用户名: 密码: 验证码:
淮河上游洪河流域水环境污染源强解析及防治技术应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淮河是我国水污染控制的重点之一,洪河作为淮河上游最大的支流,日益严重的水污染已成为该流域可持续发展的制约因素。结合洪河流域实际情况和水文水质监测数据,本文对洪河水质进行了多因子综合评价,并对主要污染因子的时空分布特征进行了分析,综合考虑点源污染和非点源污染,分别采用输出系数法、模型模拟法、径流分割法和降雨差值法计算了污染源强,明确其主要来源和构成比例,确定点源和非点源污染优先控制单元及应用技术,有针对性的提出洪河流域水污染防治措施,主要包括点源印染废水和医药废水的高级氧化技术的小试试验和非点源分散式污水处理技术的实际推广应用。因此,本文对控制洪河流域污染,改善生态环境和实现该地区经济和环境协调发展具有重要的理论价值和现实意义。论文的主要内容和取得的成果如下:
     (1)通过对洪河流域出境断面水质常规指标、有机指标和重金属指标的分析,评价了河流水质现状,筛选出该流域水质常规污染主要因子为COD、NH3-N和TN;根据沉积物质量标准对有机指标中的有机氯农药(OCPs)和多环芳烃(PAHs)进行潜在环境风险评价,结果显示洪河流域受六六六(HCHs)和PAHs的污染尚不严重,但滴滴涕(DDTs)存在偶尔发生的负面生态效应,可能会对生态环境造成危害;表层沉积物中Cd、Fe、Zn, Pb、Cu、Cr、Ni和Mn八种重金属潜在生态危害指数为32,属轻度生态危害。通过对洪河流域主要污染因子的时空分布特征分析,发现点源和非点源污染物的汇入,导致了洪河水质恶化较为严重。
     (2)采用输出系数法、模型模拟法、径流分割法和降雨差值法对洪河流域点源和非点源污染源强进行了核算,确定了点源和非点源污染优先控制单元及应用技术。点源污染中,污染物排放量较大的河段为练江河、红淑河和奎旺河,三条河流COD入河量占流域总入河量的52.5%,氨氮入河量占流域总入河量的51.6%,其中,练江河COD和氨氮入河量分别占流域总入河量的28.3%和34%,是该流域点源污染控制的重中之重,而练江河水质较差的最直接原因就是其接纳的废水主要是洪河流域两大支柱行业排放的印染废水和医药废水,防治措施应重点关注高级氧化技术的应用。非点源污染中,污染源强从产生到入河可削减COD33.7%,氨氮45.5%,从入河到流域输出可削减COD30.9%,氨氮41.5%,污染物排放量较大的河段为洪河干流和汝河干流,应重点关注分散式污水包括农村生活污水和畜禽散养废水处理技术的推广应用。
     (3)单过氧硫酸氢盐化合物(Oxone)虽可以有效降解染料废水,但用于产生硫酸根自由基的催化剂和紫外线会导致处理费用较高并易产生二次污染,鉴于印染废水在洪河流域水体中的污染贡献,本文研究了在不用催化剂、用自然光代替紫外线条件下用过一硫酸氢钾产生的硫酸根自由基脱色甲基橙溶液,同时研究了干扰因素包括反应条件(反应试剂的量、初始浓度、初始pH)、水体中共存物质(腐殖酸、硝酸根和金属离子如Cu2+, Fe3+,Mn2+)对降解率的影响。结果表明Oxone/自然光系统可有效降解甲基橙溶液,当初始浓度为100mg/L时,采用析因设计方法选择出最佳操作条件pH为6.04, Oxone浓度为3mmol/L,反应时间为30min,在上述条件下脱色效率可达96.4%。水体中可能广泛存在的共存物质如金属离子、腐殖酸、硝酸根不会影响脱色效率;CH3OH、叔丁醇和H2O2加入的结果显示脱色的主要活性基团是硫酸根自由基;该技术与超声技术联用可显著加速脱色缩短反应时间。
     (4)考虑到医药废水在洪河流域水体中的污染贡献,以双氯芬酸溶液为研究对象,考察了伽马辐照技术处理废水时的降解机理,研究了干扰因素对辐照降解的影响。结果显示伽马辐照技术可有效降解双氯芬酸溶液,降解率随辐照剂量的增加而增加,随初始浓度的增高而降低,并且酸性条件下的降解率高于中性和碱性条件;H2O2、CH3OH和硫脲加入后降解率的变化说明降解主要是通过羟基自由基的氧化作用和水合电子、氢原子的还原作用;自然水体中广泛存在的腐殖酸和硝酸根不会明显影响降解率;中间产物结构的分析结果显示降解途径主要是通过羟基自由基、水合电子和氢原子与目标分子发生反应引起的。
     (5)分散式污水包括农村生活污水和畜禽散养废水已成为洪河流域的主要污染源之一。对于分散式污水集中收集处理受到限制的地区,推广分散式污水处理技术成为解决该类地区水污染问题的可行途径。考虑到洪河流域小规模的生活污水流量和有机负荷波动变化较大,结合对分散式污水处理设施后期运行维护简单或无需维护、日常运行费用低的要求,本研究选择了适合当地的四种分散式污水处理工艺:复合塔式生物滤池技术、人工湿地技术,生态渗透坝技术和毛细管渗滤沟技术在洪河流域进行了技术改进并进行了实际推广应用,共建设了15个复合塔式生物滤池项目,1个人工湿地项目,1个生态渗透坝项目和1个毛细管渗滤沟项目,系统出水COD、NH3-N和TN全年可稳定达到《城镇污水处理厂污染物排放标准》(GB18918-2002)中规定的一级B标准。
Huaihe river basin is in priority for water pollution control in China. As the biggest tributary in upper reach of the Huaihe River, increasingly serious water pollution of Hong River has become the factor obstructing sustainable development of the watershed. Based on the watershed's conditions as well as its hydrological and water quality observations, this research conducted a multi-factor evaluation of the river's water quality, and analyzed the spatial and temporal characteristics of the pollutants. In addition, the pollutant load from point sources and non-point sources were estimated using four methods:export coefficient, model simulation, run-off division and rainfall-deduction. The estimates were used to identify major pollution sources and their contributions, and determine the order of priority for point and non-point source pollution control, and the suitable technologies. According to these analyses, Hong River watershed control measures were put forward, which include the pilot test of treating dyeing and pharmaceutical wastewater' using advanced oxidation and the application of decentralized sewage treatment technologies. Hence, this study is of both theoretical and practical importance to Hong River watershed pollution control, the improvement of the watershed's ecological environment, and the harmony between the region's environment and economic development. The main findings of the dissertation include:
     (1) Based on the analysis of the observations of the concentrations of conventional contaminants, organic contaminants and heavy metals at the outlet of Hong River watershed, the research evaluated the water quality conditions of the river and identified the primary pollutants to be COD, NH3-N, and TN. As for organic contaminants, potential environmental risk of OCPs and PAHs was evaluated based on sediment quality guidelines. Results show that HCHs and PAHs levels are at relatively safe levels, while the DDT residues could pose adverse biological effect occasionally. Potential Ecological Risk Index of eight heavy metals (Cd、Fe、 Zn、Pb、Cu、Cr、Ni and Mn) in surface sediments was calculated to be32, indicating a lower probability of adverse ecological effects. Based on the spatial and temporal characteristics of the main pollutants, it can be concluded that the deterioration of water quality is due to PSP and NSP.
