu, J.J.Zhu, Direct electrochemistry and electrocatalysis of hemoglobin in gelatine film modified glassy carbon electrode,Talanta. 2007,71, 550-554.
    [56] W. Zheng, Y.F. Zheng, K.W. Jin, N. Wang, Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films,Talanta. 2008,74, 1414-1419.
    [57] J. You, W. Ding, S. Ding, H. Ju, Direct Electrochemistry of Hemoglobin Immobilized on Colloidal Gold-Hydroxyapatite Nanocomposite for Electrocatalytic Detection of Hydrogen Peroxide,Electroanalysis. 2009,21, 190-195.
    [58] B. Wang, S.Dong, Sol–gel-derived amperometric biosensor for hydrogenperoxide based on methylene green incorporated in Nafion film,Talanta . 2000,51, 565-572.
    [59] P. Pandey, S. Upadhyay, I. Tiwari, V. Tripathi, An ormosil-based peroxide biosensor and a comparative study on direct electron transport from horseradish peroxidase,Sens. Actuators B. Chem. 2001,72, 224-232.
    [60] C. Lei, J. Deng, Hydrogen Peroxide Sensor Based on Coimmobilized Methylene Green and Horseradish Peroxidase in the Same Montmorillonite-Modified Bovine Serum Albumin?Glutaraldehyde Matrix on a Glassy Carbon Electrode Surface,Anal. Chem. 1996,68, 3344-3349.
    [61] A.K.M. Kafi, D. Lee, S.Park, Y. Kwon, Amperometric biosensor based on direct electrochemistry of hemoglobin in poly-allylamine (PAA) film,Thin. Solid. Films 2007,515, 5179-5183.
    [62] Y. Wen, X. Yang, G. Hu, S. Chen, N. Jia, Direct electrochemistry and biocatalytic activity of hemoglobin entrapped into gellan gum and room temperature ionic liquid composite system, Electrochim. Acta. 2008,54, 744-748.
    [63] Z. Dai, S. Liu, H. Ju, H. Chen, Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix,Biosens. Bioelectron. 2004,19, 861-867.
    [64] X. Han, W. Huang, J. Jia, S. Dong, E. Wang, Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and its catalysis to H2O2,Biosens. Bioelectron. 2002,17, 741-746.
    [65] S. Liu, Z. Dai, H. Chen, H. Ju, Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor,Biosens. Bioelectron. 2004, 19, 963-969.
    [66] Q. Lu, S. Hu, Studies on direct electron transfer and biocatalytic properties of hemoglobin in polytetrafluoroethylene film,Chem. Phys. Lett. 2006,424, 167-171.
    [67] F. Jian, Y. Qiao, R. Zhuang, Direct electrochemistry of hemoglobin in TATP film:Application in biological sensor,Sens. Actuators. B. Chem. 2007,124, 413-420.
    [68] R.A. Kamin, G.S. Willson, Rotating ring-disk enzyme electrode for biocatalysiskinetic studies and characterization of the immobilized enzyme layer,Anal.Chem. 1980,52, 1198-1205.
    [69] C.Cai, C.Chen, Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode,Anal.Biochem. 2004,325, 285-292.
    [70] C.H.Fan,H.Y.Wang,S.Sun,D, Electron-Transfer Reactivity and Enzymatic Activity of Hemoglobin in a SP Sephadex Membrane,Anal.Chem. 2001,73, 2850-2854.
    [1].N.G.patel,S.Meier,K.Cammann,G.C.Chemnitius,Screen-printed biosensors using different alcohol oxidases,Sensors and Actuators B.2001,75, 101-110.
    [2]. Antonio S. Santos, Renato S. Freire, Lauro T. Kubota, Highly stable amperometric biosensor for ethanol based on Meldola’s blue adsorbed on silica gel modified with niobium oxide, Journal of Electroanalytical Chemistry. 2003,547, 135-142.
    [3].M.Nanjo,G.G.Guilbault,Amperometric determination of alcohol,aldehydes and carboxylic acids with an immobilized alcohol oxidase enzyme electrode,Analytica Chimica Acta. 1975,75, 169-180.
    [4]. Je-Kyun Park, Hee-Jin Yee,Sung-Tae Kim, Amperometric biosensor for determination of ethanol vapor, Biosensors Bioelectronics.1995,10, 587-594.
