用户名: 密码: 验证码:
磁共振活体示踪猪心梗后经冠脉移植间充质干细胞实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     骨髓间充质干细胞(Bone marrow-derived mesenchymal stem cellsMSCs)移植可以修复受损心肌细胞、促使心肌细胞再生、改善心脏功能。MSCs移植已经成为一种新的方法用于心肌细胞再生替代治疗,为临床治疗心血管疾病开辟了一个新的领域。为了明确细胞移植后,脏器功能的改善是否确由移植细胞所引起,需要知道移植细胞能否到达心肌梗塞区域,能否在心肌梗塞区域存活。而观察移植干细胞在体内迁移和转归一直是让人困扰的问题。既往研究多通过处死实验动物行组织切片检查加以证实,这种方法不利于活体对移植细胞迁移做动态观察,也无法适用于临床研究。因此,若将干细胞移植真正应用于临床治疗,必须解决在活体如何识别、追踪移植的干细胞。本研究用超顺磁性氧化铁纳米粒子(superparamagneticiron oxide,SPIO)及CM-DiI荧光双标记骨髓间充质干细胞;通过微创法建立小型猪闭胸式心肌梗塞(myocardial infarction MI)模型;用Over-The-Wire(OTW)球囊经冠脉移植SPIO及CM-DiI双标记的骨髓间充质干细胞;通过磁共振分子成像来活体示踪移植的骨髓间充质干细胞在心肌中的分布。而且本研究还根据磁共振活体示踪结果,创新性的借用分选造血干细胞及肿瘤干细胞的方法:荧光激活细胞分离技术(fluorescence-activated cell sorting,FACS)分选出移植到心肌梗塞区域的骨髓间充质干细胞,为进一部研究骨髓间充质干细胞的作用机理奠定基础。
     第一部分超顺磁性氧化铁纳米离子和CM-DiI双标记骨髓间充质干细胞
     目的:观察SPIO及CM-DiI对骨髓间充质干细胞的标记效果。方法:全骨髓及密度梯度离心法分离培养猪MSCs。50μg/mL的SPIO及CM-DiI标记第3代MSCs,普鲁士蓝铁染色鉴定SPIO的标记效率,电子显微镜观察细胞内SPIO的摄取;荧光显微镜下观察CM-DiI标记效率。台盼蓝排斥实验观察标记后细胞活性,四唑盐(MTT)比色实验观察标记后细胞生长情况。结果:SPIO及CM-DiI标记MSCs效率高SPIO浓度为50μg/mL,标记时间24h对MSCs的生长、增殖无影响。结论:SPIO及CM-DiI标记猪骨髓间充质干细胞效率高,对细胞生长增殖无影响。
     第二部分建立猪闭胸式心肌梗塞模型
     目的:用微创法建立猪闭胸式心肌梗塞模型。方法:球囊封堵位置在第一对角支远端与第二对角支近端之间,封堵时间为60min。术中心电监护持续监测心电图变化,球囊封堵结束后冠脉造影观察远端血流中断情况。造模7周后行心肌组织病理学检查。结果:造模手术的27头猪死亡3头,24头成功建立心肌梗塞模型;球囊封堵结束后冠脉造影示前降支中远端血流中断;心肌组织病理切片示梗塞区心肌坏死完全。结论:微创法建立猪闭胸式心肌梗塞模型是一种可行、实用的心梗模型制作方法。
     第三部分经冠脉移植SPIO及CM-DiI双标记骨髓间充质干细胞
     目的:评价心肌梗塞后经冠脉移植骨髓间充质干细胞的效果及安全性。方法:27头猪分为5组:MI移植双标记MSCs组(n=6);MI移植SPIO加PBS组(n=6);MI移植CM-DiI单标记MSCs组(n=6);MI对照组(n=6);健康猪移植双标记MSCs组(n=3)。心肌梗塞模型建立2周后每头猪经冠脉移植1×10~8个细胞。细胞移植后5周行超声心动图检查,比较MI移植双标记MSCs组及MI对照组左室射血分数及短轴缩短率。心肌组织切片行荧光显微镜观察及普鲁士蓝铁染色,观察经冠脉移植MSCs的效果。结果:实验动物均成功完成MSCs移植,细胞移植中动物无死亡、未见ST段抬高及严重心律失常。细胞移植后5周,MI移植双标记MSCs组射血分数及短轴缩短率高于MI对照组(P<0.05)。普鲁士蓝铁染色示移植的MSCs位于心肌梗塞区域,呈蓝色。心肌组织冰冻切片荧光显微镜观察移植的MSCs发出红色荧光,呈条带状分布。结论:经冠脉移植SPIO及CM-DiI双标记骨髓间充质干细胞是安全、有效。
     第四部分磁共振活体示踪心肌内移植的骨髓间充质干细胞
     目的:观察磁共振能否活体示踪到经冠脉移植的骨髓间充质干细胞。方法:SPIO标记猪MSCs,普鲁士蓝铁染色鉴定SPIO标记效率。SPIO标记的MSCs在体外行细胞水平磁共振成像。经冠脉移植骨髓间充质干细胞第1、3、5周后行猪心脏磁共振检查。采用快速梯度回波序列完成长轴位四腔心和二腔心扫描,在以长轴位四腔心和二腔心为定位相,垂直于室间隔获得左心室短轴位图像。根据磁共振活体示踪结果,从心尖向心底把心脏切成6~8片。心肌组织切片行普鲁士蓝铁染色及荧光显微镜观察,验证磁共振活体示踪结果。结果:经冠脉移植SPIO及CM-DiI标记的骨髓间充质干细胞在磁共振成像上显影,表现为低信号影,随着时间推移,低信号影逐渐减弱,并可持续至移植后5周。磁共振活体示踪结果与病理组织学检查结果一致。结论:证明磁共振能活体示踪到经冠脉移植的骨髓间充质干细胞。
     第五部分荧光激活细胞分离技术分选出心梗区移植的骨髓间充质干细胞
     目的:探讨荧光激活细胞分离技术从心肌梗塞区分选移植的MSCs可行性。方法:制备新鲜心肌组织单细胞悬液,用流式细胞仪(EPIC ALTRA,BeckmanCoulter)F/1通道分选,激发波长:488nm。分选出CM-DiI标记的移植到心肌梗塞区的骨髓间充质干细胞。荧光显微镜观察分选出的移植细胞,流式细胞仪检测分选出的移植细胞周期,并与移植前的MSCs比较。结果:荧光激活细胞分离技术(FACS)从心肌梗塞区分选出移植的骨髓间充质干细胞,进一步证明了磁共振活体示踪结果。分选出的移植细胞荧光显微镜下观察:细胞呈圆形,细胞均显红色荧光,与移植前的细胞类似。分选出的移植细胞周期测定结果示:G1期为58.3%,增殖指数G2+S期达41.6%。结论:荧光激活细胞分离技术(FACS)能从心肌组织分选出移植的MSCs,该方法为干细胞示踪研究提供新的思路。
Background
     Coronary artery occlusion leads to ischemia and cell death in the heart. Cardiomyocyte death results in scar formation and left ventricular dilatation ultimately leads to progressive heart failure.
     Bone mesenchymal stem cells(MSCs) transplantation provides a potential regenerative therapy for the heart damaged by myocardial infarction. The mechanism of MSCs transplantation therapy remains unclear. Numerous studies have been undertaken in animals and humans to analyze the efficacy of this new approach. The success of cell therapy will depend on the ability to monitor the fate of transplanted cells in vivo. However, rare studies evaluated of survival, migration, and differentiation status of transplantation MSCs. Many methods have been developed to track the destination of the injected stem cells. These tracking methods only confirm the presence of transplantion stem cells in postmortem recipient tissues .
     To better understand the mechanism of cell therapy and potential beneficial effects observed in clinical trials. There is a need to track the transplanted stem cells in vivo.
