用户名: 密码: 验证码:
基于视觉诱发电位的脑—机接口分析算法优化及实时控制系统构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着脑神经科学、电生理学、计算机科学、信号处理技术和生物医学工程等领域的飞速发展以及医疗康复领域的需要,脑-机接口(Brain-Computer Interface, BCI)技术正迅速成为全球科学家的研究热点之一。BCI是在大脑和计算机或其他外部设备之间建立不依赖于常规大脑信息输出通路(外周神经和肌肉组织)的全新通信和控制技术。借此,人们可以直接通过大脑的思维活动来表达想法或操纵设备,而不需要任何言语或动作。这使得严重残疾患者与外界环境的交互通信成为了可能,将有效地帮助提高他们的生活质量,同时也为健康用户提供了一种不同于传统通信形式(如,听觉,视觉和触觉形式等)的全新通信交流方式。
     BCI的实现可以通过多种不同的脑信号形式来完成,如,非植入式的脑电图(Electroencephalogram, EEG),脑磁图(Magnetoencephalogram, MEG),功能磁共振成像(Functional Magnetic Resonance Imaging, fMRI),近红外光谱(Near-Infrared Spectroscopy, NIRS)和植入式的脑皮层电图(Electrocorticogram, ECoG)。由于EEG技术最为安全实用,且成本相对较低,因此其在BCI的研究中被应用最为广泛。本文采用这种非植入式EEG技术,主要对基于视觉诱发电位的BCI分析算法优化和实时控制系统构建问题进行了研究。研究工作所取得的主要成果如下:
     (1)针对稳态视觉诱发电位(Steady-State Visual Evoked Potential, SSVEP)的识别过程中的相关性参考信号优化问题,将多维信号分析的思想引入典型相关分析,提出了一种多维典型相关分析(Multiway Canonical Correlation Analysis, MCCA)。 MCCA通过对三阶张量EEG数据(导联×时间×试验)与二维正余弦信号之间的多维相关性分析寻找最优的相关性参考信号。优化得到的刺激频率参考信号不仅准确反应了EEG信号中的SSVEP频率成分,同时包含了被试间差异性和试验间共性等信息。利用SSVEP诱发实验中记录的EEG数据,证实了所提出的MCCA算法有效地提高了在较短时间窗内的SSVEP识别精度。
     (2)提出了一种基于最小绝对收缩和选择算子(Least Absolute Shrinkage and Selection Operator, LASSO)回归的稀疏表征识别模型,并将其应用于解决SSVEP的识别问题。该算法通过执行EEG信号与所有刺激频率参考信号之间LASSO回归,从而形成一个稀疏表征问题,稀疏的回归权值向量反映了EEG信号中最主导的频率成分,即当前的目标刺激频率。这种稀疏表征算法有效地增强了SSVEP识别的鲁棒性,缩短了识别所需的时间,从而提高了基于SSVEP的BCI系统实时性。
     (3)从不同分析角度出发提出了三种事件相关电位(Event-Related Potential,ERP)空间特征优化算法:基于FastICA的P300快速提取算法,用于在少次试验下通过多导联去噪以准确地提取P300模式;基于离散粒子群优化的P300分类最优导联选择算法,通过群智能优化搜索产生最高分类性能的EEG导联组合,用以确定各被试的P300分类最优导联;基于Fisher准则的正则化共空间模式算法,通过多导联空间优化提取单次试验下具有高可判别性的模式特征,以提高ERP分类精度。利用Hoffmann's P300数据集和实验所采集的人脸感知ERP数据集,证实了所提出的上述三种ERP空间特征优化算法的有效性。
     (4)理论上导联数量越多时所能提供的ERP特征信息就越丰富,从而可能得到更好的ERP分类效果。然而,多导联多采样点的串联会导致特征向量维数过高而出现所谓的维数灾现象,这将严重影响所学习分类器的泛化能力,从而导致较差的分类效果。针对该问题,将广泛应用于压缩传感领域的稀疏(Sparsity)正则化技术成功引入线性判别分析,提出了一种基于l1-范数(稀疏)正则化的线性判别分析算法(Sparse Linear Discriminant Analysis, SPLDA),并用于解决小样本高维特征下的ERP分类问题。通过大量的实验数据集证实了SPLDA算法对ERP准确分类的有效性。
     (5)针对ERP分类问题中使用传统向量化高维特征时所带来的维数灾问题,将一般线性判别分析扩展至多维判别分析,提出了一种空间-时间判别分析算法(Spatial-Temporal Discriminant Analysis, STDA)。STDA算法通过对EEG的空间维和时间维进行交替协同优化以学习两个投影矩阵从而使投影后的特征在目标类和非目标类之间的可判别性达到最大化。利用所学习的两个投影矩阵将构造的各空间-时间二维样本转化为新的维数显著降低的一维样本,有效地改善了协方差矩阵参数估计,并增强了在小训练样本集下所学习分类器的泛化能力。利用BCI竞赛-Ⅲ's P300数据集和实验所采集的ERP数据集,证实了所提出的STDA算法对减少基于ERP的BCI系统校验时间的有效性,其对提高系统实用性有着十分重要的意义。
     (6)将认知神经科学领域中广泛研究的人脸感知结构处理(Configural Processing)特性成功引入BCI系统的设计中,开发了基于人脸结构感知的多ERP融合BCI系统。该BCI系统的刺激范式采用了具有结构损失人脸作为刺激,并结合传统基于P300的BCI系统中的Oddball范式进行刺激呈现。生动形象的人脸刺激有助于帮助缓解被试长时间使用该系统后所可能产生的疲劳和反感,且人脸结构损失促使被试更加积极地注视刺激,并引起大脑中与结构信息处理相关的更高水平认知功能响应,即诱发出了显著的人脸结构处理事件相关VPP和N170成分。经过大量的刺激物实验比较分析,证实了基于人脸结构感知的多ERP(VPP、N170和P300)融合BCI系统的优良性能。
     (7)在Simulink/Matlab (Mathworks Inc., USA)平台上成功开发了三种基于人脸结构感知相关的多ERP融合BCI控制系统:智能轮椅控制系统、机器假肢控制系统和机器人交互系统。这些系统均不要求用户有任何肌肉神经的动作,只需专注于所设计的BCI范式,即可实现对轮椅的驾驶操作、对机器假肢的移动操作(如抓取食物和传递物品等)以及针对机器人控制的多种操作。