    [5]. M. Jesus Lobo, Arturo J. Mirundu and Paulino Tulidn,A Comparative Study of some Phenoxazine and Phenothiazine Modified Carbon Paste Electrodes for Ethanol Determination, Electroanalysis. 1996,8, 591.
    [6]. Erol Akyilmaz, Erhan Dinckaya, A mushroom (Agaricus bisporus) tissue homogenate based alcohol oxidase electrode for alcohol determination in serum, Talanta. 2000,53,505-509.
    [7]. A. Guzman-Vázquez de Prada, N. Pe?a, C. Parrado, A.J. Reviejo, J.M. Pingarrón, Amperometric multidetection with composite enzyme electrodes, Talanta. 2004,62,896-903.
    [8]. Peng Luo,Yi Liu,Guoming Xie,Xingliang Xiong,Shixiong Deng, Fangzhou Song, Determination of serum alcohol using a disposable biosensor, Forensic Science International.179,2008,192-198.
    [9]. Erol Akyilmaz, Erhan Dinckaya, An amperometric microbial biosensor development based on Candida tropicalis yeast cells for sensitive determination of ethanol, Biosensors and Bioelectronics. 2005,20, 1263-1269.
    [10]. Mohammed Boujtita, John P. Hart, Robin Pittson, Development of a disposable ethanol biosensor based on a chemically modified screen-printed electrode coated with alcohol oxidase for the analysis of beer, Biosensors Bioelectronics. 2000,15, 257–263.
    [11]. Jaime Castillo, Szilveszter Gaspar, Ivan Sakharov, Elisabeth Csoregi, Bienzyme biosensors for glucose, ethanol and putrescine built onoxidase and sweet potato peroxidase, Biosensors and Bioelectronics2003, 18,705-714.
    [12]. George G. Gullbault,Bengt Danlelsson, Carl Frederlk Mandenlus, and Klaus Mosbach, Enzyme Electrode and Thermistor Probes for Determination of Alcohols with Alcohol Oxidase, Anal. Chem. 1983, 55, 1582-1585.
    [13].A.Morales,F.Cespedes,E.Martinez-Fabregas and S.Alegret,Ethanol amperometric biosensor based on an alcohol oxidase-graphite-polymer biocomposite,Electrochimica Acta, 1998,43,3575 -3579.
    [14]. Katrin Svensson, Leif B¨ulow, Dario Kriz, Margareta Krook, Investigation and evaluation of a method for determination of ethanol with the SIRE Biosensor P100, using alcohol dehydrogenase as recognition element, Biosensors and Bioelectronics.2005,21,705-711.
    [15]. C. Retna Raj, S. Behera,Mediatorless voltammetric oxidation of NADH and sensing of ethanol, Biosensors and Bioelectronics.2005,21,949-956.
    [16].Han Nim Choi, Young-Ku Lyu, Jee Hoon Han, Won-Yong Lee,Amperometric Ethanol Biosensor Based on Carbon Nanotubes Dispersed in Sol-Gel-Derived Titania-Nafion Composite Film, Electroanalysis.2007,19,1524-1530.
    [17].Chen-An Lee, Yu-Chen Tsai,Preparation of multiwalled carbonnanotube-chitosan-alcohol dehydrogenase nanobiocomposite for amperometric detection of ethanol, Sensors and Actuators B 2009,138,518-523.
    [18].Bogdan Bucur,Gabriel Lucian Radu,Constantin Nicolae Toader, Analysis of methanol–ethanol mixtures from falsified beverages using a dual biosensors amperometric system based on alcohol dehydrogenase and alcohol oxidase, Eur Food Res Technol.2008, 226,1335-1342.
    [19] R. Antiochia, I. Lavagnini, Alcohol Biosensor Based on the Immobilization of Meldola Blue and Alcohol Dehydrogenase into a Carbon Nanotube Paste Electrode,Anal. Lett. 2006,39,1643-1655.
    [20]J.Razumiené,V.Gurevi?iené,V.Laurinavi?ius,J.V.Gra?ulevi?ius,Amperometric detection of glucose and ethanol in beverages using flow cell and immobilised on screen-printed carbon electrode PQQ-dependent glucose or alcohol dehydrogenases, Sensors and Actuators B.2001, 78 ,243-248.