     Recent advances in the field of MR contrast media and cell labeling supports molecular and cellular imaging. One such approach involves the use of superparamagnetic iron oxide (SPIO) particles as a contrast agent for cell tracking. This exciting new area offers the potential for non-invasive tracking of implanted cells, ideal for monitoring in the clinical setting. The present study including: superparamagnetic iron oxide (SPIO) particles and fluorescent CM-DiI dye dual labeled MSCs;a minimal-invasive model of myocardial infarction in swine; intracoronary injection of SPIO and CM-DiI dual labeled MSCs in a porcine infarct model; in vivo magnetic resonance imaging tracking of bone marrow-derived mesenchymal stem cells via intracoronary administration; according to MR findings, sorted the fluorescently labeled transplantation cells from injury myocardium using fluorescence-activated cell sorting (FACS), a potential novel technique for tracking of transplantation cells.
     Part I Superparamagnetic iron oxide particles and fluorescent CM-DiI dye dual labeled MSCs
     Objective: To investigate the effects of labeling MSCs with SPIO and CM-DiI.Methods: Porcine MSCs were isolated and cultured by the whole bone marrow method and by Percoll density gradient centrifugation. MSCs were labeled with 50μg/mL SPIO and fluorescent CM-DiI dye. The labeling efficiency was tested through Prussian blue staining and fluorescent imaging.The intracellular iron uptake was also assessed with electron microscopy. Labeled MSCs viability and proliferation were determined using Trypan blue rejection method and MTT. Result: Nearly 100% of the MSCs were labeled with SPIO and CM-DiI . SPIO at 50μg/mL doses and treatment times of 24 h did not statistically affect the viability and proliferation of MSCs.Conclusion: Porcine MSCs could be efficiently and safely labeled with SPIO and CM-DiI.
     Part II A minimal-invasive model of myocardial infarction in swine
     Objective: To develop a closed-chest, minimal-invasive swine model of myocardial infarction.Methods: A balloon catheter was advanced into the left descending coronary artery directly beyond the second diagonal branch. The balloon was inflated and occlusion of the vessel, Angiography confirmed while ECG was continuously monitored. The balloon was deflated after 60min.Result: Myocardial infarction was successfully induced in 24 animals. After balloon occlusion, coronary angiography shows blood flow interruption in the distal left anterior descending branch.Post-mortem histological analysis revealed myocardial necrosis.Conclusion:The closed chest,minimally invasive methods represent a useful alternative for studies of myocardial infarction.
     Part III Intracoronary injection of SPIO and CM-DiI dual labeled MSCs in a porcine infarc model
     Objective: To evaluate the effects and safety of intracoronary infusion of mesenchymal stem cells after myocardial infarction.Methods: A total of 27 swine were divided into five groups:healthy animals with dual-labeled MSCs transplantation group(n=3);MI control group(n=6);MI with dual-labeled MSCs transplantation group(n=6); MI with SPIO and PBS transplantation group(n=6); MI with CM-DiI labeled MSCs group(n=6). 1×10~8 MSCs were delivered for one model by intracoronary injection 2 week post myocardial infarction. Heart function were observed 5 weeks after transplantation.The transplantation efficiency was tested through Prussian blue staining and fluorescent imaging.Result: During intracoronary injection of dual labeled MSCs, no adverse events were noted. Prussian blue staining positive cells and fluorescent cells were located in the injury myocardium.Conclusion: This study suggests that intracoronary injection of dual labeled MSCs is probably safe and effective after myocardial infarction.
     Part IV In vivo magnetic resonance imaging tracking of mesenchymal stem cells in ischemic swine heart
