稻、鸭、鱼共育稻田浮游植物群落的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻田是地球上最重要的人工湿地,也是受人为干扰最大的生态系统,有丰富的生物种群。于2005年6月至8月在华中农业大学试验场,进行了稻、鸭、鱼共育稻田浮游植物群落的研究试验,试验分养鸭组(D)、鱼鸭组(DF)、养鱼组(F)3个试验组,1个对照组(R),每组3个重复,共采样5次,通过对浮游植物的种类、密度、生物量、相似性、多样性、优势度和差异性的分析,研究了稻田浮游植物的群落组成和结构,以及鸭、鱼对浮游植物的群落组成和结构的影响。
     本次试验共检测到浮游植物38属150个种和亚种,其中裸藻门57个种及亚种,绿藻门46个种及亚种,硅藻门31个种及亚种,蓝藻门13个种及亚种。R组和F组分别检出79个种及亚种和85个种及亚种,D组和DF组分别检出86个种及亚种和100个种及亚种。有鸭组和无鸭组在种类数量和组成上有明显差异,有鸭组种类多于无鸭组,且以裸藻门种类最多;无鸭组则以绿藻门种类最多,有鱼组种类又多于无鱼组。
     浮游植物的密度5次的平均值DF组最大是4.113×10~6ind/L,其余依次是F组3.418×10~6ind/L,R组1.963×10~6ind/L,D组最小0.651×10~6ind/L。浮游植物的生物量5次平均值DF组17.80mg/L明显高于其他3组,F组9.37mg/L,R组6.99 mg/L,D组最低2.41mg/L。
     浮游植物的相似性DF组与其他组的相似性较低,R组、D组、F组之间的相似性较高。硅藻门相似性最高,其次是蓝藻门,裸藻门相似性最低。蓝藻门、绿藻门,是DF组与其他组相似性低,R组、D组、F组之间相似性高;硅藻门相似性则是F组与其他3组之间相似性低,R组、D组、DF组之间较高;裸藻门R组与其他3组相似性低,D组、DF组、F组之间相似性高。鸭、鱼的活动对裸藻门相似性影响最大,其次是绿藻门,对硅藻门的影响最小。
     浮游植物多样性系数平均值DF组最大1.56,其次是D组1.47,R组为1.43,F组最小1.26。鱼、鸭的活动对浮游植物的Margalef多样性系数有一定的影响,鸭的活动增大了浮游植物的Margalef多样性系数,鱼的活动则降低了浮游植物的Margalef多样性系数。
     浮游植物密度优势度R组、F组主要是小型藻类为优势,D组和DF组第1次、第2次是以小型藻类为优势,后期则是以大型藻类为优势。浮游植物生物量优势度R组从裸藻属、菱形藻属为优势演变成鼓藻属为优势;D组和DF组则是从裸藻属为优势演变成裸藻属和实球藻属为优势;F组优势度初期的第1次、第2次是裸藻属、菱形藻属为优势,第3次、第5次是实球藻属为优势,第4次是鼓藻属为优势。
     试验结果表明稻田中有鸭有利于大型浮游植物的生长、繁殖,无鸭有利于小型浮游植物的生长、繁殖;有鱼组浮游植物的数量(密度和生物量)多于无鱼组。DF组浮游植物的种类、数量比其他组都高,最适宜浮游植物的生长、繁殖;D组数量比其他组都低,最不适宜于浮游植物的生长、繁殖;稻、鸭、鱼主要是通过改变稻田水体的光照和营养而影响浮游植物的种类和数量。
Rice field is the most important artificial wetland on the earth and is the most disturbing ecosystem with abundant biological populations. In the present study, we investigated the constitution of phytoplankton community in the rice field which cultivate ducks and fishes together at Experimental Base of Huazhong Agricultural University from June to August in 2005. The experiment has three test groups and a control group. During the experiment period, we sampled 5 times and analyzed the phytoplankton community through the species composition, density, biomass, similarity index, diversity index and dominance index. The influences of ducks and fishes on phytoplankton community in the rice fields were analyzed.
     In total, 38 genus and 150 species including subspecies were observed in this experiment, which were composed by 57 species of Euglenophyta, 46 of Chlorophyta, 31 of Bacillariophyta and 13 of Cyanophyta. The group R and The group F had 79 and 85 taxonomic units, respectively. Furthermore, there were 86 and 100 taxonomic units detected in group D and DF, respectively.