     (2) Four methods (export coefficient, model simulation, run-off division and rainfall-deduction) were used to estimate the pollutant load from point and non-point sources. Priority control units and technologies were identified in Hong River watershed. For PSP, Lianjiang River, Hongshu River and Kuiwang River are the three tributaries with the largest amount of pollutant load, accounting for52.5%of COD load and51.6%of NH3-N load. In particular, the COD and NH3-N load of Lianjiang River accounts for28.3%and34%of the total, respectively. The two major pollution sources of the Lianjiang River are dyeing and pharmaceutical industries. The emphasis should be put on the application of advanced oxidation technology. For NSP, pollution load can be cut to33.7%for COD and45.5%for NH3-N from generation to inlet, while can be cut to30.9%for COD and41.5%for NH3-N from inlet to outlet. Mainstream of Hong River and Ru River are the bigger NSP emission units. The emphasis should be put on the application of decentralized sewage including rural domestic and livestock sewage treatment technologies.
     (3) Oxone has proved to be a suitable oxidant for the decomposition of dyes wastewater, but the reliance on catalyst and ultraviolet radiation makes the oxone process costly and liable to cause secondary environmental pollution. In view of the pollutant load from dyeing industries in the Hong River watershed, this study evaluated the performance of oxone for MO decolorization in the absence of catalyst and under natural sunlight conditions. The impacts of a variety of operation conditions (such as dosage of reagent, initial concentration, and initial pH) and coexisting substances (humic acid, NO3-,metal ions such as Cu2+, Fe3+, and Mn2+) on oxone's decolorization performance have been studied. Study results indicate that the oxone/sunlight system is effective for MO decolorization. A factorial design has suggested that when the initial concentration was100mg L-1, the practical operation conditions for MO decolorization was pH6.04, dosage3m mol L-1, and reaction time30minutes. Under these conditions the decolorization efficiency was96.4%. In addition, study results indicate that the oxone/sunlight system's efficiency in MO decolorization is not affected by possible coexisting substances in industrial wastewaters such as metal ions, HA, and NO3-. Study results obtained when H2O2, CH3OH, and (CH3)3COH were added indicate that the decolorization of MO takes place via oxidation by SO4-. Finally, in combination with sonolysis, ultrasonic can remarkably accelerate the decolorization of the dye and shorten the reaction times in the oxone/sunlight system.
     (4) In consideration of the pollutant load by pharmaceutical wastewater in Hong River, this study deduced degradation pathway and mechanism by gamma irradiation in diclofenac solutions. The impacts of a variety of factors on degradation efficiency by gamma irradiation have been studied. Study results suggest that gamma ray irradiation has been shown to be an effective way to degrade diclofenac. The degradation efficiency of diclofenac increased significantly with the increase of radiation dose, while decreased with the increase in its initial concentration. Diclofenac degradation efficiency is higher under acidic conditions than in neutral and alkaline media. Study results with three additives (H2O2, CH3OH, and thiourea) indicated that the degradation of diclofenac takes place via two pathways, oxidation by·OH radicals and reduction by eaq-and H·. The extensive coexisting substances in natural waters, such as HA and NO3-, do not affect the degradation efficiency significantly. Based on the identified intermediate products, it is suggested that the transformation pathways are mainly initiated by hydrogen atoms H·, hydrated electrons eaq-, and hydroxyl radicals·OH.
     (5) Decentralized sewage including rural domestic sewage and livestock sewage has become one of the major pollution sources in Hong River watershed. The application of decentralized sewage treatment technology is a feasible approach to resolve the water pollution issues in the area, where centralized wastewater collection and treatment is limited. Considering the large fluctuations of sewage flow and pollutant load in Hong River watershed, four treatment technologies including integrated tower biological filter (ITBF), constructed wetland (CW), ecological permeable dam (EPD), and capillary infiltration ditch (CID) are chosen and applied in the watershed, which meet the demand of easy maintenance and management and low operation cost.15ITBF projects,1CW project,1EPD project and1CID project have been finished. The concentrations of COD, NH3-N, and TN in the effluent can consistently comply with the1level-B of the municipal wastewater treatment discharge standard (GB18918-2002).
引文
[1]Leitao R.C., van Haandel A.C., Zeeman G., et al. The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review. Bioresource Technol.2006,97(9):1105-1118.
    [2]淮河流域水资源保护局,《淮河片水资源公报(2010年度)》
    [3]淮河流域水资源保护局,《淮河流域省界水体及主要河流水资源质量状况通报》
    [4]河南省环境保护厅,《河南省环境质量报告书》
    [5]于峰,史正涛,彭海英.农业非点源污染研究综述[J].环境科学与管理,2008,33(8):54-58.