     Objective: To track in vivo intracoronary injection of MSCs labeled with SPIO by using magnetic resonance imaging (MRI)in swine myocardial infarction model.Methods: Swine MSCs were labeled with SPIO, Cell labeling efficiency was assessed by Prussian blue stain. SPIO labeled cells underwent MRI in vitro. MR examinations were performed at 1、3and 5 week after intracoronary transplantation. Double echo steady state was used to scan four-chamber and cor biloculare at long axis view, which was considered as locating phase to obtain image of left ventricle at short axis view .The swine were euthanized at 5 week after MR examinations. Hearts were excised and sliced from apex to base into 6~8 transverse sections according to MR findings. MR findings were confirmed by histological examinations results. The transplantated labelled MSCs was tested through Prussian blue staining and fluorescent imaging.Result: The SPIO labelled MSCs transplantation intracoronary produced a hypointense signal using T2-weighted MRI and hypointense signal persisted for up to 5 weeks. Histologic analyses confirmed the presence of SPIO labelled MSCs high retention and mainly localized in the injured myocardium.Conclusion: This study demonstrated that labeled MSCs can be reliably detected and tracked in vivo using MR imaging; MR findings consistency to pathohistological results.
     Part V Sorted the fluorescently labeled transplantated cells from injury myocardium using fluorescence-activated cell sorting
     Objective:To assess the utility of fluorescence-activated cell sorting (FACS) for separating CM-DiI labeled MSCs from injured myocardium.Methods: Fresh single cell suspensions were generated from injured myocardium .Fresh suspensions were sorted by FACS analysis of CM-DiI labeled fluorescent cell. FACS was performed with a FACS Vantage Flow Cytometer (Beckman Coullter ALTRA). The 488-nm argon laser was used.The purification CM-DiI labeled transplantation cells sorted from injured myocardium single cell suspensions with FACS. Selective transplantation was performed using fluorescence microscope and cells cycle was detected by flow cytometry.Result: Success of MSCs transplantation intracoronary was confirmed by FACS analysis. CM-DiI labeled transplantation cells were disassociated from injured myocardium. The purification CM-DiI labeled transplantation cells sorted from injured myocardium display red-fluorescent under fluorescence microscope. The cell cycle G2+S ( % ) was 41.6%.Conclusion: FACS techniques provide a powerful approach for analyzing and purification of transplantation MSCs. The study might provide some new clues for the design of therapeutic approaches for MSCs transplantation.
引文
1.Soleimani,M.and S.Nadri,A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow.Nat Protoc,2009.4(1):p.102-6.
    2.Veyrat-Masson,R.,et al.,Mesenchymal content of fresh bone marrow:a proposed quality control method for cell therapy.Br J Haematol,2007.139(2):p.312-20.
    3.Wu,J.Y.,et al.,[A modified method to isolate and identify the adult mesenchymal stem cells from human bone marrow].Zhongguo Shi Yan Xue Ye Xue Za Zhi,2006.14(3):p.557-60.
    4.Liao,B.,L.Deng,and F.Wang,[Effects of bone marrow mesenchymal stem cells enriched by small intestinal submucosal films on cardiac function and compensatory circulation after myocardial infarction in goats].Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2006.20(12):p.1248-52.
    5.Baddoo,M.,et al.,Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection.J Cell Biochem,2003.89(6):p.1235-49.
    6.Campagnoli,C.,et al.,Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood,liver,and bone marrow.Blood,2001.98(8):p.2396-402.
    7.Fan,X.,et al.,Optimization of primary culture condition for mesenchymal stem cells derived from umbilical cord blood with factorial design.Biotechnol Prog,2009.25(2):p.499-507.
    8.Dvorakova,J.,et al.,Isolation and characterization of mesenchymal stem cell population entrapped in bone marrow collection sets.Cell Biol Int,2008.32(9):p.1116-25.
    9.Boutry,S.,et al.,Magnetic labeling of non-phagocytic adherent cells with iron oxide nanoparticles: a comprehensive study. Contrast Media Mol Imaging, 2008. 3(6): p. 223-32.
    