     The maximum average density of total 5 samples of the phytoplankton was 4.113×10~6 ind/L in group DF, followed by group F with 3.418×10~6 ind/L and group R with 1.963×10~6 ind/L, but the minimum was 0.651×10~6 ind/L in group D. Correspondingly, the maximum average biomass of total 5 samples of the phytoplankton was 17.80 mg/L in group DF, significantly higher (P<0.05) than that in the other 3 groups which was 9.37 mg/L in group F and 6.99 mg/L in group R, as well as the lowest of 2.41mg/L in group D.
     The similarity of the whole phytoplankton community between the group DF and the other 3 groups was less than that among the other 3 groups. The highest similarity was found in Bacillariophyta, followed by Cyanophyta but the lowest in Euglenophyta. The similarity of Cyanophyta was in accordance with the whole phytoplankton community, as well as that of Chlorophyta. The similarity of Bacillariophyta was lower between the group F and the other 3 groups than that among the other 3 groups. The similarity of Euglenophyta was the same as in Bacillariophyta but change to group R. The activities of the ducks and fishes in the rice field had most greatly impact on the similarity of Euglenophyta, secondly on that of Chlorophyta but minimal on Bacillariophyta.
     The maximum average diversity factor of the phytoplankton was 1.56 in group DF, followed by 1.47 in group D and 1.26 in group R, while the minimum was 1.26 in group D. There were obviously different influences of the activities of ducks and fishes on the Margalef diversity factor of the phytoplankton community. The ducks activities increased the Margalef diversity factor but the fishes' activities decreased it.
     The dominant element of the phytoplankton composition in group R and group F was macroscopic algae, the same as in the initial stage of group D and group DF, but the macroscopic algae in the late stage of group D and group DF. The component with the dominant phytoplankton biomass changed from Euglena and Nitzschia to Cosmarium in group R, and from Euglena to Euglena and Pandorina in group D and group DF. The component with the dominant phytoplankton biomass was Euglena and Nitzschia in the first and second sampling in the initial stage in group F, whereas Pandorina in the third and fifth sampling, and Cosmarium in the fourth sampling.
     The result showed that the cultivating of ducks in the rice fields promoted the growth and reproduction of the macroscopical algae but inhibited that of the microscopical algae. The density and biomass of the phytoplankton in the rice fields cultivating fishes was more than those of the rice fields without fishes. The species and quantity of group DF were so obviously higher than the other three groups that the group DF was the most suitable rice fields for the growth and reproduction of the phytoplankton, while the group D was in the opposite of the group DF. The system that the rice fields cultivating ducks and fishes affected the species and quantity of the phytoplankton in it by changing the illumination and nitrition of the rice fields' water body.
引文
1.卞有生编著.国内外生态农业对比-理论与实践.北京:中国环境科学出版社,2000,42:142-145;225-228
    2.曹志强,梁知洁,赵艺欣,等.北方稻田养鱼的共生效.应研究应用生态学报,2001,12(3):405-408
    3.曹凑贵,汪金平,邓环,等.稻鸭共生对稻田浮游植物群落的影响.见:赵振祥.第四届亚洲稻鸭共作研讨会论文集.镇江:镇江市科技局,2004.80-6
    4.曹凑贵,汪金平,邓环,等.稻鸭共生对稻田水生动物群落的影响.生态学报,2005,25(9):2644-2649.
    5.曹凑贵,汪金平,金晖,等.稻鸭共育对稻田水体藻类群落的影响.水生生物学报,2007,31(1):146-148.