    [6]Kronvang B., Graesboll P., Larsen S.E., et al. Diffuse nutrient losses in Denmark. Water Sci Technol.1996, 33(4-5):81-88.
    [7]Atsushi I., Kiyoshi Y. Study on characteristics of pollutant runoff into Lake Biwa, Japan. Water Sci Technol.1999,39(12):17-25.
    [8]Boers, P.C.M. Nutrient emission from agriculture in the Netherlands, causes and remedies. Water Sci Technol.1996,33(4):183-189.
    [9]董亮.GIS支持下西湖流域水环境非点源污染研究[D].浙江大学博士学位论文,2001.
    [10]Arhonditsis C., Tsirtsis G., Angelidis M., et al. Quantification of the effects of nonpoint nutrient sources to coastal marine eutrophication: Applications to a semi-enclosed gulf in the Mediterranean Sea. Ecol Model.2000,129:209-227.
    [11]Apicella G., Schuepfer F.E., Zuccagnino J., et al.Water-quality modeling of combined sewer overflow effects on Newtown Creek. Water Environ Res.1996,68:1012-1024.
    [12]Line D.E. Non-point source Pollution. Water Environ Res.1998,70(4):895-911.
    [13]Horton R.E. An approach toward a physical interpretation of infiltration capacity. Soil Sci Soc Am J. 1940(5):399-417.
    [14]余炜敏.三峡库区农业非点源污染及其模型模拟研究[博士学位论文].重庆:西南农业大学,2005.
    [15]Soil Conservation Service. National Engineering Handbook, Section4[s].1956:23-65.
    [16]Wischmeier W.H., Smith D.D. Predicting rainfall erosion losses. U S Dept of Agriculture, Agricultural Handbook,1978,537:10-34.
    [17]Singh V.P. Computer Models of Watershed Hydrology. Littleton:Wat Res Public.1995.
    [18]Crawford N.H., Linsley H.K. Digital simulation in hydrology Stanford Watershed Model IV [R]. Dept Civil Engineering, Stanford University, Stanford, California, Technical Report,1996,39-210.
    [19]Metcalf and Eddy, Inc., University of Florida, Water Resources Engineers, Inc. Storm Water Management Model, Version 1:final Report[R]. Environment Protection Agency, Washington, DC.1971.
    [20]Frere M.H., Onstad C.A., Hollan H.N. A agricultural chemical transport model (ACTMO). Agricultural Research Service,1975,3:56.
    [21]Bicknell, B.R., Imhoff, J.C., Kittle, J.L., et al. The HSPF Users' Guide, Entitled Hydrological Simulation Program-FORTRAN:User's Manual for Release 11. Environmental Research Laboratory, EPA/600/R-93/174, Athens, GA.1993.
    [22]Brian R.B., John C.I., John L.K. Hydrological Simulation program-FORTRAN, User's Manual for version 12,2001.
    [23]Knisel, W.G. CREAMS. A field scale model for Chemicals, runoff and erosion from agricultural management systems. Conservation Research Report No.26, USDA, Washington,1980, D.C:36-64.
    [24]Leonard R.A., Knisel W.G., Still D.A. GLEAMS:groundwater loading effects of agricultural management systems. Trans. ASAE,1987,30(5):1403-1418.
    [25]Carnier M., Leone A. Integrated use of GLEAMS and GIS to prevent groundwater pollution caused by agricultural disposal of animal waste. Environ Manage,1998, (5):747-756.
    [26]Williams J.R., Renard K.C., Dyke P.T. A new method for assessing the effects of erosion on productivity-The EPIC model. Soil and Water Conservation,1983,38:381-383.
    [27]Williams J.R., Nicks A.D., Arnold J.G. Simulator for water resources in Rural Basins. Hydraul Eng.1985, 111(6):170-196.
    [28]Arnold J.G., Williams J.R., Nicks A.D, et al. SWRRB:A Basin Scale Simulation Model for Soil and Water Resources Management. Texas:Texas A & M University Press, College Station.1990, pp125.
    [29]Beasley, D.B. Applying Distributed Parameter Modeling Techniques to Watershed Hydrology and Non-Point Source Pollution Proc.13th Conf. Modeling and Simulation.1982,4.
    [30]Guay J.R., Smith P.E. Simulation of Quantity and Quality of Storm Runoff for Urban Catchments in Fresno, California. U.S. Geological Survey Water-Resources Investigations Report.1988,88-4125.
    [31]Mohammed H., Yohannes F., Zeleke G. Validation of agricultural non-point source (AGNPS) pollution model in Kori watershed, South Wollo, Ethiopia International. J. Appl. Earth Obse. Geoin,2004, 6:97-109.
    [32]Ascough J.C., Baffaut C, Nearing M.A., et al. The WEPP watershed model 1. Hydrology and erosion. Trans. ASAE,1997,40(4):921-933.
    [33]Abbott M.B., Bathurst J.C., Cunge J.A., et al. An introduction to the European hydrological system-system hydrologique European, "SHE",1:History and philosophy of a physically-based, distributed modeling system. J Hydrol.1986,87:45-59.
    [34]Whittemore R.C. The BASINS model. Water Environ Technol,1998,10(12):57-61.
    [35]Hession W.C., Huber K.L., Mostaghimi S., et al. BMP Effectiveness Evaluation Using AGNPS and a GIS. In:International Winter Meeting in New Orleans, Lousiana,12-15 December 1989 Paper (89):2566. Am Soc Agric Eng,1-18.
    [36]Bouraoui F., Dillaha T.A. ANSWERS-2000:Runoff and sediment transport model. J. Envir Engin,1996, 122:493-502.
    [37]Connolly R.D., Silburn D.M., Ciesjolka C.A.A., et al. Modeling hydrology of agricultural catchments using parameters derived from rainfall simulator data. Soil Till Res.1991,20:33-44.
    [38]Connolly R.D., Silburn D.M. Distributed parameter hydrology model (ANSWERS) applied lo a range of catchment scales using rainfall simulator data Ⅱ:Application to spatially uniform catchments. J Hydrol. 1995,172:105-125.