    10. Kostura, L., et al., Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed, 2004.17(7): p. 513-7.
    
    11. Bos, C, et al., In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology, 2004.233(3): p. 781-9.
    
    12. Arbab, A.S., et al., Efficient magnetic cell labeling with protamine sulfate complexed to ferumoxides for cellular MRI. Blood, 2004. 104(4): p. 1217-23.
    
    13. Amsalem, Y., et al., Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation, 2007.116(11 Suppl): p. I38-4.5.
    
    14. Carstanjen, B., et al., Successful engraftment of cultured autologous mesenchymal stem cells in a surgically repaired soft palate defect in an adult horse. Can J Vet Res, 2006. 70(2): p. 143-7.
    
    15. Jung, K.H., et al., Effect of human umbilical cord blood-derived mesenchymal stem cells in a cirrhotic rat model. Liver Int, 2009. 29(6): p.898-909.
    
    16. Chacko, S.M., et al., Myocardial oxygenation and functional recovery in infarct rat hearts transplanted with mesenchymal stem cells. Am J Physiol Heart Circ Physiol, 2009. 296(5): p. H1263-73.
    
    17. Timmers, L., et al., Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res, 2007. 1(2): p.129-37.
    18.Farrell,E.,et al.,Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in Vivo.Biochem Biophys Res Commun,2008.369(4):p.1076-81.
    19.Hauger,O.,et al.,MR evaluation of the glomerular homing of magnetically labeled mesenchymal stem cells in a rat model of nephropathy.Radiology,2006.238(1):p.200-10.
    20.Ramaswamy,S.,et al.,Magnetic resonance imaging of chondrocytes labeled with superparamagnetic iron oxide nanoparticlesin tissue-engineered cartilage.Tissue Eng Part A,2009.15(12):p.3899-910.
    21.Neri,M.,et al.,Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles:relevance for in vivo cell tracking.Stem Cells,2008.26(2):p.505-16.
    22.Omidkhoda,A.,et al.,Study of apoptosis in labeled mesenchymal stem cells with superparamagnetic iron oxide using neutral comet assay.Toxicol In Vitro,2007.21(6):p.1191-6.
    23.Frank,J.A.,et al.,Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents.Radiology,2003.228(2):p.480-7.
    24.黄浙勇,等.,铁羧葡胺标记猪间充质干细胞的体内外磁共振成像研究.介入放射学杂志,2007.16(2):115-121.
    25.Arbab,A.S.,et al.,Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation:methods and techniques.Transplantation,2003.76(7):p.1123-30.
    26.Hill,J.M.,et al.,Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells.Circulation,2003.108(8):p.1009-14.
    27.Lim,S.Y.,et al.,The effects of mesenchymal stem cells transduced with Akt in a porcine myocardial infarction model.Cardiovasc Res,2006.70(3):p.530-42.
    1.Naslund,U.,et al.,A closed-chest myocardial occlusion-reperfusion model in the pig: techniques, morbidity and mortality. Eur Heart J, 1992. 13(9): p.1282-9.
    