In recent years, with rapid development of the neuroscience, electrophysiology, computer science, signal processing technology, biomedical engineering fields and requirement of the medical rehabilitation field, brain-computer interface (BCI) is becoming one of the hottest research topics of scientists around the world. BCI is a novel communication and control technique that allows direction connection between a human brain and a computer or other external device without depending on conventional information output paths (such as, peripheral nerve and muscle tissue) of the brain. With the BCI, people can express ideas and operate devices directly through thought activities in their brains without any speech and gesture. The BCI makes interaction communication between severely disabled subjects and external environment possible, and will improve effectively quality of their life. Also, the BCI provides an alternative means of communication to those traditional ones (such as, auditory, visual and tactile ways) for healthy subjects.
     BCI can be developed using various means of brain signals, such as, non-invasive Electroencephalogram (EEG), Magnetoencephalogram (MEG), Functional Magnetic Resonance Imaging (fMRI), Near-Infrared Spectroscopy (NIRS), and invasive Electrocorticogram (ECoG). Since the EEG-based BCI is more secure with high practicability, and requires relatively inexpensive equipments, it has been more widely studied and developed. This study adopts the non-invasive EEG technique and focuses on analysis algorithm optimization and real-time system establishment for the visual evoked potential-based BCI. The main results achieved by this study are summarized as follows:
     (1) Conception of multiway signal processing is introduced into canonical correlation analysis to solve the correlation reference signal optimization for SSVEP recognition. A multiway canonical correlation analysis (MCCA) is proposed. The MCCA algorithm implements correlation analysis between a three-order EEG tensor (channel X time X trial) and a two-way sine-cosine signal matrix, to find the optimal correlation reference signals. Optimized correlation reference signals contain important information of subject-specific variability and trial-to-trial consistency. Experimental results validate that such optimal correlation reference signals derived by the MCCA assist to improve the SSVEP recognition performance.
     (2) A sparse representation recognition model based on least absolute shrinkage and selection operator (LASSO) regression is proposed for SSVEP recognition. The LASSO recognition model implements regression between the EEG and composite reference signals to form a sparse representation. The solved sparse weight vector implies the dominant frequency components in EEG and hence the current target stimulus frequency. Analysis results indicate the proposed LASSO recognition model enhances robustness and decreases required time for the SSVEP recognition, and hence improves practicability of the SSVEP-based BCI.
