用户名: 密码: 验证码:
蛋白质标记荧光探针的光谱研究及分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是组成生物体的基本物质,维持其新陈代谢活动的正常进行。蛋白质构造和功效的研究及定量分析将为我们研究生命在不同条件下的变化机制奠定基础,同时也对临床医学、生命科学及药物化学等学科的发展具有重要的意义。蛋白质标记荧光探针日益广泛地应用于生物分析、蛋白质组学中的识别、结构变化的研究及各项生理活动指标检测等。因此开发新型蛋白质标记荧光探针、建立选择性好、灵敏度高的蛋白质定量检测分析方法已成为临床医学、生物化学及生命科学等学科研究人员共同努力的方向。本论文共分为四章:
     第一章,简要介绍了蛋白质的结构功能,综述了研究蛋白质标记荧光探针的种类、标记原理、定量分析蛋白质的方法及应用研究进展。
     第二章,采用荧光及吸收光谱研究了荧光素钠(SF)与人血清白蛋白(HSA)的相互作用,根据Stern-Volmer、Scatchard及Van't Hoff等相关方程分别计算了猝灭常数、结合常数、结合位点数及热力学参数,确定了HSA对SF的猝灭机理及作用方式,根据能量转移理论求得SF与HSA的结合距离及能量转移率,采用同步、三维荧光光谱研究了SF在结合过程中对HSA构象的影响;实验中发现,加入一定范围浓度的HSA会显著猝灭SF的荧光,且光强猝灭程度与HSA浓度成正比,据此建立测定血清蛋白的方法,线性范围为0.15~15×10-7M,方法具有高灵敏度,检测极限为1.46×10-8M;最后,考察体系pH值的变化和不同共存物质对于蛋白质定量分析结果的影响,利用SF作为荧光探针,在测定人血清中血清蛋白总量的实验中,其结果与G-250法基本一致。
     第三章,采用溶剂化法、量子力学的二阶摄动理论计算新型1,8-萘酰亚胺类荧光探针分子量子产率、偶极矩等光物理参数;利用密度泛函理论Density Functional Theory(DFT)及Amsterdam Density Functional (ADF)计算软件讨论探针分子发光机理;应用光谱分析技术对探针分子与HSA的相互作用进行了详细的研究:根据Stern-Volme、Scatchard及Van't Hoff方程计算并讨论了结合参数、反应热力学参数及结合作用力类型;通过取代位点竞争实验,确定了探针分子在HSA中的结合位点;利用同步荧光光谱及圆二色谱考察了探针分子对HSA次级结构及构象的影响;HSA的加入会猝灭探针分子荧光,在一定范围内猝灭程度与HSA浓度成正比,据此,首次建立以1,8-萘酰亚胺类荧光探针测定蛋白的新方法,以新型1,8-萘酰亚胺衍生物作为荧光探针测定人血清中血清蛋白总量的结果与G-250法基本一致。
     第四章,首次利用分子模拟技术和光谱法详细研究了麦角甾4,6,8,22-四烯-3酮(麦角甾酮,国家一类新药,ergone)及土大黄苷(RA)与HSA的相互作用,通过分子对接软件确定ergone和RA与HSA相互作用的结合区域和结合模式。光谱研究结果表明,ergone和RA与HSA的结合作用猝灭了HSA的内源性荧光并生成了疏水性的复合物;利用荧光猝灭相关公式和差热量热仪计算了结合反应的结合常数、结合位点数及热力学参数;三维、同步荧光光谱及CD数据揭示了ergone和RA对HSA次级结构含量的影响。采用溶剂化法、量子力学的二阶摄动理论计算ergone和RA的光物理参数,利用DFT理论及ADF软了探讨了两种药物的发光机理;基于血清蛋白对ergone和RA荧光光谱具有良好的响应行为,在模拟生理条件下以ergone和RA为荧光探针,建立了一种灵敏的蛋白质定量分析方法,HSA线性响应浓度范围为10-8~10-6M,检测限(3δ)均达到10-9M,考察了金属离子对检测结果的影响。以ergone和RA作为荧光探针测定人血清中血清蛋白总量的结果与G-250法基本一致。
     本论文基于蛋白质标记荧光探针的研究及分析应用趋势,综合利用光谱分析技术及分子模拟计算软件,建立了新的定量分析方法,研究的创新性如下:
     1.以新型1,8-萘酰亚胺类衍生物、RA和ergone为荧光探针,采用量子力学的二阶摄动理论计算探针分子的光物理参数,利用密度泛函理论(DFT)及ADF软件研究了探针分子发光机理;
     2.综合利用光谱分析技术(荧光光谱、吸收光谱、圆二色谱(CD))研究了SF、新型1,8-萘酰亚胺类衍生物、RA和ergone探针分子与HSA的相互作用,根据Stern-Volmer、 Scatchard和Van't Hoff方程探讨了探针分子与HSA的结合机理、结合力类型以及结合位点等问题;
     3.通过计算机分子模拟技术考察了药物分子与HSA的作用模式,构建了结合模型,为利用药物分子光谱特性进行蛋白质标记提供了理论参考;采用三维、同步荧光光谱及圆二色谱考察了药物分子在结合过程中对HSA构象的影响,检测、定量分析了药物分子结合后蛋白质二级结构的变化;
     4.通过荧光探针标记蛋白质后光物理参数变化实现对蛋白质生理活动的检测,建立蛋白质定量分析新方法,该方法具有线性响应范围广(10-8~10-6M)和灵敏度高(检测限为10-10M)的特点。本法用于人血清样品中血清蛋白总量的分析结果与G-250法和医院提供数据基本一致。
Protein which maintains the metabolism of the organism is fundamental elements of life. The research on protein structure and function, and the quantitative analysis would illustrate the change in life under the physiological or pathological consideration, which is important for the clinical diagnosis and drug screening. The applications of protein marker fluorescent probes in biological analysis and proteomics become more extensive recently. The probes are used to recognize and detect the complicated conformational changes of proteins. Developing protein marker fluorescent probes and novel quantification method of proteins with high sensitivity and selectivity is important for the field of life sciences, chemistry and clinical medicine. This dissertation consists of four chapters.