    [39]Arnold J.G., Allen P.M., Bernhardt G.A. Comprehensive surface-ground-water flow model. Hydrol,1993, 142:47-69.
    [40]李怀恩.流域非点源污染模型研究进展与发展趋势[J].水资源保护.1996(2):14-18.
    [41]唐莲,白丹.农业活动非点源污染与水环境恶化[J].环境保护,2003,3:18-20.
    [42]李怀恩,沈晋,刘玉生.流域非点源污染模型的建立与应用实例[J].环境科学学报.1997,17(2):141-147.
    [43]章北平.东湖面源污染的数学模型[J].武汉城市建设学院学报.1996,13(1):1-8.
    [44]邢可霞,郭怀成,孙延枫,等.基于HSPF模型的滇池流域非点源污染模拟[J].中国环境科学.2004,24(2):229-232.
    [45]胡远安,程声通,贾海峰.非点源模型中的水文模拟-以SWAT模型在芦溪小流域的应用为例[J].环境科学研究,2003,16(5):29-36.
    [46]惠二青,刘贯群,邱汉学,等.适用于中大尺度流域的非点源污染模型[J].农业环境科学学报.2005,24(3):552-556.
    [47]张运生.GIS和遥感辅助下的江西激水河流域化学径流计算机模拟探讨[J].南京师范大学.2003,20-27.
    [48]朱萱,鲁纪行,边金钟,等.农田径流非点源污染特征及负荷定量化方法探讨[J].环境科学.1994,6(5):6-11.
    [49]陈洪波,王业耀.国外最佳管理措施在农业非点源污染防治中的应用[J].环境污染与防治.2006,28(4):279-282.
    [50]陈利顶,傅伯杰.农业生态系统管理与非点源污染控制[J].环境科学.2000,21(2):98-100.
    [51]蒋鸿昆,高海鹰,张奇.农业面源污染最佳管理措施(BMPs)在我国的应用.农业环境与发展.2006(4):64-67.
    [52]王少平,俞立中,许世远,等.苏州河非点源污染负荷研究[J].环境科学研究.2002,15(6):20-24.
    [53]张秋玲.基于SWAT模型的平原区农业非点源污染模拟研究[博士学位论文].浙江大学.2010.
    [54]夏立忠,杨林章,吴春加等.太湖地区典型小城镇降雨径流N、P负荷空间分布的研究[J].农业环境科学学报.2003,22(3):267-270.
    [55]马立珊,汪祖强,张水铭等.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学报.1997,17(1):39-47.
    [56]刘忠翰,彭江燕.化肥氮素在水稻田中迁移与淋失的模拟研究[J].农村生态环境.2000,16(2):16-24.
    [57]程红光,郝芳华,任希岩等.不同降雨条件下非点源污染氮负荷入河系数研究[J],环境科学学报.2006,26(3):392-397.
    [58]于涛,孟伟,Edwin Ongle,等.我国非点源负荷研究中的问题探讨[J].环境科学学报.2008,28(3):401-407.
    [59]陈友媛,惠二青,金春姬等.非点源污染负荷的水文估算方法[J].环境科学研究.2003,16(1):10-13.
    [60]李怀恩.估算非点源污染负荷的平均浓度法及其应用[J].环境科学学报.2000,20(4):397-400.
    [61]洪小康,李怀恩.水质水量相关法在非点源污染负荷估算中的应用[J].西安理工大学学报.2000,16(4):384-386.
    [62]李怀恩,蔡明.非点源营养负荷-泥沙关系的建立及其应用[J].地理科学.2003,23(4):460-463.
    [63]蔡明,李怀恩,庄咏涛.改进的输出系数法在流域非点源污染负荷估算中的应用[J].水利学报.2004, 7:40-45.
    [64]蔡明.渭河陕西段氮污染及控制规划研究[博士学位论文].西安:西安理工大学.2004.
    [65]李强坤,李怀恩,胡亚伟,等.基于单元分析的青铜峡灌区农业非点源污染估算[J].生态与农村环境学报.2007,23(4):33-36.
    [66]李强坤,李怀恩,胡亚伟,等.黄河干流撞关断面非点源污染负荷估算[J].水科学进展.2008,19(4):460-466.
    [67]高龙华.遥感和GIS支持下流域非点源污染模型研究[博士学位论文].南京:河海大学.2006.
    [68]Tilche. Novel microbial nitrogen removal processes. Biotechnol Adv.2004,22(7):5193-5201.
    [69]Ng W.G. Aerobic treatment of piggery wastewater with the sequencing batch reactor. Bio Waste.1987, 22:285-294.
    [70]Chan S.Y., Tsang Y.F., Cui L.H., et al. Domestic wastewater treatment using batch-fed constructed wetland and predictive model development for NH3-N removal. Process Biochem.2008,43(3):297-305.
    [71]Zimmo O.R., van der Steen N.P., Gijzen H.J. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation Ponds. Water Res.2004,38(4):913-920.
    [72]Elmitwalli T.A., Oahn K.L.T., Zeeman G., et al. Treatment of domestic sewage in a two-step anaerobic filter/anaerobic hybrid system at low temperature. Water Res.2002,36(9):2225-2232.
    [73]El-Shafai S.A., El-Gohary F.A., Nasr F.A., et al. Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system. Bioresource Technolo.2007,98(4):798-807.
    [74]Golob V., Vinder A., Simonic M. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dyes Pigments.2005,67:93-97
    [75]Fersi C., Dhahbi M. Treatment of textile plant effluent by ultrafiltration and/or nanofiltration for water reuse. Desalination.2008,222:263-271.
    [76]Lu K., Zhang X.L., Zhao Y.L., et al. Removal of color from textile dyeing wastewater by foam separation. J Hazard Mater.2010,182:928-932.
    [77]Zahrim A.Y., Tizaoui C., Hilal N. Evaluation of several commercial synthetic polymers as flocculant aids for removal of highly concentrated C.I. Acid Black 210 dye. J Hazard Mater.2010,182:624-630.
