用户名: 密码: 验证码:
磁流变阻尼器模型比较与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流变阻尼器(Magneto-Rheological Fluids Damper,MRD)应用于智能车辆悬架系统设计是一新兴的国际前沿研究课题。由于MRD的阻尼力对外加直流磁场、激励幅度和频率具有很强的依赖特性,且呈强滞环和饱和非线性特性,因此建立准确的MRD特性模型,以及设计能满足智能车辆悬架系统多目标性能、且能补偿MRD滞环非线性特性的混合半主动控制器,是目前急需解决的挑战性任务。
     论文在综合分析国内外学者提出的MRD各种滞环阻尼力-速度特性模型基础上,提出了MRD的依赖于直流磁场的电流控制特性和依赖于激励性质的滞环算子可分离的半主动控制特性,建立了相应的电流控制与滞环特性相分离的一般化模型,且易于求解其逆模型。应用提出的基于Sigmoid的电流控制函数对典型的非线性滞环双粘滞模型、现象模型、S型滞环模型和通用滞环模型进行了修正,并针对某型号MRD,应用其实验数据对这些修正模型的参数进行了辨识。将这些修正模型分别与四分之一车辆悬架模型相结合,采用经典的“天蓬”半主动控制策略,在谐波、平滑阶跃和随机路面激励作用下,对这些修正模型在不同激励信号作用下的工作特性进行了对比分析研究。结果表明:修正后的模型均具有准确适应控制电流变化的能力,且在不同控制电流和激励作用下,修正模型的计算结果都能较好地拟合试验结果,模型的准确性得到了明显提高。
     论文进一步应用通用滞环模型和改进的“开-关”阻尼控制律,以及由对称阻尼型MRD产生不对称阻尼特性控制算法,设计了一种基于逆模型的混合半主动控制器。将该控制器与基于通用滞环模型的四分之一车辆悬架模型相结合,在车辆运行速度和负荷,以及路面粗糙程度等条件变化时,对悬架系统的性能和该半主动控制器的鲁棒性进行了系统的分析。结果表明:提出的基于逆模型半主动控制器设计对于车辆运行条件的不确定性具有良好的鲁棒特性,能抑制MRD滞环非线性和“开-关”特性引起的瞬时冲击。该研究成果对实现车辆共振抑制、振动隔离、悬架空间、车轮接地等多目标悬架性能的MRD智能车辆半主动悬架设计具有重要的意义。
The intelligent vehicle suspension design applying the magneto-rheological fluids damper (MRD) has become one of international forefront subjects. The damping force of MRD shows heavy hysteresis and saturation nonlinearities and has strong dependences on both applied direct magnetic field and exciting frequency and magnitude, it is thus a challenge task to accurately model characteristics of MRD and synthesis a hybrid semi-active controller to meet the multi-objective performances of vehicle suspension and compensate the hysteresis nonlinearity.
     The dissertation focuses on reviewing the proposed different hysteretic damping force versus velocity models of the MRD, and further proposes a generalized model which decouples the current control dependence on magnetic field and the hysteron dependence on exciting nature and is easy to derive the inverse model. The proposed current control gain with Sigmoid function is employed to modify the proposed Nonlinear hysteresis bi-viscous model, Phenomenal hysteresis model, S hysteresis model and Generalized hysteresis model, and identify parameters of these models on basis of the measuring data of a candidate MRD. Furthermore, the operation properties of these modified models are systematically compared by combining these models with the quarter-vehicle dynamic model and the classic "Skyhook" control policy, under harmonic, rounded pulse and random road excitations. The results show that these modified models can accurately describe the current control property and better match the measured data, under different drive currents and excitations.
     A new inverse model based hybrid semi-active controller is further developed, by employing the proposed generalized hysteresis model and the modified "on-off" damping law, as well as the control algorithm for generating asymmetric damping property from the symmetric damping MRD design. The controller is integrated with generalized hysteresis model and the quarter-vehicle dynamic model, so as to systematically evaluate the controller robust and suspension performances under varying vehicle operation speed and load, and varying road surface excitation, the results show that the proposed inverse model based hybrid semi-active controller has enhanced robustness on vehicle operating uncertainties, and can better suppress the hysteresis and switching transient effects of the MRD. The dissertation study plays an important role in improving the MRD intelligent vehicle suspension design to realize the multi-objective suspension performances such as oscillation suppression, vibration isolation, suspension space, road-holding, etc..
引文
[1]Rabinow J,The magnetic fluid clutch[J],AIEE Trans,1948,67:1308-1315.
    [2]http://www.mrfluid.com V[3]周云,谭平,磁流变阻尼器控制理论与技术[M],北京:科学出版社,2007,16-31。
    [4]欧进萍,结构振动控制--主动、半主动与智能控制[M],北京:科学出版社,2003,296-298。
    [5]Wang E R,Syntheses and analyses of semi-active control algorithms for a magnetorheological damper for vehicle suspensions[D],Montreal,Canada,Concordia University,2005.