     Chapter1:The structures, functions of proteins were briefly introduced firstly. The developments of protein marker fluorescent probes were reviewed, and the kinds of probes, marked mechanism and methods of proteins quantitative analysis were summarized.
     Chapter2:The interactions between sodium fluorescein (SF) and human serum albumin (HSA) were investigated by fluorescence spectroscopy. According to the modified Stern-Volmer equation, the association constants (Ka) between SF and HSA at three different temperatures were obtained to be1.34×107,1.00×107,0.80×107M-1, respectively. It is proved that the fluorescence quenching of SF by HSA is a result of the formation of SF-HSA complex. The thermodynamic parameters, enthalpy change (△H) and entropy change (AS) for the reaction were calculated to be-23.29kJ mol-1and57.09J mol-1K-1according to van't Hoff equation, indicating that the hydrophobic force was the dominant intermolecular force in stabilizing the complex. The distance r between donor (SF) and acceptor (HSA) was obtained to be5.1nm according to Forster's non-radioactive energy transfer theory. The effect of SF on the conformation of HSA was also analyzed using3D fluorescence spectroscopy and synchronous fluorescence spectroscopy. The fluorescence intensity of SF-HSA complex was proportional to the concentration of HSA, based on which, a new quantitative assay of protein was presented. The linear range was0.015~1.5μM, and the sensitivity of the method was high with detection limit was determined to be1.5×10-9M. The effects of pH and interfering substance on the detection were also investigated. The results indicated that the most of the water-soluble amino acids, metal ion and antioxidant do not interfer or only interfer slightly under the permission of±5.0%relative error, whereas SDS, Lecithin, APG, Cu2+, Fe3+, Sucrose and Tryptophane produced obvious interference. Determining serum in human serum by this method gived results which were very close to those obtained by Coomassie Brilliant Blue colorimetry.
     Chapter3:The photophysical parameters of probes such as quantum yield and dipole moments were calculated by salvation and quantum mechanics of second order perturbation theory. The luminiferous mechanism of probes was investigated by Density Functional Theory (DFT) and Amsterdam Density Functional (ADF) soft. According to the equations of Stern-Volmer、Scatchard and Van't Hoff, the binding parameters, binding force and binding thermodynamics parameters were calculated. Using the displacement experiments, the binding site of probes was illustrated. The effect of probes on the second structure of protein has been studied by the synchronous fluorescence and CD spectroscopy. The fluorescence of probes could be quenched by the addition of serum albumin, and the intensity of probes was linear with the concentrations of protein, based on which, a new fluorometric method for detecting protein using1,8-naphthalimide derivatives as fluorescent probes was developed. Determination of protein in human serum by this method gave results which were very close to those obtained by using Coomassie Brilliant Blue colorimetry.
     Chapter4:The interactions of rhapontin (RA) and ergosta-4,6,8(14),22-tetraen-3-one (ergone) with HSA were investigated by the molecular modeling and spectrua comprehensively for the first time, which applied the information about the binding domain and binding model of RA and ergone in HSA. The spectral results showed that the fluorescence of HSA was quenched by the binding of drugs, and the hydrophobic complexes were formed. The binding constant, number of binding site and thermodynamic parameters of binding interaction were calculated by different scanning calorimeter (DSC) and fluorescence spectroscopy. Three-dimensional and synchronous fluorescence spectra revealed the effect of three drugs on the second structure of HSA. Moreover, the photophysical parameters of RA and ergone were calculated by salvation and quantum mechanics of second order perturbation theory, and the luminiferous mechanism was investigated by the DFT and ADF soft. Ergone exhibited a remarkable fluorescence enhancement (EE) for serum albumin, while RA exhibited a fluorescence quenching for serum albumin, based on which, the novel sensitive quantitative determination of proteins were developed by using ergone and RHA as fluorescence probes under the physical condition. Good calibration curves of the proteins were obtained in the range of10-8~10-6M, with detection limits (3σ) of10-9M, and the effect of metal ions on the detection results were investigated. Detecting total proteins in human serum by this method gave results which were close to those obtained by using Coomassie Brilliant Blue colorimetry.
     In this dissertation, on the basis of the previous research, using the spectral analysis technics along with computational modeling were used to investigate the protein marker fluorescent probes and novel quantification method of proteins. The following major innovative works were carried out:
     1. Using SF, the novel1,8-naphthalimide derivatives, RA and ergone which are gradients of natural drug as the fluorescent probes. The photophysical parameters were calculated with quantum mechanics of second order perturbation theory, and the mechanism of photo luminescence of probes was investigated with the Density Functional Theory and ADF soft.
     2. The interactions of probes with HSA were studied by the comprehensive spectral analysis technology, such as the fluorescence, absorption and CD spectrum. According to the equations of Stern-Volmer, Scatchard and Van't Hoff, the binding mechanism, style of binding force and binding site was investigated.
     3. The interaction of RA and ergone with HSA was investigated by the molecular modeling, and the binding mode was developed, which provided the theoretical reference for the probes marked protein. The secondary structure compositions of HSA were estimated by quantitative analysis using synchronous fluorescence and CD spectroscopy selves deconvolution with second-derivative resolution enhancement and curve-fitting procedure.
     4. After labeling protein, the photophysical parameters of fluorescent probes changed remarkably, base on which, a new fluorometric method for detecting HSA in the HCl-Tris buffer solution (pH=7.4) was developed. The linear ranges of the calibration curves were10"8-10-6M for HSA, with the detection limits (3σ) of10-10M. The method has been applied to the determination of total serum albumin in human serum samples collected from the hospital and the results were in good agreement with those reported by the hospital and the method of G-250.
引文
[1]阎隆飞,孙之荣主编.蛋白质分子结构[M].北京,清华大学出版社,1999:12-24
    [2]曾溢滔主编.蛋白质和核酸遗传病[M].上海,上海科技出版社,1981:10-22.
    [3]Carter D. C, He X. M., Structure ofhuman serunl albumin[J].Science,1990,249: 302-303.