    [78]Li Y., Xi D.L. Decolorization and biodegradation of dye wastewaters by a facultative-aerobic process. Environ Sci Pollut Res.2004,16:372-377.
    [79]Enayatzamir K., Alikhani H.A., Yakhchali B., et al. Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads. Environ Sci Pollut Res.2010,17:145-153.
    [80]Buser H.R., Poiger T., Miiller M. Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ Sci Technol.1999,33:2529-2535.
    [81]Weigel S., Kallenborn R., Hiihnerfuss H. Simultaneous solid-phase extraction of acidic, neutral and basic Pharmaceuticals from aqueous samples at ambient (neutral) pH and their determination by gas chromatography-mass spectrometry. J Chromatogr A.2004,1023:183-195.
    [82]赵琦,何小娟,唐翀鹏,等.药物和个人护理用品(PPCPs)处理方法研究进展[J].净水技术,2010,(29)4:5-10.
    [83]Kim S.D., Cho J., Kim I.S., et al. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res.2007,41 (5):1013-1021.
    [84]Kosjek T., Zigon D., Kralj B., et al. The use of quadrupole-time-of-flight mass spectrometer for the elucidation of diclofenac biotransformation products in wastewater. J Chromatogr A.2008,1215 (1-2): 57-63.
    [85]Benotti M.J., Trenholm R.A., Vanderford B.J., et al. Pharmaceuticals and endocrine disrupting compounds in U.S. drinking water. Environ Sci Technol.2009,43 (3):597-603.
    [86]Mcclellan K., Halden R.U. Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Res.2010,44 (2):658-668.
    [87]Pedersen J.A., Yeager M.A., Suffet I.H. Xenobiotic organic compounds in runoff from fields irrigated with treated wastewater. J Agr Food Chem.2003,51(5):1360-1372.
    [88]Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment:A review of recent research data. Toxicol Lett.2002,131(1-2):5-17.
    [89]Boyd G.R., Palmeri J.M., Zhang S., et al. Pharmaceuticals and personal care products PPCPs and endocrine disrupting chemicals EDCs in stormwater canals and Bayou St. John in New Orleans, Louisiana, USA. Sci Total Environ.2004,333(1-3):137-148.
    [90]Kolpin D., Skopec M., Meyer M., et al. Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions. Sci Total Environ.2004,328(1/2/3): 119-130.
    [91]Loraine G.A., Pettigrove M.E. Seasonal variations in concentrations of pharmaceuticals and personal care products in drinking water and reclaimed wastewater in southern California. Environ Sci Technol.2006, 40(3):687-695.
    [92]Norihide N., Hiroyuki S., Ayako M., et al. Removal of selected pharmaceuticals and personal care products PPCPs and endocrine disrupting chemicals EDCs during sand filtration and ozonation at a municipal sewage treatment plant. Water Res.2007,41(19):4373-4382.
    [93]Marion L., Gerhard M., Thomas L. Exposure assessment of the pharmaceutical diclofenac based on long-term measurements of the aquatic input. Environ Int.2009,35(2):363-368.
    [94]Cleuvers M. Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotox Environ Safe.2004,59:309-315.
    [95]Joss A., Zabczynski S., Gobel A., et al. Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme. Water Res.2006,40 (8):1686-1696.
    [96]Lishman L., Smyth S.A., Sarafin K., et al. Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Sci Total Environ.2006,367:544-558.
    [97]Stulten D., Zuhlke S., Lamshoft M., et al. Occurrence of diclofenac and selected metabolites in sewage effluents. Sci Total Environ.2008,405:310-316.
    [98]Radjenovic J., Petrovic M., Barcelo D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Res.2009,43:831-841.
    [99]Monteiro S.C., Boxall A.B.A. Occurrence and fate of human pharmaceuticals in the environment. Rev Environ Contam Toxicol.2010,202:53-154.
    [100]Rosal R., Rodriguez A., Perdigon-Melon J.A., et al. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res.2010,44: 578-588.
    [101]Zhang Y.J., Geissen S.U., Gal C. Carbamazepine and diclofenac:removal in wastewater treatment plants and occurrence in water bodies. Chemosphere.2008,73:1151-1161.
    [102]Glaze W.H., Kang J.W., Chapin D.H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci Eng.1987,7:335-910.
    [103]Malato, S., Blanco, J., Vidal, A., et al., Applied studies in solar Photocatalytic detoxification:an overview. Sol Energy.2003,75(4):329-336.
    [104]Legrini, O., Oliveros, E., Braun, A.M. Photochemical Processes for water treatment. Chem Rev.1993, 93(2):671-698.
    [105]Huang Y.H., Chou S.S., Perng M.G., et al. Case study on the bioeffluent of petrochemical wastewater by electro-Fenton method. Water Sci Technol.1999,39(10-11):145-149.
    [106]Neyens, E., Baeyens, J. A review of classic Fenton's Peroxidation as an advanced oxidation technique. J Hazard Mater.2003,98(1-3):33-50.
    [107]Yao C.C., Haag W.R. Rate constants for direct reaction of ozone with several drinking water contaminates. Water Res.1991,25(4):761-773.
    [108]曾新平,唐文伟,赵建夫,等.湿式氧化处理高浓度难降解有机废水研究[J].环境科学学报.2004,24(6):945-946.
    [109]Marc P.T., Veronica G.M., Miguel A.B., et al. Degradation of chlorophenols by means of advanced oxidation processed-a general review. Appl Catal B-Environ.2004,47(4):219-256.
    [110]Fujishima A., Zhang X. Titanium dioxide Photocatalysis:Present situation and future approaches. Comptes Rendus Chimie.2006,9(5-6):750-760.
    [111]Fujishima A., Rao T.N., Tryk D.A. Titanium dioxide Photocatalysis. Journal of photochemistry and photobiology C:Photochemistry Reviews.2000,1(1):1-21.
    [112]王宝贞.水污染控制工程.北京:高等教育出版社,1990:236-238.