    6.陈飞星,张增杰.稻田养蟹模式的生态经济分析.应用生态学报,2002,13(3):323-326
    7.陈昌齐,刘方贵编著.稻田养鱼原理与稻作技术.中国农业出版社:1995,北京,92-103
    8.甘德欣,黄璜,黄梅,等.稻鸭共栖高产高效的原因与配套技术.湖南农业科学,2003,(5):31-32,36
    9.黄璜,杨志辉,王华,等.湿地稻-鸭复合系统的CH4排放规律.生态学报,2003,23(5):929-934
    10.黄璜,黄梅.湿地农田生态系统农药“零星”输入的生态效益分析.湖南农业科学,2003,(3):45-46
    11.黄毅斌,翁伯琦,唐建阳,等.调控稻田人工生物圈及其新耕作体系研究Ⅳ.综合调控技术对水稻生长和稻田生态环境的影响.福建省农科院学报,1997(3):44-50
    12.胡鸿钧,魏心印编著.中国淡水藻类:系统、分类、生态.北京:科学出版社,2006
    13.金千瑜,禹盛苗,欧阳由男,等.中国稻-鸭农作系统发展概况与稻鸭共育技术研究.赵振祥主编.第四届亚洲稻鸭共作研讨会论文集.镇江:镇江市科技局,2004.1-6
    14.刘建康主编.东湖生态学研究(一).北京:科学出版社,1990,184-189
    15.刘小燕,杨治平,黄璜,等.湿地稻、鸭复合系统中田间杂草的变化规律.湖南农业大学学报,2004,30(3):292-294
    16.刘小燕,杨治平,黄璜,等.湿地稻-鸭复合系统中水稻纹枯病的变化规律.生态学报,2004,24(11):2579-2583
    17.刘焕亮主编.水产养殖学概论.青岛:青岛出版社,2000,365-372
    18.刘蔚秋,王永繁,徐润林,等.生物防治稻田与普通稻田水体中浮游植物的生态特征研究.应用生态学报,2001,12(1):59-62.
    19.李月梅.稻田养鱼生态效益.农业系统科学与综合研究.1999,15(1)
    20.李云明,赵守清,陈绍才,等.稻鸭共育技术控制水稻主要害虫杂草效果分析.中国植保导刊,2004,24(2):14-5
    21.李克勤,黄璜,任泽明.湖南稻鸭生态种养与频振式诱蛾灯技术示范成效与技术[J].中国稻米,2003,(5):35-37
    22.李学军,乔志刚,聂国兴.稻-鱼-蛙立体农业生态效益的研究.生态学杂志,2001,20(2)37-40
    23.林忠华.稻田人工生物圈的调控技术研究.耕作与栽培,1997,1、2:24-28
    24.凌熙和编著.淡水健康养殖技术手册.北京:中国农业出版社,2001
    25.马国强,庄雅津,周铭成.稻鸭共作无公害水稻生产技术初.农业装备技术,2002,(2):20-21
    26.倪达书,汪建国.稻鱼共生生态系统中物质循环及经济效益.水产科技情报,1985,(6):1-4
    27.宁理功.稻-鸭-泥鳅复合生态系统土壤理化性状及效益研究.[硕士学位论文],长沙:湖南农业大学图书馆,2003.
    28.冉茂林,陈铮.我国稻田养鸭的发展及研究现状.中国畜牧杂志,1993,29(5):58-59,61.
    29.童泽霞.稻田养鸭与稻田生物种群的关系初.中国稻米,2002,(1):33-34
    30.汪金平,曹凑贵,金晖,等.稻鸭共生对稻田水生生物群落的影响.中国农业科学,2006,39(10):2001-2008.
    31.王强盛,黄丕生,甄若宏,等.稻鸭共作对稻田营养生态及稻米品质的影响.应用生态学报,2004.15(4):639-645
    32.王玉堂,王友田.稻田生态渔业利用技术.北京:中国农业出版社,1994
    33.吴万夫.张荣权主编.渔业工程技术.河南:河南科学技术出版社,2000,127-128
    34.吴宗文,王尤江.建稻鱼工程实现优质高效生态渔业综合效益研究.四川环境,1998,17(3):51-54
    35.杨志辉,黄璜,王华.稻-鸭复合生态系统稻田土壤质量研究.土壤通报,2004,35(2):117-121
    36.禹盛苗,金千瑜,欧阳由男,等.稻鸭共育对稻田杂草和病虫害的生物防治效应.中国生物防治,2004,20(2):99-102
    37.章宗涉,黄祥飞.编著.淡水浮游生物研究方法.北京:科学出版社,1991,232-252
    38.朱凤姑,丰庆生,诸葛梓,等.稻鸭生态结构对稻田有害生物群落的控制作用.浙江农业学报,2004,16(1):37-41
    39.朱清海,李镇鹏,徐春河.稻-萍-蟹立体农业的效益.生态学杂志,1994,13(5):1-4
    40.朱清海.稻-泥鳅田生态系统能流、物流和效益分析.中国稻米,1997,1:26-27
    41.赵文主编.水生生物学(水产饵料生物学).北京:中国农业出版社,2004
    42.A.J.Rothuis,N.Vromant,V.T.Xuan,C,J.J.Riehter,F.Ollevier.The effect office seeding rate on rice and fish production and weed abundance in direct-seeded rice-fish culture Aquaculture.1999,172:255-274
    43.A.K.Y.Haroon,K.A.Pittman.Rice-fish culture:feeding,growth and yield of two size classes of puntius gonionotus Bleeker and Oreoehromis spp.in Bandladesh,Aquacultrue.1999,154:261-281
    44.Bambaradeniya C.N.B.,FonsekaK.T.and Ambagahawatte C.L.1998.A preliminary studyof faunaand flora of arice fleld in Kandy,Sri Lanka.Ceylon Journal of Science(Biological Sciences).25:1-22.