    [4]Il'ichev Y. V., Perry J. L., Ruker F., et al. Interaction of ochratoxin A with human serum albumin. Binding sites localized by competitive interactions with the nativein protein and its recombinant fragments[J]. Chemico-Biological Interactions,2002,141(3):275-293.
    [5]Strubelt O., Younesm, L.I.Y. Protection by Albumin against Ischaemia-and Hypoxia-Induced Hepatic Injury[J]. Pharmacology & Toxicology,1994,75(3-4): 280-284.
    [6]Soares A.M.S., Costa S.P.G., Gone,alves M.S.T.2-Oxo-2H-benzo[h]benzopyran as a new light sensitive protecting group for neurotransmitter amino acids[J]. Amino Acids. 2010,39(1),121-133.
    [7]Han P., Zhou X., Huang B., et al. On-gel fluorescent visualization and the site identification of S-nitrosylated proteins[J]. Analytical biochemistry,2008, 377(2):150-155.
    [8]Zlokarnik G., Negulescu P.A., Knapp T.E., et al. Quantitation of transcription and clonal selection of single living cells with β-lactamase as reporter[J]. Science,1998, 279(5374):84-88.
    [9]Weisbrod S.H., Marx A. Novel strategies for the sitespecific labelling of nucleic acids[J]. Chemical Communications,2008,5675-5685.
    [10]Traven V.F., Manaev A.V., Voevodina I.V., et al. Synthesis and structure of new 3-pyrazolinylcoumarins and 3-pyrazolinyl-2-quinolones[J]. Russian Chemical Bulletin, 2008,57(7):1508-1515.
    [11]Piloto A.M., Rovira D., Costa S.P.G., et al. Oxobenzo[f]benzopyrans as new fluorescent photolabile protecting groups for the carboxylic function[J]. Tetrahedron,2006,62(51): 11955-11962.
    [12]Shutes A., Der C.J. Real-time in vitro measurement of GTP hydrolysis[J]. Methods 2005,37(2):183-189.
    [13]Carrigan C.N., Imperiali B. The engineering of membrane-permeable peptides[J]. Analytical biochemistry,2005,341(2):290-298.
    [14]Song A., Wang X., Zhang J. et al. Synthesis of hydrophilic and flexible linkers for peptide derivatization in solid phase[J]. Bioorganic & Medicinal Chemistry Letters,2004, 14(1):161-165.
    [15]Park S.I., Renil M., Vikstrom B., et al. The use of one-bead one-compound combinatorial library method to identify peptide ligands for a4b1 integrin receptor in non-Hodgkin's lymphoma[J]. Letters in Peptide Science,2002,8(3):171-178.
    [16]Zhai D., Jin C, Shiau C.W., et al. Gambogic acid is an antagonist of antiapoptotic Bcl-2 family proteins[J]. Molecular cancer therapeutics,2008,7(6):1639-1646.
    [17]Tian M., Wu X.L., Zhang B., et al. Synthesis of chlorinated fluoresceins for labeling proteins[J]. Bioorganic & Medicinal Chemistry Letters,2008,18(6):1977-1979.
    [18]Wu X.L., Tian M., He H.Z., et al. Synthesis and biological applications of two novel fluorescent proteins-labeling probes[J]. Bioorganic & Medicinal Chemistry Letters,2009, 19(11):2957-2959.
    [19]Kamoto M., Umezawa N., Kato N., et al. Turn-on fluorescent probe with visible light excitation for labelling of hexahistidine tagged protein[J]. Bioorganic & Medicinal Chemistry Letters,2009,19(8):2285-2288.
    [20]Marks K.M., Nolan G.P. Chemical labeling strategies for cell biology [J]. Nature methods, 2006,3:591-596.
    [21]Spagnuolo C.C., Vermeij R.J., Jares-Erijman E.A. Improved Photostable FRET-competent biarsenical_tetracysteine probes based on fluorinated fluoresceins[J]. Journal of the American Chemical Society,2006,128(37):12040-12041.
    [22]Chattopadhaya S., Srinivasan R., Yeo D.S.Y., et al. Site-specific covalent labeling of proteins inside live cells using small molecule probes[J]. Bioorganic & Medicinal Chemistry.2009,17(3):981-989.
    [23]Beija M., Afonso C.A.M., Martinho J.M.G. Synthesis and applications of Rhodamine derivatives as fluorescent probes [J]. Chemical Society Reviews,2009,38:2410-2433.
    [24]Meng Q.. Yu M., Zhang H., et al. Synthesis and application of N-hydroxysuccinimidyl rhodamine B ester as an amine-reactive fluorescent probe[J]. Dyes and pigments,2007, 73(2):254-260.
    [25]Cai S.X., Zhang H.Z., Guastella J., et al. Design and synthesis of rhodamine 110 derivative and caspase-3 substrate for enzyme and cell-based fluorescent assay [J]. Bioorganic & Medicinal Chemistry Letters,2001,11(1):39-42.
    [26]Terentyeva T.G., Rossom W.V., Auweraer M.V., et al. Morpholinecarbonyl-Rhodamine 110 based Substrates for the Determination of Protease Activity with Accurate Kinetic Parameters [J]. Bioconjugate Chemistry,2011,22 (10):1932-1938.
    [27]Pires M.M., Chmielewski J. Fluorescence imaging of cellular glutathione using a latent rhodamine[J]. Organic letters,2008,10(5):837-840.
    [28]Julien O., Mercier P., Spyracopoulos L., et al. NMR studies of the dynamics of a bifunctional rhodamine probe attached to troponin C[J]. Journal of the American Chemical Society,2008,130(8):2602-2609.
    [29]Yatzeck M.M., Lavis L.D., Chao T.Y., et al. A highly sensitive fluorogenic probe for cytochrome P450 activity in live cells[J]. Bioorganic & Medicinal Chemistry Letters, 2008,18(22):5864-5866.
    [30]Shibata A., Furukawa K., Abe H., et al. Rhodamine-based fluorogenic probe for imaging biological thiol[J]. Bioorganic & Medicinal Chemistry Letters,2008,18(7):2246-2249.