    [113]Ravina M., Campanella L., Kiwi J. Accelerated mineralization of the drug Diclofenac via Fenton reactions in a concentric photo-reactor. Water Res.2002,36:3553-3560.
    [114]Huber M., Canonica S., Park G.Y., et al. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol.2003,37:1016-1024.
    [115]Vogna D., Marotta R., Napolitano A., et al. Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Res.2004,38:414-422.
    [116]Leonidas A.P., Sixto M., Wolfgang G., et al. Photo-Fenton degradation of diclofenac:Identification of main intermediates and degradation pathway. Environ Sci Technol.2005,39:8300-8306.
    [117]Perez-Estrada L.A., Maldonado M.I., Gernjak W., et al. Decomposition of diclofenac by solar driven photocatalysis at pilot plant scale. Catal Today.2005,101:219-226.
    [118]Hartmann J., Bartels P., Mau U., et al. Degradation of the drug diclofenac in water by sonolysis in presence of catalysts. Chemosphere.2008,70:453-461.
    [119]Vincenzo N., Vincenzo B., Daniele R., et al. Degradation of diclofenac during sonolysis, ozonation and their simultaneous application. Ultrason Sonochem.2009,16:790-794.
    [120]Madhavan J., Kumar P.S.S., Anandan S., et al. Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment. Chemosphere.2010,80:747-752.
    [121]Guyer G.T., Ince N.H. Degradation of diclofenac in water by homogeneous and heterogeneous sonolysis. Ultrason Sonochem.2011,18:114-119.
    [122]Yamazaki M., Sawai T., Sawai T., et al. Combined gamma-ray irradiation activated-sludge treatment of humic-acid solution from landfill leachate. Water Res.1983,17 (12):1811-1814.
    [123]钟云,郑正,赵永富,等.γ辐照降解HCB的机理及动力学研究[J].河南科学,2007,(25)5:835-838.
    [124]Ito R., Miura N., Ushiro M., et al. Effect of gamma-ray irradiation on degradation of di (2-ethylhexyl) phthalate in polyvinyl chloride sheet. Int J Pharm.2009,376 (1-2):213-218.
    [125]Choi J.I., Kim J.K., Kim J.H., et al. Degradation of hyaluronic acid powder by electron beam irradiation, gamma ray irradiation, microwave irradiation and thermal treatment:A comparative study. Carbohyd Polym.2010,79 (4):1080-1085.
    [126]Borrely S.I., Cruz A.C, Mastro N.L.D., et al. Radiation processing of sewage and sludge. A review. Prog Nucl Energ.1998,33(1-2):3-21.
    [127]Mak F.T., Zele S.R., Cooper W.J., et al. Kinetic modeling of carbon tetrachloride, chloroform and methylene chloride removal from aqueous solution using the electron beam process. Water Res.1997, 31(2):219-228.
    [128]Quint R.M. y-radiolysis of aqueous 2-chloroanisole. Radiat Phys Chem.2006,75:34-41.
    [129]Kimura A., Taguchi M., Ohtani Y., et al. Decomposition of p-nonylphenols in water and elimination of their estrogen activities by 60Co y-ray irradiation. Radiat Phys Chem.2006,75:61-69.
    [130]Solpan D., Guven O., Takacs E., et al. High-energy irradiation treatment of aqueous solutions of azo dyes:steady-state gamma radiolysis experiments. Radiat Phys Chem.2003,67:5831-534.
    [131]顾春晖,郑正,杨光俊,等.辐射分解饮用水氯化消毒副产物的研究[J].环境科学与技术.2005,28(2):3-5.
    [132]Bao H., Liu Y., Jia H. A study of irradiation in the treatment of wastewater. Radiat Phys Chem.2002, 63:633-636.
    [133]Winarno E.K., Getoff N. Comparative studies on the degradation of aqueous 2-chloroaniline by O3 as well as by UV-light and y-rays in the presence of ozone. Radiat Phys Chem.2002,65(4-5):387-395.
    [134]Duarte C.L., Sampa M.H.O., Rela P.R., et al. Application of electron beam irradiation combined to conventional treatment to treat industrial effluents. Radiat Phys Chem.2000,57:513-518.
    [135]Clements, J.S., Sato, M., Davis R.H. Preliminary investigation of Prebreakdown Phenomena and chemical reactions using a Pulsed high voltage diseharge in water. IEEE transaction on Industry Applications.1987, IA-23(2):224-235.
    [136]李胜利,李劲.脉冲放电对印染废水脱色效果的实验研究[J].环境科学,1996,17(1):13-16.
    [137]王曦曦,张继彪,郑正,等.介质阴阻阴挡放电对水中双氯芬酸钠的降解[J].环境化学,2010,29(4):675-679.
    [138]Wen, Y.Z., Jiang, X.Z. Degradation of 4-chorophenol by high-voltage pulse corona discharges combined with ozone. Plasma Chem Plasma P.2002,22(1):175-185.
    [139]Schmid S., Krajnik P., Quint R.M., et al. Degradation of monochlorophenols by γ-irradiation. Radiat Phys Chem.1997,50(5):493-502.
    [140]Teruyuki H., Zhang G., Shoji H. Decomposition of chloroethenes in electron beam irradiation. Radiat Phys Chem.1999,54(6):541-546.
    [141]Getoff N. Factors influencing the efficiency of radiation-induced degradation of water pollutants. Radiat Phys Chem.2002,65(4-5):437-446.
    [142]Popov P., Getoff N. Decomposition of aqueous fluorene by γ-rays and product analysis.Radiat Phys Chem.2004,69(5):387-393.
    [143]Yoon J.H., Jung J., Chung H.H., et al. EPR characterization of carbonate ion effect on TCE and PCE decomposition by gamma-rays. J Radioanal Nucl Ch.2002,253(2):217-219.
    [144]Bettoli M.G., RAvanelli M., Tositti L., et al. Radiation induced decomposition of halogenated organic compounds in water. Radiat Phys Chem.1998,52(1-6):327-331.