    [6]http://delphi.com/manufactures/auto/chsteer/ride/magneride/
    [7]Carlson J.D.,MR fluids and devices in the real world[J],International Journal of Modern Physics B,2005,19:7-9.
    [8]Carlson J.D.,Catanzarite D.M.,St Clair,K.A.,Commercial magnetorheological fluid devices[A],Procedings 5th Int.Conf.On ER Fluids,MR Suspensions and Associated Technology[C],Bullougla,Singapore:World Scientific,1996,20-28.
    [9]唐新鲁,有关电流变液、磁流变液机理若干问题的研究[D],合肥:中国科学技术大学,1996。
    [10]潘胜,吴建耀,胡林,磁流变液的屈服应力与温度效应[J],功能材料,1997,28(2):264-266。
    [11]关新春,磁流变液及其智能结构减振驱动器的理论与试验研究[D],哈尔滨:哈尔滨工业大学,2000。
    [12]刘奇,张平,王东亚,黄元龙,磁流变体(MRF)材料的制备及性能研究[J],功能材料,2001,32(3):257-259。
    [13]廖昌荣,陈伟民,余森,黄尚廉,磁流变阻尼器件设计中若干技术问题探讨[J],功能材料与器件学报,2001,7(4):345-349。
    [14]Spencer B.F.Jr.,Dyke S.J.,Sain M.K.,et al.Phenomenological model for magnetorheological dampers[J].Journal of Engineering Mechanics,1997,123(3):230-238.
    [15]Choi S.B.,Lee B.K.,Park Y.P.,A hysteresis model for field-dependent damping force of a magnetorheological damper[J].Journal of Sound and Vibration,2001,245(2):375-383.
    [16]Wereley N.M.,Pang L,Kamath G.M.,Idealized hysteresis modeling of electrorheological and magnetorheological dampers[J],Journal of Intelligent Material,Systems and Structures,1998,9:642-649.
    [17]翁建生,胡海岩,张庙康,磁流变阻尼器的试验建模[J],振动工程学报,2000,13(4):616-621。
    [18]夏品奇,基于系统识别理论的磁流变阻尼器模型[J],工程力学,2003,20(3):115-119。
    [19]杨礼康,潘双夏,王维锐,冯培恩,磁流变减振器滞环特性试验及建模方法[J],机械工程学报,2006,42(11):137-143。
    [20]李秀领,李宏男,磁流变阻尼器的双Sigmoid模型及试验验证[J],振动工程学报,2006,19(2):168-172。
    [21]Wang E R,Ma X Q,Rakheja S,et al.,Modeling hysteretic characteristics of an MR-fluid damper[C],Proceedings of the Institutions of Mechanical Engineers,Journal of Automobile Engineering,2003,217(D7):537-550.
    [22]Lai C.Y.,and Laio W.H.,Vibration Control of A Suspension System via A Magnetorheological Fluid Damper,SPIE,2000,4073:240-251.
    [23]Choi S.B.,Performance Comparison of Vehicle Suspensions Featuring Two Different Electrorheological Shock Absorbers,Proceeding of Institution of Mechanical Engineers,Part D,Journal of Automobile Engineering,2000,217:999-1010.
    [24]Makoto Yokoyama,J.Karl Hedrick,Shigehiro Toyama,A Model Following Sliding Mode Controller for Semi-Active Suspension Systems with MR Dampers,Proceedings of the American Control Conference Arlington,VA June 25-27,2001,2652-2657.
    [25]翁建生,基于磁流变阻尼器的车辆悬架的半主动控制[D],南京:南京航空航天大学,2001年。
    [26]余淼,汽车磁流变半主动悬架控制系统研究[D],重庆:重庆大学,2003,109-114。
    [27]Guo D L,Hu H Y,Yi J Q,Neural network control for a semi-active vehicle suspension with a magnetorheological damper[J],Journal of Vibration and Control,2004,10(3):461-471.
    [28]王昊,整车悬架振动智能半主动控制研究[D],南京:南京航空航天大学,2006,111-112。
    [29]Wang E R,Lu F X,Rakheja S,et al.,Skyhook based semi-active control of vehicle suspension with symmetric MR-damper[C],Proceedings of the International Conference on Sensing Computing and Automation,Chong Qing,2006,1797-1802.
    [30]Wang E R,Ye Biaoming,Chen Y S,et al.,Research on generation of asymmetric F-v characteristics from symmetric MR-damper[J],Chinese J of Mechanical Enginnering,2006,19(2):239-244.
    [31]王恩荣,汪自虎,苏春翌,Rakheja Subhash,磁流变阻尼器驱动的智能车辆悬挂控制及实验[J],南京师范大学学报(工程技术版),2007,7(1):1-7。
    [32]王恩荣,Su Chunyi,Rakheja S,新型可控磁流液阻尼器的应用研究[J],南京师范大学学报(工程技术版),2003,3(2):35-39。
    [33]Carrera web site,http://www.carrerashocks.com,2002.