    [31]Beatty K.E., Tirrell D.A. Two-color labeling of temporally defined protein populations in mammalian cells[J]. Bioorganic & Medicinal Chemistry Letters,2008,18(22): 5995-5999.
    [32]Chang P.V., Prescher J.A., Hangauer M.J., et al. Imaging cell surface glycans with bioorthogonal chemical reporters[J]. Journal of the American Chemical Society,2007, 129(27):8400-8401.
    [33]Filippis, V., Boni, S., Dea, E., et al. Incorporation of the fluorescent amino acid 7-azatryptophan into the core domain 1-47 of hirudin as a probe of hirudin folding and thrombin recognition[J]. Protein science,2004,13(6):1489-1502.
    [34]Va'zquez, M.E., Rothman, D.M., Imperiali, B. A new environment-sensitive fluorescent amino acid for Fmoc-based solid-phase peptide synthesis[J]. Organic & biomolecular chemistry,2004,2,1965-1966.
    [35]Patonay, G., Salon, J., Sowell, J., et al. Noncovalent labeling of biomolecules with red and near-infrared dyes[J]. Molecules,2004.9:40-49.
    [36]Kovalskaa V.B., Kryvorotenkoa D.V., Balandaa A.O., et al. Fluorescent homodimer styrylcyanines:synthesis and spectral-luminescent studies in nucleic acids and protein complexes[J]. Dyes and Pigments,2005,67(1):47-54.
    [37]Wang B., Yu C, Fluorescence Turn-On Detection of a Protein through the Reduced Aggregation of a Perylene Probe[J]. Angewandte Chemie,2010,122(8):1527-1530.
    [38]Summerer D., Chen S., Wu N., et al. A genetically encoded fluorescent amino acid[J]. Proceedings of the National Academy of Sciences,2006,103(26):9785-9789.
    [39]Va'zquez, M.E., Nitz M., Stehn J., et al. Fluorescent caged phosphoserine peptides as probes to investigate phosphorylation-dependent protein associations[J]. Journal of the American Chemical Society,2003,125(34):10150-10151.
    [40]Cohen B.E., McAnaney T.B., Park E.S., et al. Probing protein electrostatics with a synthetic fluorescent amino acid[J]. Science,2002,296(5573):1700-1703.
    [41]Harikumar K.G., Pinon D.I., Miller L.J. Fluorescent Indicators Distributed throughout the Pharmacophore of Cholecystokinin Provide Insights into Distinct Modes of Binding and Activation of Type A and B Cholecystokinin Receptors [J]. Journal of Biological Chemistry,2006,281(37):27072-27080.
    [42]Takahata K., Igarashi S. Spectrofluorimetric determination of 10"'M levels of thiol compounds using silver(I)-5,10,15,20-tetrakis(4-sulfophenyl)porphine complex[J]. Chemical and pharmaceutical bulletin,1996,44(5):226-228.
    [43]Yang R.H., Wang K.M., Long L.P. A selective optode membrane for histidine based on fluorescence enhancement of meso-meso-linked porphyrin dimmer [J]. Analytical Chemistry,2002,74(5):1088-1096.
    [44]Imai H., Munakata H., Uemori Y., et al. Chiral recognition of amino acids and dipeptides by a water-soluble zinc porphyrin[J]. Inorganic chemistry,2004,43(4):1211-1213.
    [45]王树军,阮文娟,罗代兵等.新型手性酪氨酸修饰的锌卟啉对氨基酸酯的分子识别研究[J].化学学报,2004,21(62):2165-2170.
    [46]Brahma A., Mandal C, Bhattacharyya D. Characterization of a dimeric unfolding intermediate of bovine serum albumin under mildly acidic condition[J]. Biochimica et Biophysica Acta,2005,1751(2):159-169.
    [47]陈凯,翟春熙,李文等.含芘手性探针分子与蛋白质作用机理的时间分辨荧光光谱研究[J].高等学校化学学报,2004,25(10):1905-1908.
    [48]Dong S.Y., Zhao Z.W., Ma H.M. Characterization of local polarity and hydrophobic binding sites of β-lactoglobulin by using N-terminal specific fluorescence labeling[J]. Journal of Proteome Research,2006,5(1):26-31.
    [49]Wang X.C., Guo L.H., Ma H.M. Analysis of local polarity change around Cys34 in bovine serum albumin during N→B transition by a polarity-sensitive fluorescence probe[J]. Spectrochimica Acta Part A,2009,73(5):875-878.
    [50]Reents R., Wagner M., Schiummer S., et al. Synthesis and Application of Fluorescent Ras Proteins for Live-Cell Imaging[J]. ChemBioChem,2005,6(1):86-94.
    [51]Duan X., Zhao Z., Ye J., et al. Donor-Donor Energy-Migration Measurements of Dimeric DsbC Labeled at Its N-Terminal Amines with Fluorescent Probes:A Study of Protein Unfolding[J]. Angewandte Chemie International Edition,2004,116(32): 4312-4315.
    [52]Lu J.X., Sun C.D., Chen W., et al. Determination of non-protein cysteine in human serum by a designed BODIPY-based fluorescent probe[J]. Talanta 2011,83 (3):1050-1056.
    [53]Lee J.J., Lee S.C., Zhai D.T., et al. Bodipy-diacrylate imaging probes for targeted proteins inside live cells[J]. Chemical Communication,2011,47:4508-4510.
    [54]Komatsu T., Oushiki D., Taked A., et al. Rational design of boron dipyrromethene (BODIPY)-based photobleaching-resistant fluorophores applicable to a protein dynamics study[J]. Chemical Communication,2011,47:10055-10057.
    [55]Landrum M., Smertenko A., Edwards R., et al. BODIPY probes to study peroxisome dynamics in vivo[J], The Plant Journal,2010,62(3),529-538.
    [56]Welder, F., Paul, B., Nakazumi, H., et al. Symmetric and asymmetric squarylium dyes as noncovalent protein labels:a study by fluorimetry and capillary electrophoresis[J]. Journal of Chromatography B,2003,793(1):93-105.