    [145]Guivarch E., Trevin S., Lahitte C., Oturan M.A. Degradation of azo dyes in water by Electro-Fenton process. Environ Chem Lett.2003,1:38-44.
    [146]Chen J.X., Zhu L.Z. Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite. Catal Today.2007,126:463-470.
    [147]Bokare A.D., Chikate R.C., Rode C.V., et al. Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl Catal B-Environ.2008,79:270-278.
    [148]Ugurlu M., Karaoglu M.H. Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as photocatalyst. Environ Sci Pollut Res.2009,16:265-273.
    [149]Daud N.K., Hameed B.H. Decolorization of Acid Red 1 by Fenton-like process using rice husk ash-based catalyst. J Hazard Mater.2010,176:938-944.
    [150]He H.Y., Huang J.F., Cao L.Y., et al. Photodegradation of methyl orange aqueous on MnWO4 powder under different light resources and initial pH. Desalination.2010,252:66-70.
    [151]Liu H.N., Li G.T., Qu J.H., et al. Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound. J Hazard Mater.2007,144:180-186.
    [152]Fukushima M., Sawada A., Kawasaki M. Influence of humic substances on the removal of pentachlorophenol by a biomimetic catalytic system with a water-soluble iron (Ⅲ)-porphyrin complex. Environ Sci Technol.2003,37(5):1031-1036.
    [153]Meunier B., Sorokin A. Oxidation of pollutants catalyzed by metallophthalocyanines. Accounts Chem Res.1997,30(11):470-476.
    [154]Hadasch A., Meunier B. Oxidation of dichloroanilines and related anilides catalyzed iron (Ⅲ) tetrasulfonatophthalocyanine. Eur J inorg Chem.1999, (12):2319-2325.
    [155]Anipsitakis G.P., Dionysiou D.D. Degradation of organic contaminants in water with sulfate radicals generated by the conjunction of peroxymonosulfate with cobalt. Environ Sci Technol.2003,37: 4790-4797.
    [156]Fernandez J., Maruthamuthu P., Renken A., et al. Bleaching and photobleaching of Orange Ⅱ within seconds by the oxone/Co2+ reagent in Fenton-like process. Appl Catal B-Environ.2004,49:207-215
    [157]Chen X.Y., Qiao X.L., Wang D.G., et al. Kinetics of oxidative decolorization and mineralization of Acid Orange 7 by dark and photoassisted Co2+-catalyzed peroxymonosulfate system. Chemosphere.2007,67: 802-808.
    [158]Huang Y.H., Huang Y.F., Huang C.I., et al. Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst. J Hazard Mater.2009,170:1110-1118.
    [159]Madhavan J., Maruthamuthu P., Murugesan S., et al. Kinetics of degradation of acid red 88 in the presence of Co2+-ion/peroxomonosulphate reagent. Appl Catal A-Gen.2009,368:35-39.
    [160]Sun J.H., Li X.Y., Feng J.L., et al. Oxone/Co2+ oxidation as an advanced oxidation process:Comparison with traditional Fenton oxidation for treatment of landfill leachate. Water Res.2009,43:4363-4369.
    [161]Ling S.K., Wang S.B., Peng Y.L. Oxidative degradation of dyes in water using Co2+/H2O2 and Co2+/peroxymonosulfate. J Hazard Mater.2010,178:385-389.
    [162]Yu Z.Y., Kiwi-Minsker L., Renken A., et al. Detoxification of diluted azo-dyes at biocompatible pH with the oxone/Co2+ reagent in dark and light processes. J Mol Catal A-Chem.2006,252:113-119.
    [163]Ball, D.L., Edwards, J.O. The kinetics and mechanism of the decomposition of caro's acid. I. J Am Chem Soc.1956,78(6):1125-1129.
    [164]Anipsitakis G.P., Dionysiou D.D. Transition metal/UV-based advanced oxidation technologies for water decontamination. Appl Catal B-Environ.2004,54(3):155-163.
    [165]Fernandez J., Nadtochenko V., Kiwi J. Photobleaching of Orange Ⅱ within seconds using the oxone/Co2+ reagent through Fenton-like chemistry. Chem Commun.2003,9(18):2382-2383.
    [166]Anipsitakis G.P., Stathatos E., Dionysiou D.D. Heterogeneous activation of oxone using Co3O4. J phys Chem B.2005,109(27):13052-13055.
    [167]Toppari J., Larsen J.C., Christiansen P., et al. Male reproductive health and environmental xenoestrogens. Environ Health Perspect.1996,104:741-803.
    [168]Bakan G., Ariman S. Persistent organochlorine residues in sediments along the coast of mid-Black Sea region of Turkey. Mar Pollut Bull.2004,48(11-12):1031-1039.
    [169]Lee K.T., Tanabe S., Koh C.H. Distribution of organochlorine pesticides in sediments from Kyeonggi bay and nearby areas, Korea. Environ. Pollut.2001,114,207-213.
    [170]Kim S.K., Oh J.R., Shim W.J., et al. Geographical distribution and accumulation features of organochlorine residues in bivalves from coastal areas of South Korea. Mar.Pollut.Bull.2002,45, 268-279.
    [171]Hitch R.K., Day H.P. Unusual persistence of DDT in some Western USA soils. Bull. Environ. Contam. Toxicol.1992,48:255-264.
    [172]Hong H., Xu L., Zhang L., et al. Environmental fate and chemistry of organic pollutants in the sediment of Xiamen and Victoria harbors. Marine Pollution Bulletin.1995,31:229-236.
    [173]Doong R.A., Sun Y.C., Liao P.L., et al. Distribution and fate of organochlorine pesticide residues in sediments from the selected rivers in Taiwan. Chemosphere.2002,48:237-246.
    [174]Long E.R., Macdonald D.D., Smith S.L., et al. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments. Environ Manage.1995,19(1):81-97.
    [175]MacDonald D.D., Ingersoll C.G., Berger T.A. Development and evaluation of consensus-based Sediment Quality Guidelines for Freshwater Ecosystems. Arch. Environ. Contam. Toxicol.2000,39:20-31.