    2. Grund, F., et al., A new approach to normalize myocardial temperature in the open-chest pig model. J Ap'pl Physiol, 1998. 84(6): p. 2190-7.
    
    3. Hearse, D.J., Species variation in the coronary collateral circfation during regional myocardial ischaemia: a critical determinant of the rate of evolution and extent of myocardial infarction. Cardiovasc Res, 2000. 45(1): p. 213-9.
    
    4. Reffelmann, T. and R.A. Kloner, Microvascular alterations after temporary coronary artery occlusion: the no-reflow phenomenon. J Cardiovasc Pharmacol Ther,2004.9(3):p. 163-72.
    
    5. Reffelmann, T. and R.A. Kloner, Effects of adenosine and verapamil on anatomic no-reflow in a rabbit model of coronary artery occlusion and reperfusion. J Cardiovasc Pharmacol, 2004. 43(4): p. 580-8.
    
    6. Edwards, R., et al., A model of closed chest regional myocardial infarction in the rabbit: a clinically relevant in vivo assay system of post-infarction remodelling. Basic Res Cardiol, 2002. 97(5): p. 374-83.
    
    7. Suzuki, Y., et al., In vivo porcine model of reperfused myocardial infarction: in situ double staining to measure precise infarct area/area at risk. Catheter Cardiovasc Interv, 2008. 71(1): p. 100-7.
    
    8. Kraitchman, D.L., et al., Noninvasive assessment of myocardial stunning from short-term coronary occlusion using tagged magnetic resonance imaging. J Cardiovasc Magn Reson, 2000. 2(2): p. 123-36.
    
    9. Abegunewardene, N., et al., Usefulness of MRI to differentiate between temporary and long-term coronary artery occlusion in a minimally invasive model of experimental myocardial infarction. Cardiovasc Intervent Radiol, 2009.32(5):p.1033-41.
    10.Reffelmann,T.,et al.,A novel minimal-invasive model of chronic myocardial infarction in swine.Coron Artery Dis,2004.15(1):p.7-12.
    11.Krombach,.G.A.,et al.,Minimally invasive close-chest method for creating reperfused or occlusive myocardial infarction in swine.Invest Radiol,2005.40(1):p.14-8.
    12.Christian,T.F.,et al.,Gated SPECT imaging to detect changes in myocardial blood flow during progressive coronary occlusion.Int J Cardiovasc Imaging,2008.24(3):p.269-76.
    13.Chareonthaitawee,P.,et al.,The effect of collateral flow and myocardial viability on the distribution of technetium-99m sestamibi in a closed-chest model of coronary occlusion and reperfusion.Eur J Nucl Med,2000.27(5):p.508-16.
    1.Zippel,N.,M.Schulze,and E.Tobiasch,Biomaterials and mesenchymal stem cells for regenerative medicine.Recent Pat Biotechnol,2010.4(1):p.1-22.
    2.Alaminos,M.,et al.,Transdifferentiation potentiality of human Wharton's jelly stem cells towards vascular endothelial cells.J Cell Physiol,2010.
    3.Rameshwar,P.,H.Qiu,and S.F.Vatner,Stem cells in cardiac repair in an inflammatory microenvironment.Minerva Cardioangiol,2010.58(1):p.127-46.
    4.Fujimoto,K.L.,.et al.,Naive rat amnion-derived cell transplantation improved left ventricular function and reduced myocardial scar of postinfarcted heart. Cell Transplant, 2009. 18(4): p. 477-86.
    
    5. Song, H., et al., Modification of mesenchymal stem cells for cardiac regeneration. Expert Opin Biol Ther, 2010. 10(3): p. 309-19.
    
    6. Brehm, M., E. Darrelmann, and B.E. Strauer, [Stem cell therapy in acute myocardial infarction]. Internist (Berl), 2008. 49(9): p. 1068-78.
    
    7. Barallobre-Barreiro, J., et al., Comparison of gene expression profiles in a porcine infarct model after intracoronary, transthoracic, or transendocardiac injection of heterologous bone marrow mesenchymal cells. Transplant Proc,2009. 41.(6): p. 2279-81.
    
    8. Brunskill, S.J., et al., Route of delivery and baseline left ventricular ejection fraction, key factors of bone-marrow-derived cell therapy for ischaemic heart disease. Eur J Heart Fail, 2009. 11(9): p. 887-96.
    
    9. Charwat, S., et al., Effect of intramyocardial delivery of autologous bone marrow mononuclear stem cells on the regional myocardial perfusion.NOGA-guided subanalysis of the MYSTAR prospective randomised study.Thromb Haemost, 2010. 103(3): p. 564-71.
    