    [57]Volkova K,D., Kovalska V,B., Yu M., et al. Aza-substituted squaraines for the fluorescent detection of albumins[J]. Dyes and Pigments,2011,90(1):41-47.
    [58]Wang B.S., Fan J.L., Sun S.G., et al. 1-(Carbamoylmethyl)-3H-indolium squaraine dyes: Synthesis, spectra, photo-stability and association with BSA[J]. Dyes and Pigments,2010, 85(1-2):43-50.
    [59]Xu Y.Q., Li Z.Y., Malkovskiy A., et al. Aggregation Control of Squaraines and Their Use as Near-Infrared Fluorescent Sensors for Protein[J]. The Journal of Physical Chemistry B, 2010,114(25):8574-8580.
    [60]Vadakkancheril S.J., Kalliat T.A., Mahesh H., et al. Site-Selective Interactions:Squaraine Dye-Serum Albumin Complexes with Enhanced Fluorescence and Triplet Yields[J]. The Journal of Physical Chemistry B,2010,114(17):5912-5919.
    [61]Liu X.Y., Wu X., Yang J.H., Protein determination using methylene blue in a synchronousfluorescence technique[J]. Talanta,2010,81 (3):760-765.
    [62]Ho N.H., Weissleder R., Tung C.H., Development of water-soluble far-red fluorogenic dyes for enzyme sensing[J]. Tetrahedron,2006,62(4):578-585.
    [63]Chen S.M., Li X.H., Ma H.M., New approach for local structure analysis of tyrosine domain in proteins by using site-specific and polarity-sensitive fluorescent probe[J]. Chembiochem,2009,10 (7):1200-1207.
    [64]Chowdhury S.A., Lim M., Specific Binding of Nile Red to Apomyoglobin[J]. Journal of the Korean Chemical Society,2011,55:746-750.
    [65]Mulqueen P., Tingey J., Horrocks W.J., Characterization of Lanthanide(Ⅲ)Ion Binding to Calmodulin Using Luminescence Spectroscopy[J]. Biochemistry,1985,24(23): 6639-6645.
    [66]Jiang N., Wang LL.H., Du C.L., et al. The formation of a new horseradish peroxidase binding rare earth[J]. Environmental Chemistry Letters,2011,9(2):191-196.
    [67]Guo Y.M., Yang J.H., Wu X., et al. Sensitive determination of protein based on the fluorescence enhancement effect of terbium (Ⅲ)-epinephrine-protein-sodium dodecylsulfate system[J]. Luminescence,2009,24(6):372-378,
    [68]吴伯岳,严秀平.稀土发光材料在荧光成像中的应用[J].生物物理学报,2011,27(4):289-300.
    [69]Butcher H., Kennette W., Collins O., et al. A. Sensitive time-resolved fluorescent immunoassay for metallothionein protein[J]. Journal of Immunological Methods,2003, 272(1-2):247-256.
    [70]Wu J., Ye Z.Q., Wang G.L., et al. Visible-light-sensitized highly luminescent europium nanoparticles:Preparation and application for time-gated luminescence bioimaging[J]. Journal of Materials Chemistry,2009,19(9):1258-1264.
    [71]Schrenkhammer, P., Rosnizeck I.C., Duerkop A., et al. Time-resolved fluorescence-based assay for the determination of alkaline phosphatase activity, and application to the screening of its inhibitors [J]. Journal of Biomolecular Screening,2008,13(1):9-16.
    [72]Duerkop A., Aleksandrova D., Scripinets Y., et al. Sensitive Terbium Probes for Luminescent Determination of both Alkaline Phosphatase and Codeine Phosphate[J]. Annals of the New York Academy of Sciences,2008,1130:172-178.
    [73]Guo C., Wu x., Yang J. H. Determination of Proteins Using Fluorescence Enhancement of Tb-Benzoylacetone-Sodium Dodecyl Benzene Sulfonate-Protein System [J]. Journal of Photochemistry and Photobiology A,2006.181(1):50-55.
    [74]Wilson R. The use of gold nanoparticles in diagnostics and detection[J]. Chemical Society Reviews,2008,37(9):2028-2045,
    [75]Liu X.J., Gonzalez M.G., Niessner R., et al. Strong size-dependent photoacoustic effect on gold nanoparticles:a sensitive tool for aggregation-based colorimetric protein detection[J]. Analytical Methods,2012,4:309-311
    [76]Moyano D.F., Rana S., Bunz U.H.F., et al. Gold nanoparticle-polymer/biopolymer complexes for protein sensing[J]. Faraday Discussions,2011,152:33-42.
    [77]Xu S.J., Liu Y., Wang T.H., et al. Highly Sensitive Electrogenerated Chemiluminescence Biosensor in Profiling Protein Kinase Activity and Inhibition Using Gold Nanoparticle as Signal Transduction Probes[J]. Analytical Chemistry,2010,82(22):9566-9572.
    [78]Chen L.Q., Xiao S.J., Peng L., et al. Aptamer-Based Silver Nanoparticles Used for Intracellular Protein Imaging and Single Nanoparticle Spectral Analysis[J]. The Journal of Physical Chemistry B,2010,114(10):3655-3659.
    [79]Wei X., Li H., Li Z.H., et al. Metal-enhanced fluorescent probes based on silver nanoparticles and its application in IgE detection[J]. Analytical and Bioanalytical Chemistry,2012,402(3):1057-1063.
    [80]Kahraman M., Sur I., Culha M. Label-Free Detection of Proteins from Self-Assembled Protein-Silver Nanoparticle Structures using Surface-Enhanced Raman Scattering[J]. Analytical chemistry,2010,82(18):7596-7602.
    [81]Wang L.Q., Li L.Y., Xu Y., et al. Simultaneously fluorescence detecting thrombin and lysozyme based on magnetic nanoparticle condensation[J]. Talanta,2009,79(3): 557-561.
    [82]Jiang X., Weise S., Hafner M., et al. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding[J]. Journal of the Royal Society Interface. 2010,7(1)" S5-S13.
    [83]Wu X.Y., Liu H.J., Liu J.Q., et al. Immunoflucorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nature biotechnology, 2003,21(1):41-46.