    [176]Wu Y., Zhang J., Li D.J., et al. Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang Estuary, North China. Mar Pollut Bull.2003,46(5):619-625.
    [177]Witt G. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Mar Pollut Bull.1995, 31(4-12):237-248
    [178]Baumard P., Budzinski H., Michon O. Origin and bioavailability of PAH the Mediterranean Sea from mussel and sediment. Estuar Coast Shelf S.1998,47:77-90.
    [179]Tolosa I., Mora S.D., Sheikholeslami M.R., et al. Aliphatic and aromatic hydrocarbons in coastal Caspian sea sediments. Mar Pollut Bull.2004,48,44-60.
    [180]Tolosa I., Bayona J.M., Albaiges J. Aliphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in northwestern Mediterranean sediments:Spatial and temporal variability, fluxes, and budgets. Environ Sci Technol.1996,30:2495-2503.
    [181]Yunker M.B., Macdonald R.W., Vingarzan R., et al. PAHs in the Fraser River Basin:a critical appraisal of PAH ratios as indicators of PAH source and composition. Org geochem.2002,32:489-515.
    [182]McCauley Dennis J., DeGraeve G.M., Linton T.K. Sediment quality guidelines and assessment:overview and research needs. Environmental Science & Policy.2000,3:133-144.
    [183]Miiller G. Index of geoaccumulation in sediments of the Rhine River. Geo J.1969,2:108-118.
    [184]Hankason L. An ecological risk index for aquatic pollution control:A sedimentological approach. Water Res.1980,14:975-1001.
    [185]陈翠华.江西德兴地区重金属污染现状评价及时空对比研究[D].成都:成都理工大学博士学位论文,2002.
    [186]尚英男,倪师军,张成江,等.成都市河流表层沉积物重金属污染及潜在生态风险评价[J].生态环境.2005(6):827-829.
    [187]Tessier A. et al. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals, Anal Chem.1979,51(7):844-851.
    [188]Park H., Choi W. Visible light and Fe(Ⅲ)-mediated degradation of acid Orange 7 in the absence of H2O2. J Photoch Photobiol A.2003,159:241-247.
    [189]Fernandez J., Maruthamuthu P., Renken A., et al. Photobleaching and mineralization of Orange II by oxone and metal-ions involving Fenton-like chemistry under visible light. J Photoch Photobio A.2004, 161:185-192.
    [190]Sandvik S.L.H., Bilski P., Pakulski J.D., et al. Photogeneration of singlet oxygen and free radicals in dissolved organic matter isolated from the Mississippi and Atchafalaya river plumes. Mar Chem.2000, 69:139-152.
    [191]Liu Q., Luo X.Z., Zheng Z., et al. Factors that have an effect on degradation of diclofenac in aqueous solution by gamma ray irradiation. Environ Sci Pollut Res.2011,18:1243-1252.
    [192]Zhang H., Duan L.J., Zhang D.B. Decolorization of methyl orange by ozonation in combination with ultrasonic irradiation. J Hazard Mater B.2006,138:53-59.
    [193]Junko K. Enhancement of wastewater and sludge treatment by ionizing radiation, in: Proceeding of a workshop on the potential for engineering scale processing of waste treatment streams by electron-beam irradiation, USA:University of Miami.1997, pp.30-172
    [194]Nickelsen M.G., Cooper W.J., Lin K.J., et al. High-energy electron-beam generation of oxidants for the treatment of benzene and toluene in the presence of radical scavengers. Water Res.1994,28 (5): 1227-1237.
    [195]Irmak S., Yavuz H.I., Erbatur O. Degradation of 4-chloro-2-methylphenol in aqueous solution by electro-Fenton and photoelectro-Fenton processes. Appl Catal B-Environ.2006,63:243-248.
    [196]Flox C., Ammar S., Arias C., et al. Electro-Fenton and photoelectro-Fenton degradation of indigo carmine in acidic aqueous medium. Appl Catal B-Environ.2006,67 (1-2):93-104.
    [197]Zhan M.J., Yang X., Xian Q.M., et al. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances. Chemosphere.2006,63:378-386.
    [198]Brezonik P.L., Fulkerson-Brekken J. Nitrate-induced photolysis in natural waters:Controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents. Environ Sci Technol.1998,32:3004-3010.
    [199]Singh A., Kremers W. Radiolytic dechlorination of polychlorinated biphenyls using alkaline 2-propanol solutions. Radiat Phys Chem.2002,65:467-472.
    [200]Poiger T., Buser H.R., Muller M.D. Photodegradation of the pharmaceutical drug diclofenac in a lake: pathway, field measurements, and mathematical modeling. Environ Toxicol Chem.2001,20:256-263.
    [201]Xu X.J. Dielectric barrier discharge-properties and applications. Thin Solid Films.2001,390,237-242.
    [202]Yang C.L., Chen L. Oxidation of nitric oxide in a two-stage chemical scrubber using DC corona discharge. J Hazard Mater.2000,80,135-146.
    [203]Ban J.Y., Son Y.H., Kang M., et al. Highly concentrated toluene decomposition on the dielectric barrier discharge (DBD) plasma-photocatalytic hybrid system with Mn-Ti-incorporated mesoporous silicate photocatalyst (Mn-Ti-MPS). Appl. Surf. Sci.2006,253,535-542.
    [204]Lu B., Zhang X., Yu X., et al. Catalytic oxidation of benzene using DBD corona discharges. J Hazard Mater.2006,137,633-637.
    [205]Patrick L., Brezonik, Jennifer F.B. Nitrate-induced photolysis in natural waters:Controls on concentrations of hydroxyl radical photo-intermediates by natural scavenging agents. Environ. Sci. Technol.1998,32,3004-3010.
    [206]Galmier M.J., Bouchon B., Madelmont J.C., et al. Identification of degradation products of diclofenac by electrospray ion trap mass spectrometry. J Pharmaceut Biomed.2005,38,790-796.
    [207]Strukul, G. (Ed.) Catalytic Oxidations with Hydrogen Peroxide as Oxidant.1992, Kluwer Academic, Boston.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700