    10. Freyman, T., et al., A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction.Eur Heart J, 2006. 27(9): p. 1114-22.
    
    11. George, J.C., et al., Transvenous intramyocardial cellular delivery increases retention in comparison to intracoronary delivery in a porcine model of acute myocardial infarction. J Interv Cardiol, 2008. 21(5): p. 424-31.
    
    12. Moscoso, I., et al., Analysis of different routes of administration of heterologous 5-azacytidine-treated mesenchymal stem cells in a porcine model of myocardial infarction. Transplant Proc, 2009. 41(6): p. 2273-5.
    13. Martinez de Ilarduya, O., et al., Gene expression profiles in a porcine model of infarction: differential expression after intracoronary injection of heterologous bone marrow mesenchymal bells. Transplant Proc, 2009. 41(6):p. 2276-8.
    
    14. Valina, C., et al., Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction. Eur Heart J, 2007. 28(21): p.2667-77.
    
    15. Cao, F., et al., Long-term myocardial functional improvement after autologous bone marrow mononuclear cells transplantation in patients with ST-segment elevation myocardial infarction: 4 years follow-up. Eur Heart J,2009. 30(16): p. 1986-94.
    
    16. Hofmann, M., et al., Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation, 2005. 111(17): p. 2198-202.
    
    17. Hou, D., et al., Radiolabeled cell distribution after intramyocardial,intracoronary, and interstitial retrograde coronary venous delivery:implications for current clinical trials. Circulation, 2005. 112(9 Suppl): p.1150-6.
    
    18. Penicka, M., et al., Images in cardiovascular medicine. Early tissue distribution of bone marrow mononuclear cells after transcoronary transplantation in a patient with acute myocardial infarction. Circulation,2005. 112(4): p. e63-5.
    