    [84]Ghazani A.A., Lee J.A., Klostranec J., et al. High throughput quantification of protein expression of cancer antigens in tissue microarray using quantum dot nanocrystals[J]. Nano Letters,2006,6(12):2881-2886.
    [85]Fahrettin Y., Memet S., Ertan E. The determination of the conduction mechanism and optical band gap of fluorescein sodium salt[J]. Physica B:Condensed Matter,2006, 382(1-2):21-25.
    [86]Hu Y.J., Liu Y, Zhao R.M., et al. Spectroscopic studies on the interaction between methylene blue and bovine serum albumin[J]. Journal of Photochemistry and Photobiology A,2006,179(3):324-329.
    [87]Shrivastava H.Y., Nair B.U. A fluorescence-based assay for nanogram quantification of proteins using a protein binding ligand[J]. Analytical and bioanalytical chemistry,2003, 375(1):169-174.
    [88]Lin H., Lan J., Guan M., et al. Spectroscopic investigation of interaction between mangiferin and bovine serum albumin[J]. Spectrochimica Acta Part A,2009,73(5): 936-941.
    [89]Lakowicz J.R. Principles of fluorescence spectroscopy, third edition[J]. Journal of Biomedical Optics,2008,13:029901.
    [90]Romanchuk K.G. Fluorescein. Physicochemical factors affecting its fluorescence [J]. Survey of Ophthalmology,1982,261(5):269-283.
    [91]Sharma S.N., Sharma H., Singh G., et al. Studies of interaction of amines with TOPO/TOP capped CdSe quantum dots:Role of crystallite size and oxidation potential[J]. Materials Chemistry and Physics,2008,110(2-3):471-478.
    [92]杨频,高飞,生物无机化学原理[M].科学出版社,北京,2002,349.
    [93]Ross P.D., Subramanian S. Thermodynamics of protein association reactions:forces contributing to stability[J]. Biochemistry,1981,20(11):3096-3102.
    [94]Forster T., Sinanoglu O.(Ed.). Modern Quantum Chemistry, Vol.3[M], New York: Academic Press,1966,93
    [95]Seybold P.G., Gouterman M., Callis J. Calorimetric, photometric and lifetime determinations of fluorescence yields of fluorescein dyes[J]. Photochemistry and photobiology,1969,9(3):229-242.
    [96]Valeur B. Molecular Fluorescence:Principles and Applications[M]. Wiley Press. New York.2001,250
    [97]Nanda R.K., Sarkar N., Banerjee R., Probing the interaction of ellagic acid with human serum albumin:a fluorescence spectroscopic study[J]. Journal of Photochemistry and Photobiology A,2007,192(2-3):152-158.
    [98]Sulkowska A. Interaction of drugs with bovine and human serum albumin[J]. Journal of molecular structure,2002,614(1-3):227-232.
    [99]Wu X., Zheng J., Ding H., et al. Study on the interaction between oxolinic acid aggregates and protein and its analytical application[J]. Analytica chimica acta,2007, 596(1):16-22.
    [100]Zhu, X.S., Sun, J., Hu, Y.Y. Determination of protein by hydroxypropyl-[beta]-cyclodextrin sensitized fluorescence quenching method with erythrosine sodium as a fluorescence probe[J]. Analytica chimica acta,2007,596(2): 298-302.
    [101]Cui, F.L., Fan, J., Li, J. P., et al. Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin:investigation by fluorescence spectroscopy[J]. Bioorganic & Medicinal Chemistry,2004,14(19):4975-4977.
    [102]Wang, L.Y., Wang, L., Dong, L., et al. Direct fluorimetric determination of y-globulin in human serum with organic nanoparticle biosensor[J]. Spectrochim. Acta A,2005, 61(1-2):129-133.
    [103]Guo C., Wu X., Yang J., et al. Determination of proteins using fluorescence enhancement of Tb3+-benzoylacetone-sodium dodecyl benzene sulfonate-protein system [J]. Journal of Photochemistry and Photobiology A,2006,181(1):50-55.
    [104]Brannon J.H., Magde D. Absolute quantum yield determination by thermal blooming. Fluorescein[J]. The Journal of Physical Chemistry,1978,82(6):705-709.
    [105]Ollis D.L., White S.W. Structural basis of protein-nucleic acid interactions [J]. Chemical Reviews,1987,87(5):981-995.
    [106]Shweitzer B., Zanette D., Rosangela I., Bovine serum albumin (BSA) plays a role in the size of SDS micelle-like aggregates at the saturation binding:the ionic strength effect, Journal of colloid and interface science,2004,277(2):285-291.
    [107]Lowry O.H., Rosebrough N.J., Farr A.L., et al. Randall, Protein estimation with the Folin phenol reagent[J]. Journal of Biological Chemistry,1951,193:265-275.
    [108]Zhu X.S., Sun J., Hu Y.Y. Determination of protein by hydroxypropyl-β-cyclodextrin sensitized fluorescence quenching method with erythrosine sodium as a fluorescence probe[J]. Analytica Chimica Acta,2007,596(2): 298-302.
    [109]Shrivastaw K.P., Singh S., Sharma S.B. Quantitation of protein content by Biuret method during production of yellow fever vaccine[J]. Biologicals,1995,23(4):299-300.
    [110]Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical biochemistry,1976,72:248-254.
    [111]Wang X.X., Shen H.X., Hao Y.M. Resonance light scattering of protein-amaranth system and its analytical application[J]. Chinese Journal of Analytical Chemistry,2000, 28(11):1388-1390.
    [112]Flores R. A rapid and reproducible assay for quantitative estimation of proteins using bromophenol blue[J]. Analytical biochemistry,1978,88(2):605-611.
    [113]Huang C.B., Zhang K., Yang W.Y., et al. On-Line Flow-Injection Chemiluminescence Determination of Bovine Serum Albumin Using Surfactant-Enhanced Dichlorofluorescein-Hypochlorite System[J]. Analytical Letters, 2010,43(14):2275-2282.
    [114]Long X.F., Liu S.P., Kong L., et al. A study on the interaction of proteins with some heteropoly compounds and their analytical application by resonance Rayleigh scattering method[J]. Talanta,2004,63(2):279-286.