    [21] Beatriu Prieto-Simón, Esteve Fàbregas,Comparative study of electron mediators used in the electrochemical oxidation of NADH, Biosensors and Bioelectronics.2004,19,1131-1138.
    [22] Ioanis Katakis and Elena Domlnguez, Catalytic Electrooxidation of NADH for Dehydrogenase, Mikrochim. Acta.1997,126, 11-32.
    [23] Miller L L, Valentine J R. On the Electron-Proton-Electron Mechanism for 1-Benzyl-1,4- dihydronicotinamide Oxidations,J . Am . Chem. Soc, 1988,110,3982-3989
    [24] Barry J. Brock2and Michael H. Gold1,4-Benzoquinone Reductase from the Basidiomycete Phanerochaete chrysosporium: Spectral and Kinetic Analysis, ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS,1996,331,31-40
    [25] Jovita A. Marcinkeviciene and John S . Blanchard,Quinone Reductase Reaction Catalyzed by Streptococcus faecalis NADH Peroxidase, Biochemistry 1995,34, 6621 -6627.
    [26] Takao Yagi, Koyu Hon-nami,f and Tomoko Ohnishi, Purification and Characterization of Two Types of NADH-Quinone Reductase from Thermus thermophilus HB-8, J . Am . Chem. Soc 1988,27,2008-2013.
    [27] Arkady A. Karyakin, Oksana A. Bobrova, Elena E. Karyakina,Electroreduction of NAD+ to enzymatically active NADH at poly(neutral red) modified electrodes, Journal of Electroanalytical Chemisty. 1995,399,179-184.
    [28] C.X. Cai, K.-H. Xue,Electrocatalysis of NADH oxidation with electropolymerized films of nile blue A, Analytica Chimica Acta.1997, 343,69-77.
    [29] A. Silber, N. Hampp, W. Schuhmann,Poly(methylene blue)-modified thick-film gold electrodes for the electrocatalytic oxidation of NADH and their application in glucose biosensors, Biosensors and Bioelectronics, 1996,11,215-223.
    [30] O.Gorton, Elena Dominguez,Electrocatalytic oxidation of NAD(P)H atmediator-modified electrodes, Reviews in Molecular Biotechnology. 2002,82, 371-392.
    [31] Gabriele Rummel, Ariane Hardmeyer, Christine Widmer, Mark L. Chiu, Peter Nollert, Kaspar P. Locher,Ivo Pedruzzi, Ehud M. Landau,1 and Jurg P. Rosenbusch, Lipidic Cubic Phases: New Matrices for the Three-DimensionalCrystallization of Membrane Proteins, Journal of structural biology.1998, 121, 82-91.
    [32] Renata Bilewicz, Pawel Rowiński, Ewa Rogalska, Modified electrodes based on lipidic cubic phases, Bioelectrochemistry.2005, 66,3- 8.
    [33] Iijima S.Helical microtubules of graphitic carbon,Nature,1991,354,56-63
    [34] Joseph Wang and Mustafa Musameh, Carbon Nanotube/Teflon Composite Electrochemical Sensors and Biosensors, Anal. Chem. 2003, 75, 2075-2079.
    [35] Maogen Zhang and Waldemar Gorski, Electrochemical Sensing Based on Redox Mediation at Carbon Nanotubes, Anal. Chem. 2005, 77, 3960-3965.
    [36] Liande Zhu, Jiangli Zhai, Ruilan Yang, Chunyuan Tian, Liping Guo, Electrocatalytic oxidation of NADH with Meldola’s blue functionalized carbon nanotubes electrodes, Biosensors and Bioelectronics.2007, 22,2768-2773.
    [37] K. Larsson, Cubic lipid-water phases: structures and biomembrane aspects,J. Phys. Chem. 1989,93, 7304-7314.
    [38] P.O. Eriksson, G. Lindblom, Lipid and water diffusion in bicontinuous cubic phases measured by NMR,Biophys. J. 1993,64, 129-136.
    [39] S.B. Leslie, S. Puvvada, B.R.Ratna, A.S. Rudolph, Biochim. Encapsulation of hemoglobin in a bicontinuous cubic phase lipid,Biophy. Acta. 1996,1285, 246-254.