    19. Strauer, B.E., et al., [Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction].Dtsch Med Wochenschr, 2001. 126(34-35): p. 932-8.
    20.Strauer,B.E.,et al.,Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans.Circulation,2002.106(15):p.1913-8.
    21.Wollert,K.C.,et al.,Intracoronary autologous bone-marrow cell transfer after myocardial infarction:the BOOST randomised controlled clinical trial.Lancet,2004.364(9429):p.141-8.
    22.Nyolczas,N.,et al.,Design and rationale for the Myocardial Stem Cell Administration.After Acute Myocardial Infarction(MYSTAR) Study:a multicenter,prospective,randomized,single-blind trial comparing early and late intracoronary or combined(percutaneous intramyocardial and intracoronary) administration of nonselected autologous bone marrow cells to patients after acute myocardial infarction.Am Heart J,2007.153(2):p.212 e1-7.
    23.Makela,J.,et al.,Acute homing of bone marrow-derived mononuclear cells in intramyocardial vs.intracoronary transplantation.Scand Cardiovasc J,2009.43(6):p.366-73
    24.Perin,E.C.,et al.,Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction.J Mol Cell Cardiol,2008.44(3):p.486-95.
    25.姚康,等,经冠状动脉自体骨髓单个核细胞移植治疗急性心肌梗死的安全性观察.中华心血管病杂志,2006,34(7):577-581.
    26.Katritsis,D.G.,et al.,Transcoronary transplantation of autologous mesenchymal stem cells and endothelial progenitors into infarcted human myocardium.Catheter Cardiovasc Interv,2005.65(3):p.321-9.
    27.要彤,等,经冠状动脉内注射体外培养骨髓间充质干细胞的安全性.中国 组织工程研究与临床康复,2008,12(25):4819-4823.
    28.Vulliet,P.R.,et al.,Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs.Lancet,2004.363(9411):p.783-4.
    29.Llano,R.,et.al.,Intracoronary delivery of mesenchymal stem cells at high flow raters after myocardial infarction improves distal coronary blood flow and decreases mortality in pigs.Catheter Cardiovasc Interv,2009.73(2):p.251-7.
    1.段峰,等.干细胞标记示踪技术的研究进展.国际医学放射学杂志,2009.32(6):563-566.
    2.张文高,等.SPIO细胞成像在神经系统疾病治疗中的应用和研究进展.中国神经精神疾病杂志,2009.35(1):57-59.
    3.Hill,J.M.,et al.,Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells.Circulation,2003.108(8):p.1009-14.
    4.Huang,Z.Y.,et al.,[In vivo cardiac magnetic resonance imaging of superparamagnetic iron oxides-labeled mesenchymal stem cells in swines].Zhonghua Xin Xue Guan Bing Za Zhi,2007.35(4):p.344-9.
    5.何庚戌,等.经冠状动脉内移植骨髓间充质干细胞在体示踪及体内再分布的实验研究.中国胸心血管外科临床杂志,2008.15(3):195-199.
    6.Amsalem,Y.,et al.,Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium.Circulation,2007.116(11 Suppl):p..I38-45.
    7.Himes,N.,et al.,In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction.Magn Reson Med,2004.52(5):p.1214-9.
    8.李宗芳,等.MR示踪观察面神经损伤大鼠脑内移植超顺磁性氧化铁标记神经干细胞.中国医学影像技术,2009.25(11):1941-1944.
    9.Arbab,A.S.,et al.,Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging.Radiology,2003.229(3):p.838-46.
    10.Pittenger,M.F.and B.J.Martin,Mesenchymal stem cells and their potential as cardiac therapeutics.Circ Res,2004.95(1):p.9-20.
    11.Frank,J.A.,et al.,Methods for magnetically labeling stem and other cells for detection by in vivo magnetic resonance imaging.Cytotherapy,2004.6(6):p.621-5.
    12.Pawelczyk,E.,et al.,Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells:implications for cellular magnetic resonance imaging.NMR Biomed,2006.19(5):p.581-92.
    13.Jiang,W.,et al.,Intravenous transplantation of mesenchymal stem cells improves cardiac performance after acute myocardial ischemia in female rats.Transpl Int,2006.19(7):p.570-80.
    14.Dai,W.,et al.,Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium:short- and long-term effects.Circulation,2005.112(2):p.214-23.
    1.谭亚君,等.磁性激活细胞分选技术分离胃癌患者外周血、门静脉血癌细胞及临床初步应用.上海医学检验杂志,2003.18(3):145-147.
    2.付军,等.脑肿瘤干细胞分选技术.中国神经肿瘤杂志,2008.6(1):20-24.
    3.刘智广,等.流式细胞术分选调试初探.医疗装备,1998.11(11):6-7.
    4.周丽,等.流式细胞仪研制的技术进展.现代医学仪器与应用,2003.15(1): 11-17.
    5.Schoeberlein,A.,et al.,Tissue-specific engraftment after in utero transplantation of allogeneic mesenchymal stem cells into sheep fetuses.Am J Obstet Gynecol,2005.192(4):p.1044-52
    6.Bilsland,J.G.,et al.,A rapid method for the quantification of mouse hippocampal neurogenesis in vivo by flow cytometry.Validation with conventional and enhanced immunohistochemical methods.J Neurosci Methods,2006.157(1):p.54-63.
    7.Smith,M.J.,et al.,Analysis of differential gene expression in colorectal cancer and stroma using fluorescence-activated cell sorting purification.Br J Cancer,2009.100(9):p.1452-64.
    1. Hamada, S., et al, TIMI frame count immediately after,primary coronary angioplasty as a predictor of functional recovery in patients with TIMI 3 reperfused acute myocardial infarction. J Am Coll Cardiol, 2001. 38(3): p.666-71.
    
    2. Kamihata, H., et al., Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines.Circulation, 2001. 104(9): p. 1046-52.
    
    3. Hatada, K., et al., Clinical significance of coronary flow to the infarct zone before successful primary percutaneous transluminal coronary angioplasty in acute myocardial infarction. Chest, 2001. 120(6): p. 1959-63.
    
    4. Urbich, C. and S. Dimmeler, Endothelial progenitor cells functional characterization. Trends Cardiovasc Med, 2004. 14(8): p. 318-22.
    
    5. Urbich, C. and S. Dimmeler, Endothelial progenitor cells: characterization and role in vascular biology. Circ Res, 2004. 95(4): p. 343-53.
    
    6. Kinnaird, T., et al., Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res, 2004. 94(5): p.678-85.
    
    7. Badorff, C. and S. Dimmeler, Neovascularization and cardiac repair by bone marrow-derived stem cells. Handb Exp Pharmacol, 2006(174): p. 283-98.
    