    [115]Zhang X.W., Zhao F.L., Li K.A. Fluorometric method for the microdetermination of protein using indigo carmine[J]. Microchemical journal,2001,68(1):53-59.
    [116]Feng P., Hu X.L., Huang C.Z., Determination of Proteins at Nanogram Levels With Their Enhancement Effects of Resonance Light-Scattering on Quercetin[J]. Analytical letters.1999,32(7):1323-1338.
    [117]Bojinov V.B., Georgiev N.I., Nikolov P.S. Synthesis and photophysical properties of fluorescence sensing ester-and amidoamine-functionalized 1,8-naphthalimides[J]. Journal of Photochemistry and Photobiology A,2008,193(2-3):129-138.
    [118]Souza M.M.D., Correa R., Filho V.C., et al.4-Nitro-1,8-naphthalimides exhibit antinociceptive properties[J]. Pharmazie,2002,56(6):430-431.
    [119]Zhu W.H., Minami N., Kazaoui S., et al. Fluorescent chromophore functionalized single-wall carbon nanotubes with minimal alteration to their characteristic one-dimensional electronic states[J]. Journal of Materials Chemistry,2003,13, 2196-2001.
    [120]ADF 2009.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands,.
    [121]Neto A. C., Muniz E. P., Centoducatte R., et al. Gaussian basis sets for correlated wave functions. Hydrogen, helium, first-and second-row atoms[J].Journal of Molecular Structure,2005,718(1-3):219-224.
    [122]Cha S.Y., Choi M.G., Jeon H. R., et al. Negative solvatochromism of merocyanine dyes:Application as water content probes for organic solvents[J]. Sensors and Actuators B,2011,157(1):14-18.
    [123]Hawe A., Sutter M., Jiskoot W., Extrinsic fluorescent dyes as tools for protein characterization[J]. Pharmaceutical research,2008,25(7):1487-1499.
    [124]Assor Y., Burshtein Z., Rosenwaks S. Spectroscopy and laser characteristics of copper-vapor-laser pumped pyrromethene-556 and pyrromethene-567 dye solutions[J]. Applied optics,1998,37(21):4914-4920.
    [125]Dirr H. W. Solvent effects on the spectroscopic properties of aflatoxin B1[J]. International Journal of Biochemistry,1987,19(11):1137-1140.
    [126]Li Q.Q., Yu S.S., Li Z., et al. New indole-containing luminophores:convenient synthesis and aggregation-induced emission enhancement[J]. Journal of Physical Organic Chemistry,2009,22(3):241-246.
    [127]Hong Y.N., Hao X., Lam J.W.Y., et al. Fluorescent Bioprobes:Structural Matching in the Docking Processes of Aggregation-Induced Emission Fluorogens on DNA Surfaces[J]. Chemistry-A European Journal,2010,16(4):1232-1245.
    [128]Zhang X.Q., Chi Z.G., Xu B.J., et al. Synthesis and Characterization of Triphenylethylene Derivatives with Aggregation-Induced Emission Characteristics[J]. Journal of Fluorescence,2011,21(5):1969-1977.
    [129]Yao H., Morita Y., Kimura K. Effect of organic solvents on J aggregation of pseudoisocyanine dye at mica/water interfaces:Morphological transition from three-dimension to two-dimension[J]. Journal of colloid and interface science,2008, 318(1):116-123.
    [130]Gao W.H., Li N.N., Chen Y.W., et al. Study of interaction between syringin and human serum albumin by multi-spectroscopic method and atomic force microscopy[J]. Journal of Molecular Structure,2010,983(1-3):133-140.
    [131]Gelamo E.L., Silva C.H.T.P., Imasato H., et al. Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants:spectroscopy and modelling[J]. Biochimica et Biophysica Acta,2002,1594(1):84-99.
    [132]Shrivastaw K.P., Singh S., Sharma S.B. Quantitation of protein content by Biuret method during production of yellow fever vaccine[J]. Biologicals,1995,23(4):299-300.
    [133]Gao H., Lei L.D., Liu J.Q., et al. The study on the interaction between human serum albumin and a new reagent with antitumour activity by spectrophotometric methods[J]. Journal of Photochemistry and Photobiology A,2004,167(2-3):213-221.
    [134]Zhang Y.Z., Zhou B., Zhang X.P., et al. Interaction of malachite green with bovine serum albumin:determination of the binding mechanism and binding site by spectroscopic methods[J]. Journal of Hazardous Materials,2009,163(2-3):1345-1352.
    [135]Lemiesz L.T. Paclitaxel-HSA interaction. Binding sites on HSA molecule[J]. Bioorganic & medicinal chemistry,2004,12(12):3269-3275.
    [136]Sandhya B., Hegde A.H., Ramesh K.C. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins:Spectroscopic approach[J]. Spectrochimica Acta Part A,2012,86(2):410-416.
    [137]Zhang H.X., Huang X., Mei P., et al. Studies on the interaction of tricyclazole with β-eyelodextrin and human serum albumin by spectroscopy[J]. Journal of Fluorescence, 2006,16(3):287-294.
    [138]张明翠,汪乐余,李玲等.新荧光试剂5-(4-羧基苯偶氮)-8-水杨醛缩氨基喹啉荧光增敏法测定人血清蛋白质[J].分析化学,2004,32(3):342-344.
    [139]Wang L.Y., Zhou Y.Y., Wang L., et al. Synchronous fluorescence determination of protein with functionalized CdS nanoparticles as a fluorescence probe[J]. Analytica Chimica Acta,2002,466(1):87-92.
    [140]程定玺,王韶华.碱性藏花红-十二烷基苯磺酸钠-蛋白质体系的荧光反应及其分析应用,光谱学与光谱分析[J].2007,1(27):104-107.
    [141]Yuan J., Wang G., Majima K., Synthesis of a terbium fluorescent chelate and its application to time-resolved fluoroimmunoassay[J]. Analytical chemistry,2001,73(8): 1869-1876
    [142]Sun C.X., Yang J.H., Wu X. Study on the fluorescent enhancement effect in terbium-gadolinium-protein-sodium dodecyl benzene sulfonate system and its application on sensitive detection of protein at nanogram level[J]. Biochimie,2004,86(8): 569-578.