    [40] K. Larsson, Y. Miezis, T. Nylander, J. Phys. Chem. 1996,100, p.11766.
    [41] J. Kraineva, R.A. Narayanan, E. Kondrashkina, P. Thiyagarajan, R. Winter, Kinetics of Lamellar-to-Cubic and Intercubic Phase Transitions of Pure and Cytochrome c Containing Monoolein Dispersions Monitored by Time-Resolved Small-Angle X-ray Diffraction,Langmuir 2005,21, 3559-3571.
    [42] G. Rummel, A. Hardmeyer, C. Widmer, M.L. Chiu, P. Nollert, K.P. Locher, I. Pedruzzi, E. M. Landau, J.P.Rosenbusch, Lipidic Cubic Phases: New Matrices for the Three-Dimensional Crystallization of Membrane Proteins,J. Struct. Biol. 1998,121, 82-91.
    [43] Mustafa Musameh,Joseph Wang,Arben Merkoci,Yuehe Lin, Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes, Electrochemistry Communications,2002, 4,743-746.
    [44] Rita de C′assia Silva Luza,, Flavio Santos Damos, Auro Atsushi Tanaka,Lauro Tatsuo Kubota, Yoshitaka Gushikem,Electrocatalytic activity of 2,3,5,6-tetrachloro-1,4-benzoquinone/ multi-walled carbon nanotubes immobilized on edge plane pyrolytic graphite electrode for NADH oxidation, Electrochimica Acta.2008, 53, 4706-4714.
    [45] Je-Kyun Park, Hee-Jin Yee, Kang Shin Lee, Won-Yong Lee, Min-Chol Shin,Tae-Han Kim, Seung-Ryeol Kim, Determination of breath alcohol using a differential-type amperometric biosensor based on alcohol dehydrogenase, Analytica Chimica Acta. 1999,390, 83-91.
    [46] R.A. Kamin, G.S. Willson, Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer,Anal.Chem. 1980,52, 1198-1205.
    [47] Chen-Xin Cai , Kuan-Hong Xue, Yi-Ming Zhou, Hui Yang, Amperometric biosensor for ethanol based on immobilization of alcohol dehydrogenase on a nickel hexacyanoferrate modified microband gold electrode, Talanta. 1997,44, 339-347.
    [48] Pan Du, Shuna Liu, Ping Wu, Chenxin Cai, Single-walled carbon nanotubes functionalized with poly(nile blue A) and their application to dehydrogenase-based biosensors, Electrochimica Acta. 2007,53, 1811-1823.
    [49] Dong-Wei Yang, Hui-Hong Liu, Poly(brilliant cresyl blue)-carbonnanotube modified electrodes for determination of NADH and fabrication of ethanol dehydrogenase-based biosensor, Biosensors and Bioelectronics.2009,25, 733-738.
    [50] Aihua Liu, Takashi Watanabe, Itaru Honma, Jin Wang, Haoshen Zhoua, Effect of solution pH and ionic strength on the stability of poly(acrylic acid)-encapsulated multiwalled carbon nanotubes aqueous dispersion and its application for NADH sensor, Biosensors and Bioelectronics. 2006,22, 694-699.
    [51] Maogen Zhang, Audrey Smith and Waldemar Gorski, Carbon Nanotube-Chitosan System for Electrochemical Sensing Based on Dehydrogenase Enzymes, Anal. Chem. 2004, 76, 5045-5050.
    [52] Francisco de Assis dos Santos Silva, Cleylton Bezerra Lopes, Erivaldo de Oliveira Costa,Phabyanno Rodrigues Lima, Lauro Tatsuo Kubota, Marília Oliveira Fonseca Goulart, Poly-xanthurenic acid as an efficient mediator for the electrocatalytic oxidation of NADH, Electrochemistry Communications.2010,12, 450-454.
    [53] Zhihui Dai, Guofei Lu, Jianchun Bao, Xiaohua Huang, Huangxian Ju,Low Potential Detection of NADH at Titanium-Containing MCM-41 Modified GlassyCarbon Electrode, Electroanalysis. 2007,19, 604 -607.