    45.Bambaradeniya C.N.B.2000.Ecology and biodiversity in an irrigated rice field ecosystem in Sri Lanka.Ph.D.Thesis,University of Peradeniya,Sri Lanka.525pp.
    46.Bambaradeniya C.N.B.Biodiversity associated with an irrigated rice agro-ecosystem in Sri Lanka Biodiversity and Conservation.2004.13:1715-1753,20.
    47.David C.Little,Pimjai Surintaraseree,Niek Innes-Taylor,Fish culture in rainfed rice of northeast Thailand.Aquaculture,1996,140:295-321
    48.Fernando C.H.1956.The fish fauna of paddy fields and smallirrigation ditches in the western lowlands of Ceylon;and a bibliography of references to fish in paddy fields.Ceylon Journal of Science(C) 7:223-227.H(?)kan Berg,Rice monoeulture and integrated riee-fishfarming in the Mekong Delta,Vietnam-eonomic and ecologieal considerations,Ecologieal Economies,2002,41:95-107
    49.H(?)kan Berg,Pestieide use in rice and rice-fish farms in the Mekong Delta.Vieinam,Crop Protection.2001,20:897-905
    50.Halawart.M.1994.Fish as biocontrol agents in rice.The potential of Common carp Cyprinus carpio (L.) and Nile tilapia Oreochromis niloticus(L.).Verlag Josaf,Weikersheim,Germany.166pp.
    51.Halawart,M.Borlinghaus,M.Kaule,G.Aetivity pattern of fish in rice fields.Aquaculture 1996,145,159-170.
    52.Lampitt,S.,Wishner,E.,Turley,M.,et al.Marine snow studies in the northeast Atlantic Ocean:distribution and roles as a food source for migrating plankton[J].Marine Biology,1993,116:680-702.
    53.Margalef,R..Information theory in ecology[J].Gensyst.1958,3:36-71
    54.Mustow,S.E.Nath,A.Tollervey,A.G.Sannarm,G.Effect of planting pattern on shading and phytoplankton photosynthesis in Bangladesh rice-fish farms.ICLARM Quarterly(Aquabyte).1996,19(4):23-26
    55.S.E.Mustow.The effcts of shading on Phytoplankton Photosynthesis in rie-fish fields in Bangladesh,Agrieure.Eeosystems and Environment,2002,90:89-96
    56.Schoenly K.,CohenJ.E.,HeongK.L.,LitsingerJ.A.,AquinoG.B.,BarrionA.T.et al.1996.Foodweb dynamics of irrigated rice felds at five elevations in Luzon,Philippines.Bulletin of Entomological
    57.Thlbaud,d'Oultremont,Andrew Paul Gutierrez.Amultitrophic model of a rice-fish agroecosystem:Ⅰ.A tropical fishpond food web.Eeological Modelling,2002,156:123-142
    58.Thibaud,d'Oultremont.Andrew Paul Gutierrez.A multitrophic model of a rice-fish agroccosystem:Ⅱ.Linking the flooded rice-fishpond systems.Eeologieal Medelling.2002,155:159-176
    59.Velmurugu V.1980.A review of weed control in rice.In:Proceedings of the Rice Symposium,Department of Agriculture,Colombo,Sri Lanka,pp.109-132.
    60.Weerakoon A.C.J.and Samarasinghe E.L.1958.Mesofauna of the soil of apaddy field in Ceylon- a preliminary survey.Ceylon Journal of Science(Biological Sciences) 1(2):155-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700