    [34]Gavin H.P.,Hanson R.D.,Filisko F.E.,Electrorheological dampers,Part 2:testing and modeling[J],Journal ofApplied Mechanics,ASME,1996,63(9):676-682.
    [35]Stanway R,Sproston J.L.,Stevens N.G.,Non-linear modeling of an electrorheological vibration damper[J].Journal of Electrostatics,1987,20:167-184.
    [36]Shames I.H,Cozzarelli F.A.,Elastic and Inelastic Stress Analysis[M],Englewood Cliffs:Prentice Hall,1992,120-122.
    [37]Dyke S.J.,Seismic protection of a benchmark building using magnetorheological dampers[A],Proceedings of the 2nd World Conference on Structural Control[C],Kyoto,Japan,1998.
    [38]周强,瞿伟廉,磁流变阻尼器的两种力学模型和试验验证[J],地震工程与工程振动,2002,22(4):144-150。
    [39]Pang L,Kamath G.M.,Wereley N.M.,Dynamic characterization and analysis of magnetorheological damper behavior[A],DAVIS L P.Proceedings of SPIE-International Society Optical Engineering[C],Washington:SPIE,1998,3327:284-302.
    [40]汪建晓,孟光,磁流变液阻尼器用于振动控制的理论及试验研究[J],振动与冲击,2001,20(2):39-46。
    [41]Wen Y.K.,Method of random vibration of hysteretic systems[J],Journal of the Engineering Mechanics Division,ASCE,1976,102(2):249-263.
    [42]徐赵东,李爱群,程文壤,叶继红,磁流变阻尼器带质量元素的温度唯象模型[J],工程力学,2005,22(2):144-148。
    [43]Dyke S.J.,Fu Y,Frech S,et al.,Application of magnetorheological dampers to seismically excite structures[A],Proceedings of the 17th International Modal Analysis Conference[C].Kissimmee,1999.
    [44]Fu Y,Dyke S.J.,Frech S,et al.Investigation of magnetorheological dampers for earthquake hazard mitigation[A].Proceedings of the 2nd World Conference on Structural Control[C],Kyoto,Japan,1998:349-358.
    [45]关新春,欧进萍,磁流变耗能器的阻尼力模型及其参数确定[J],振动与冲击,2001,20(1):5-8。
    [46]Fu Y,Dyke S.J.,Caicedo J.M.,et al.,Experimental verification of multi-input seismic control strategies for smart dampers[J],Journal of Engineering Mechanics,2001,127(11):1152-1164.
    [47]Yoshioka H,Ramallo J.C.,Spencer B.E,"Smart" base isolation strategies employing magnetorheological dampers[J],Journal of Engineering Mechanics,2002,128(5):540-551.
    [48]Ehrgott R.C.,Masri S.F.,Modeling of oscillatory dynamic behavior of electrorheological materials in shear[J],Smart Materials and Structures,1992,4:275-285.
    [49]徐赵东,沈亚鹏,磁流变阻尼器的计算模型及仿真分析[J],建筑结构,2003,33(1):68-70。
    [50]涂建维,瞿伟廉,邹承明等,MR智能阻尼器试验研究及径向基网络模型[J],武汉理工大学学报,2003,25(1):43-45。
    [51]Zhou L,Chang C C.Neural network realization of structural vibration control using MR damper[J],Trans of Nanjing Univ of Aeronaut & Astronaut,2001,18(2):144-150.
    [52]何亚东,黄金枝,何玉敖,智能磁流变(MR)阻尼器半主动控制的研究[J],振动工程学报,2003,16(2):198-202。
    [53]杨礼康,基于磁流变技术的车辆半主动悬挂系统理论与试验研究[D],杭州:浙江大学,2004,103-109。
    [54]王恩荣,陈余寿,马晓青,苏春翌,Rakheja S,MR阻尼器控制与滞环特性相分离的F-v模型[J],机械工程学报,2005,41(7):186-191。
    [55]刘鹏,基于改进遗传算法的MR阻尼器模型参数识别[D],哈尔滨:哈尔滨工业大学,2006,19-45。
    [56]薛定宇,陈阳泉,高等应用数学问题的MATLAB求解[M],北京:清华大学出版社,2004,176-181。
    [57]喻凡,林逸,汽车系统动力学[M],北京:机械工业出版社,2005,190-200。
    [58]Karnopp D.C.,Active and semi-active vibration isolation,Transactions of the ASME,Journal of Special 50~(th)Anniversary Design Issue,1995,117:177-185.
    [59]应亮,MR阻尼器驱动的智能车辆悬架半主动控制研究[D],南京:南京师范大学,2007,37-47。
    [60]薛定宇,陈阳泉,基于MATLAB/Simulink的系统仿真技术与应用[M],北京:清华大学出版社,2002,192-249。
    [61]Rakheja.S and Sanker.S.,Vibration and shock isolation performance of a semi-active "on-off" damper[J],Transactions of the ASME,Journal of Vibration,Acoustics,Reliability in Design,1985,107(4):398-403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700