    [54] Ying Wang ,Chunping You , Song Zhang , Jilie Kong ,Jean-Louis Marty ,Dongyuan Zhao , Baohong Liu,Electrocatalytic oxidation of NADH at mesoporous carbon modified electrodes, Microchim Acta. 2009,167,75-79.
    [55] Ming Zhou, Li Shang, Bingling Li, Lijian Huang, Shaojun Dong, The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes, Electrochemistry Communications. 2008, 10, 859-863.
    [56] Ming Zhou, Yueming Zhai, and Shaojun Dong, Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide,Anal. Chem.2009, 81, 5603–5613.
    [57] Shuna Liu, Chenxin Cai, Immobilization and characterization of alcohol dehydrogenase on single-walled carbon nanotubes and its application in sensing ethanol, Journal of Electroanalytical Chemistry. 2007,602, 103-114.
    [58] Yu-Chen Tsai, Jing-Dae Huang, Chian-Cheng Chiu, Amperometric ethanol biosensor based on poly(vinyl alcohol)–multiwalled carbon nanotube–alcohol dehydrogenase biocomposite, Biosensors and Bioelectronics. 2007,22, 3051-3056.
    [1] F. Gao, L.Viry, M.Maugey, P.Poulin, N.Mano,Engineering Hybrid Nanotube Wires for High Power Biofuel Cells. Nature Communications, 2010, DOI: 10.1038/ncomms1000.
    [2] F. Gao, Y. Yan , L. Su , L. Wang , L. Mao. An enzymatic glucose/O2 biofuel cell: Preparation, characterization and performance in serum. Electrochemistry Communications, 2007, 9, 989-996.
    [3] S.D. Minteer, B.Y. Liaw, M.J. Cooney, Enzyme-based biofuel cells, Current Opinion in Biotechnology , 2007,18, 228-234.
    [4] Yongki Choi, GangWang, Munir H. Nayfeh, Siu-Tung Yau, A hybrid biofuel cell based on electrooxidation of glucose using ultra-small silicon nanoparticles, Biosens. Bioelectron. 2009,24, 3103-3107.
    [5] F. Davis, S.P.J. Higson, Biofuel cells-recent advances and applications, Biosens. Bioelectron. 2007,22, 1224-1235.
    [6] Arunas Ramanavicius, Asta Kausaite, Almira Ramanaviciene,Enzymatic biofuel cell based on anode and cathode powered by ethanol,Biosens. Bioelectron, 2008,24, 761-766.
    [7] M. J. Cooney,V. Svoboda, C. Lau,G. Martina and S. D. Minteer, Enzyme catalysed biofuel cells, Energy Environ. Sci., 2008, 1, 320-337.
    [8] Nick L. Akers, Christine M. Moore, Shelley D. Minteer,Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafionmembranes to immobilize dehydrogenase enzymes, Electrochimica Acta.2005,50, 2521-2525.
    [9] Farhana S. Saleh, Lanqun Mao, Takeo Ohsaka,Development of a dehydrogenase-based glucose anode using a molecular assembly composed of nile blue and functionalized SWCNTs and its applications to a glucose sensor and glucose/O2 biofuel cell, Sensors and Actuators B. 2011,152, 130-135.
    [10] Hideki Sakai,Takaaki Nakagawa,Yuichi Tokita,Tsuyonobu Hatazawa,Tokuji Ikeda, Seiya Tsujimura and Kenji Kano,A high-power glucose/oxygen biofuel cell operating under quiescent conditions, Energy Environ. Sci., 2009, 2, 133-138.
    [11] S.C. Barton, J. Gallaway and P. Atanassov, Enzymatic biofuel cells for implantable and microscale devices, Chem. Rev., 2004,104, 4867-4886.
    [12] Vasile Coman, Cristina Vaz-Dom? nguez, Roland Ludwig,Wolfgang Harreither, Dietmar Haltrich,Antonio L. De Lacey,Tautgirdas Ruzgas,Lo Gorton and Sergey Shleev, A membrane-, mediator-, cofactor-less glucose/oxygen biofuel cell, Phys. Chem. Chem. Phys., 2008, 10, 6093-6096.
    [13] Fabien Giroud, Chantal Gondran, Karine Gorgy, Aymeric Pellissie, Francois Lenouvel,Philippe Cinquin, Serge Cosnier,A quinhydrone biofuel cell based on an enzyme-induced pH gradient, Journal of Power Sources. 2011,196,1329-1332.