     (3) Three spatial features optimization algorithms are proposed:P300fast extraction algorithm based on FastICA, which is to extract P300effectively using few trials EEG with muli-channel denoising; Channel selection algorithm based on discrete particle swarm optimization (DPSO) for P300classification, which is to search the optimal channel configuration yielding the best classification performance by swarm optimization; Fisher's criterion regularizd common spatial pattern (FCCSP), which is to extract the most discriminantive event-related potential (ERP) features from single-trial by multi-channel spatial optimization, and hence to improve classification performance. The aforementioned three algorithms are validated based on the Hoffmann's P300dataset and face perception ERP dataset, respectively.
     (4) Theoretically, more channels provide richer information of ERP features, and hence should yield better ERP classification performance. However, the feature vectors formed by concatenation of multi-point from muli-channel are typically high dimensional, and most probably result in the so-called curse-of-dimensionality that will depress seriously generalization capacity of the trained classifier and cause poor classification performance. To solve such problem, a sparsity regularization technique, which has been widely discussed in compressed sensing, is introduced into linear discriminant analysis to propose a l1-norm (sparsity) regularized linear discriminant analysis (SPLDA). Extensive experimental tests validate the SPLDA can classifify ERP effectively even with few high-dimensional features.
     (5) A spatial-temporal discriminant analysis (STDA) is proposed based on multiway extension of the traditional LDA to solve the curse-of-dimensionality caused by the vectorized high-dimensional features in the ERP classification. The STDA implements collaboratively optimization in the spatial and temporal dimensions of EEG to learn two projection matrices rendering the projected features have maximal discriminantive information between target and non-target classes. The two learned projection matrices are then used to transform the constructed spatial-temporal two-way samples to new one-way samples with much lower dimensionality, which improves significantly covariance matrices estimation in the subsequent discriminant analysis, and hence enhances generalization capacity of the learned classifier. The proposed STDA is validated with the BCI Competition-Ⅲ's dataset and our own experimental dataset. Results show the STDA is effective to reduce system calibration time of the ERP-based BCI, which is considerably important to improve the practicability of BCI system.
     (6) Configural information processing of human faces, which has been widely researched in the field of cognitive neuroscience, is successfully introduced into the BCI design, such that a hybrid BCI system exploiting simutaneously multiple ERPs is developed. The proposed BCI system is based on an oddball paradigm using stimuli of facial images with loss of configural face imformation. The vivid facial images are ideally effective to resist fatigue and discomfort of subjects for long time use. Loss of configural information makes face perception more difficult and associated with higher-level cognitive functions, which encourages subjects to focus attension on the target more actively, and elicits significantly discriminative ERPs (VPP and N170). Extensive investigations on various types of stimuli validate effectiveness of the proposed hybrid BCI system exploiting simutaneously multiple ERPs (VPP, N170and P300).
     (7) With the Simulink/Matlab (Mathworks Inc., USA) plantform, three real-time BCI control systems are developed using the multiple ERPs-based hybrid BCI paradigm: Intelligent wheelchair control system; robot arm control system; humanoid robots interaction system. All the three systems require not any neuromuscular function but only attention function of brain to realize wheelchair navigation, robot arm operation (e.g., catch food and deliver goods), and humanoid robots control.
引文
[1]J. J. Vidal. Toward Direct Brain-Computer Communication [J]. Annual Review of Biophysics and Bioengineering,1973,2:157-180.
    [2]J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan. Brain-computer interfaces for communication and control [J]. Clinical Neurophysiology, 2002,113(6):767-791.
    [3]J. R. Wolpaw, D. J. McFarland, and T. M. Vaughan. Brain-computer interface research at the Wadsworth Center [J]. IEEE Transactions on Rehabilitation Engineering,2000,8(2): 222-226.
    [4]B. Blankertz, K. R. Muller, G. Curio, T. M. Vaughan, G. Schalk, J. R. Wolpaw, A. Schlogl, C. Neuper, G. Pfurtscheller, T. Hinterberger, M. Schroder, and N. Birbaumer. The BCI Competition 2003:progress and perspectives in detection and discrimination of EEG single trials [J]. IEEE Transactions on Biomedical Engineering,2004,51(6): 1044-1051.
    [5]J. R. Wolpaw, D. J. McFarland, T. M. Vaughan, and G. Schalk. The Wadsworth Center brain-computer interface (BCI) research and development program [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2003,11(2):204-207.
    [6]G. Pfurtscheller, C. Neuper, G. R. Muller, B. Obermaier, G. Krausz, A. Schlogl, R. Scherer, B. Graimann, C. Keinrath, D. Skliris, M. Wortz, G. Supp, and C. Schrank. Graz-BCI:state of the art and clinical applications [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2003,11(2):177-180.