    8. Kehat, I., et al., Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol, 2004. 22(10): p. 1282-9.
    9.Menard,C.,et al.,Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium:a preclinical study.Lancet,2005.366(9490):p.1005-12.
    10.Dowell,J.D.,et al.,Myocyte and myogenic stem cell transplantation in the heart.Cardiovasc Res,2003.58(2):p.336-50.
    11.Taylor,D.A.,et al.,Regenerating functional myocardium:improved performance after skeletal myoblast transplantation.Nat Med,1998.4(8):p.929-33.
    12.Cen,H.H.,et al.,[Isolation,culturation and adipogenisis committed differentiation of adult human mesenchymal stem cell].Zhejiang Da Xue Xue Bao Yi Xue Ban,2003.32(2):p.137-40.
    13.Friedenstein,A.J.,J.F.Gorskaja,and N.N.Kulagina,Fibroblast precursors in normal and irradiated mouse hematopoietic organs.Exp Hematol,1976.4(5):p.267-74.
    14.Luria,E.A.,et al.,Bone formation in organ cultures of bone marrow.Cell Tissue Res,1987.248(2):p.449-54.
    15.张薇薇,等.间充质干细胞临床试验中的问题及其解决策略.中国实验血液学杂志,2007.15(4):901-904.
    16.Olivier,E.N.,A.C.Rybicki,and E.E.Bouhassira,Differentiation of human embryonic stem cells into bipotent mesenchymal stem cells.Stem Cells,2006.24(8):p.1914-22.
    17.Afzal,M.R.,et al.,Preconditioning promotes survival and angiomyogenic potential of mesenchymal stem cells in the infarcted heart via NF-kappaB signaling.Antioxid Redox Signal,2010.12(6):p.693-702.
    18.Gnecchi,M.,et al.,Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement.FASEB J,2006.20(6):p.661-9.
    19.Li,W.,et al.,Bcl-2 engineered MSCs inhibited apoptosis and improved heart function.Stem Cells,2007.25(8):p.2118-27.
    20.Mias,C.,et al.,Mesenchymal stem cells promote matrix metalloproteinase secretion by cardiac fibroblasts and reduce cardiac ventricular fibrosis after myocardial infarction.Stem Cells,2009.27(11):p.2734-43.
    1.张贵祥,等.分子影像学的研究范畴及其进展.中国医学影像技术,2005.21(11):11-14.
    2.朱朝晖,等.分子影像技术活体追踪移植干细胞的研究进展.现代仪器,2007.(4):6-8.
    3.宋亭,等.磁共振增强扫描对急性心肌梗塞诊断的研究.影像诊断与介入放射学,1999.8(2):68-71.
    4.Saeed,M.,et al.,Identification of myocardial reperfusion with echo planar magnetic resonance imaging.Discrimination between occlusive and reperfused infarctions.Circulation,1994.90(3):p.1492-501.
    5.Saeed,M.,et al.,Reperfused myocardial infarctions on T1- and susceptibility-enhanced MRI:evidence for loss of compartmentalization of contrast media.Magn Reson Med,1994.31(1):p.31-9.
    6.Sandstede,J.,et al.,[Evaluating signal intensity of movement-impaired myocardial segments in MR delayed images after administration of Gd-DTPA.Correlation of regional increase in contraction after revascularization].Radiologe,2000.40(2):p.150-4.
    7.苗翠莲,等.心肌活性MRI研究及进展.临床放射学杂志,2001.20(7):546-548.
    8.赵新湘,等.延时增强MRI对心肌活性的评价及应用进展.心血管病学进展,2009.30(4):710-713.
    9.Orlic,D.,Adult bone marrow stem cells regenerate myocardium in ischemic heart disease.Ann N Y Acad Sci,2003.996:p.152-7.
    10.Orlic,D.,et al.,Bone marrow cells regenerate infarcted myocardium.Nature,2001.410(6829):p.701-5.
    11.黄浙勇,等.铁羧葡胺标记猪间充质干细胞的体内外磁共振成像研究.介入放射学杂志,2007.16(2):115-121.
    12.Bulte,J.W.,et al.,Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells.Nat Biotechnol,2001.19(12):p.1141-7.
    13.Hill,J.M.,et al.,Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells.Circulation,2003.108(8):p.1009-14.
    14.Amsalem,Y.,et al.,Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium.Circulation,2007. 116(11 Suppl):p.I38-45.
    15.Himes,N.,et al.,In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction.Magn Reson Med,2004.52(5):p.1214-9..
    16.陆敏杰,等.超顺磁氧化铁在心血管MRI中的应用.国外医学(临床放射学分册),2005.28(4):266-269.
    17.白英利,等.超小型超顺磁氧化铁粒子对比剂的应用现状及进展.医学影像学杂志,2008.18(4):444-446.
    18.Trivedi,R.A.,et al.,In vivo detection of macrophages in human carotid atheroma:temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI.Stroke,2004.35(7):p.1631-5.
    19.郭亮,等.超微型超顺磁性氧化铁增强磁共振成像评价兔动脉粥样硬化斑块:磁敏感伪影量化的意义(英文).中国组织工程研究与临床康复,2009.13(43):8418-8424.
    20.王蓓.等.超微超顺磁性氧化铁增强磁共振检测动脉粥样硬化斑块的实验研究.中国医学影像技术,2008.24(6):826-829.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700