    [14] Jin Young Lee, Hyun Yong Shin, Seong Woo Kang, Chulhwan Park, Seung Wook Kim, Application of an enzyme-based biofuel cell containing a bioelectrode modified with deoxyribonucleic acid-wrapped single-walled carbon nanotubes to serum, Enzyme and Microbial Technology. 48,2011,80-84.
    [15] A. Heller, Potentially implantable miniature batteries,Anal. Bioanal. Chem.2006,385, 469-473.
    [16] J.C. Biffinger, R. Ray, B. Little, B.R. Ringeisen, Diversifying biological fuel cell designs by use of nanoporous filters. Environ. Sci. Technol. 2007,41, 1444-1449.
    [17] C.M. Moore, N.L. Akers, A.D. Hill, Z.C. Johnson and S.D. Minteer, Improving the environm- ent for immobilized dehydrogenase enzymes by modifying Nafion with tetraalkylammonium bromides, Biomacromolecules.2004,5, 1241-1247.
    [18] S.T. Hyde, S. Anderson, B. Ericsson, K. Z.Larsson, A cubic structure consistingof a lipid bilayer forming an infinite periodic minimum surface of the gyroid type in the glycerolmonooleat-water system,Kristallogr. 1984,168, 213-219.
    [19] P. Nollert, A. Royant, E. Pebay-Peyroula, E.M. Landau, Detergent-free membrane protein crystallization,FEBS Lett. 1999, 457, 205-208.
    [20] S. Engstrom, T.P. Norden, H. Nyquist, Cubic phases for studies of drug partition into lipid bilayers,Eur. J. Pharm. Sci. 1999,8, 243-254.
    [21] R. Koynova, M. Caffrey, An index of lipid phase diagrams,Chem. Phys. Lipids. 2002,115, 107-219.
    [22] T. Nylander, C. Mattisson, V.Razumas , Y, Miezis,B. Hfikansson, A study of entrapped enzyme stability and substrate diffusion in a monoglyceride-based cubic liquid crystalline phase,Colloids Surf., A .1996,114, 311-320.
    [23] Faming Tian, Guoyi Zhu,Toluidine blue modified self-assembled silica gel coated gold electrode as biosensor for NADH,Sensors and Actuators B: Chemical, Volume 97, Issue 1, 1 January 2004, Pages 103-108.
    [24] I. Willner, Y.-M. Yan, B. Willner, R. Tel-Vered,,Integrated Enzyme-Based Biofuel Cells-A Review, Fuel Cells. 2009,9, 7-24.
    [25] L. Brunel, J. Denele, K. Servat, K.B. Kokoh, C. Jolivalt, C. Innocent, M. Cretin, M.Rolland, S. Tingry, Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell, Electrochem. Commun. 2007,9, 331-336.
    [26] A. Habrioux, G. Merle, K. Servat, K.B. Kokoh, C. Innocent, M. Cretin, S. Tingry,Concentric glucose/O2 biofuel cell, J.Electroanal. Chem. 2008,622, 97-102.
    [27] L. Deng, L. Shang, Y. Wang, T. Wang, H. Chen, S. Dong, Multilayer structured carbon nanotubes/poly-L-lysine/laccase composite cathode for glucose/O2 biofuel cell, Electrochem. Commun. 2008,10, 1012-1015.
    [28] E. Nazaruk, S. Smolinski, M. Swatko-Ossor, G. Ginalska, Enzymatic biofuel cell based on electrodes modified with lipid liquid-crystalline cubic phases,J. Power Sources.2008,183,533-538.
    [29] S. Boland, P. Jenkins, P. Kavangh, D. Leech,,Biocatalytic fuel cells: A comparison of surface pre-treatments for anchoring biocatalytic redox films on electrode surfaces, J. Electroanal. Chem. 626,2009,111-115.
    [30] Y. Tan, W. Deng, B. Ge, Q. Xie, J. Huang, S. Yao,,Biofuel cell and phenolic biosensor based on acid-resistant laccase–glutaraldehyde functionalized chitosan–multiwalled carbon nanotubes nanocomposite film, Biosens. Bioelectron. 2009,24, 2225-2231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700