    [143]Wang F., Yang J.H., Wu X., et al. Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacers[J]. Chemical physics letters,2005,408(4-6):409^14.
    [144]Tang N.L., Peng J.Y. Determination of proteins with tetracarboxy manganese (Ⅱ) phthalocyanine by resonance light scattering technique[J]. Spectrochimica Acta Part A, 2008,71(4):1246-1249.
    [145]Qin W.W., Gong G.Q., Song Y.M., Determination of proteins by fluorescence quenching of Magdala red[J]. Spectrochimica Acta Part A,2000,56(5):1021-1025.
    [146]Grabchev N.I., Chovelon J.M. Synthesis and functional properties of green fluorescent poly (methylmethacrylate) for use in liquid crystal systems[J]. Polymers for Advanced Technologies,2003,14(9):601-608.
    [147]Zhang H.X., Huang X., Mei P.. et al. Studies on the interaction of tricyclazole with β-cyclodextrin and human serum albumin by spectroscopy[J]. Journal of Fluorescence, 2006,16(3):287-294.
    [148]Wang Y.S., Feng L., Jiang C.Q. Fluorimetric study of the interaction between human serum albumin and quinolones-terbium complex and its application[J]. Spectrochimica Acta Part A,2005,61(13-14):2909-2914.
    [149]Long X.F., Liu S.P., Kong L., et al. A study on the interaction of proteins with some heteropoly compounds and their analytical application by resonance Rayleigh scattering method[J]. Talanta,2004,63(2):279-286.
    [150]Cui F.L., Qin L.X., Zhang G.S., et al. Binding of daunorubicin to human serum albumin using molecular modeling and its analytical application[J]. International Journal of Biological Macromolecule,2008,42(3):221-228.
    [151]Cui F.L., Yan Y.H., Zhang Q.Z., et al. Characterization of the interaction between 8-bromoadenosine with human serum albumin and its analytical application[J]. Spectrochimica Acta Part A,2009,74(4):964-971.
    [152]Faridbod F., Ganjali M.R., Norouzi P. Using Ho3+ Fluorescence Enhancement as a Novel Probe in Monitoring of Human Serum Albumin[J]. Analytical Letters,2008, 41(11):1933-1943.
    [153]Wu X., Zheng J.H., Ding H.H., et al. Determination of protein by hydroxypropyl-β-cyclodextrin sensitized fluorescence quenching method with erythrosine sodium as a fluorescence probe[J]. Analytica chimica acta,2007,596(16): 298-302.
    [154]Link M, Schulze P., Belder D., et al. New diode laser-excitable green fluorescent label and its application to detection of bovine serum albumin via microchip electrophoresis[J]. Microchimica Acta,2009,166(1-2):183-188.
    [155]Chovelon J.M., Grabchev N.I. A novel fluorescent sensor for metal cations and protons based of bis-1,8-naphthalimide[J]. Spectrochimica Acta Part A,2007,67(1): 87-91.
    [156]Bojinov V.B., Panovaa I.P., Chovelon J.M. Novel blue emitting tetra-and pentamethylpiperidin-4-yloxy-1,8-naphthalimides as photoinduced electron transfer based sensors for transition metal ions and protons[J]. Sensors and Actuators B,2008, 135(4):172-180.
    [157]Zhao Y.Y., Xie R.M., Chao X., et al. Bioactivity-directed isolation, identification of diuretic compounds from Polyporus umbellatus[J]. Journal of Ethnopharmacology,2009, 126(1):184-187.
    [158]Zhao Y.Y., Chen X.L., Zhang Y.M., et al. Simultaneous determination of eight major steroids from Polyporus umbellatus by high-performance liquid chromatography coupled with mass spectrometry detections[J]. Biomedical Chromatography,2009,24(2): 222-230.
    [159]Zhao Y.Y., Qin X.Y., Chen S.P., et al. Crystal and molecular structure of rhaponticin from Rheum hotaoense[J]. Journal of Chemical Crystallography,2011,41(3):409-414.
    [160]Kawski A.. Kuklinski B., Bojarski P. Excited state dipole moments of N.N-dimethylaniline from thermochromic effect on electronic absorption and fluorescence spectra[J]. Chemical Physics,2006,320(2-3):188-192.
    [161]Tewari N., Joshi N.K., Rautela R., et al. On the ground and excited state dipole moments of dansylamide from solvatochromic shifts of absorption and fluorescence spectra[J]. Journal of Molecular Liquids,2011,160(3):150-153.
    [162]Kumar S., Rao V.C., Rastogi R.C. Excited-state dipole moments of some hydroxycoumarin dyes using an efficient solvatochromic method based on the solvent polarity parameter, ETN[J]. Spectrochimica Acta Part A,2001,57(1):41-47.
    [163]Ravi M., Soujanya T., Samanta A., et al. Excited-state dipole moments of some Coumarin dyes from a solvatochromic method using the solvent polarity parameter, ENT[J]. Journal of the Chemical Society, Faraday Transactions,1995,91(17): 2739-2742.
    [164]Rauf M.A., Graham J.P., Bukallah S.B. Solvatochromic behavior on the absorption and fluorescence spectra of Rose Bengal dye in various solvents[J]. Spectrochimica Acta Part A,2009,72(1):133-137.
    [165]Jones, G., Willett, P., Glen, R.C., et al. Development and validation of a genetic algorithm for flexible dockingl [J]. Journal of Molecular Biology,1997,267(3):727-748.
    [166]Teleb S.M. Preparation, spectroscopic and thermal studies on the new solid complex Co2(NH2)2(H2O)2(SO4)2[J].Thermochimica acta,1993,228(2):131-136
    [167]Nour, E.M., Rady A.H. Preparation and infrared spectrum of the novel isocyanato complex [Ni2 (NCO)2 (H2 O)4] Cl2 formed by the reaction of urea with NiCl2[J]. Transition Metal Chemistry,1991,16(4):400-401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700