    [7]Y. Wang, R. Wang, X. Gao, B. Hong, and S. Gao. A practical VEP-based brain-computer interface [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2006, 14(2):234-239.
    [8]杨立才,李佰敏,李光林,贾磊.脑-机接口技术综述[J].电子学报,2005,33(7):1234-1241.
    [9]J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, and T. M. Vaughan. Brain-computer interface technology:A review of the first international meeting [J]. IEEE Transactions on Rehabilitation Engineering,2000,8(2):164-173.
    [10]H. Berger. Uber das Elektrenkephalogramm des Menschen [J]. European Archives of Psychiatry and Clinical Neuroscience,1929,87(1):527-570.
    [11]伍亚舟,吴宝明,何庆华.基于脑电的脑-机接口系统研究现状[J].中国临床康复,2006,10(1):147-150.
    [12]T. M. Vaughan, W. J. Heetderks, L. J. Trejo, W. Z. Rymer, M. Weinrich, M. M. Moore, A. Kubler, B. H. Dobkin, N. Birbaumer, E. Donchin, E. W. Wolpaw, and J. R. Wolpaw. Brain-computer interface technology:A review of the second international meeting [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2003,11(2): 94-109.
    [13]C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, and G. Pfurtscheller. How many people are able to operate an EEG-based brain-computer interface (BCI)? [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2003,11(2):145-147.
    [14]C. Guger, A. Schlogl, C. Neuper, D. Walterspacher, T. Strein, and G. Pfurtscheller. Rapid prototyping of an EEG-based brain-computer interface (BCI) [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2001,9(1):49-58.
    [15]I. T. Jolliffe. Principal component analysis [M].2nd ed. New York:Springer,2002.
    [16]王敏,苏学成.脑-机接口研究新进展[J].国外医学生物医学分册,2005,28(5):277-280.
    [17]J. Mellinger, G. Schalk, C. Braun, H. Preissl, W. Rosenstiel, N. Birbaumer, and A. Kubler. An MEG-based brain-computer interface (BCI) [J]. NeuroImage,2007,36(3): 581-593.
    [18]N. Weiskopf, K. Mathiak, S. W. Bock, F. Scharnowski, R. Veit, W. Grodd, R. Goebel, and N. Birbaumer. Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI) [J]. IEEE Transactions on Biomedical Engineering,2004,51(6):966-970.
    [19]S. Coyle, T. Ward, C. Markham, and G. McDarby. On the suitability of near-infrared (NIR) systems for next-generation brain-computer interfaces [J]. Physiological Measurement,2004,25(4):815-822.
    [20]P. Brunner, A. L. Ritaccio, J. F. Emrich, H. Bischof, and G. Schalk. A Brain-Computer Interface Using Event-Related Potentials (Erps) and Electrocorticographic Signals (Ecog) in Humans [J]. Epilepsia,2009,50:389-389.
    [21]L. A. Farwell and E. Donchin. Talking off the top of your head:toward a mental prosthesis utilizing event-related brain potentials [J]. Electroencephalography and Clinical Neurophysiology,1988,70(6):510-523.
    [22]J. Jin, B. Z. Allison, C. Brunner, B. Wang, X. Y. Wang, J. H. Zhang, C. Neuper, and G. Pfurtscheller. P300 Chinese input system based on Bayesian LDA [J]. Biomedizinische Technik,2010,55(1):5-18.
    [23]L. Citi, R. Poli, C. Cinel, and F. Sepulveda. P300-based BCI mouse with genetically-optimized analogue control [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2008,16(1):51-61.
    [24]M. Aiello, F. Aloise, R. Baldoni, F. Cincotti, C. Guger, A. Lazovik, M. Mecella, P. Pucci, J. Rinsma, G. Santucci, and M. Taglieri. Smart homes to improve the quality of life for all [C]. In:Annual International Conference of the IEEE on Engineering in Medicine and Biology Society, EMBC,2011:1777-1780.
    [25]N. Birbaumer, A. Kubler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iversen, B. Kotchoubey, N. Neumann, and H. Flor. The thought translation device (TTD) for completely paralyzed patients [J]. IEEE Transactions on Rehabilitation Engineering, 2000,8(2):190-193.
    [26]G. Pfurtscheller and C. Neuper. Motor imagery and direct brain-computer communication [J]. Proceedings of the IEEE,2001,89(7):1123-1134.
    [27]K. Choi and A. Cichocki. Control of a wheelchair by motor imagery in real time [C]. In: Intelligent Data Engineering and Automated Learning 2008:330-337.
    [28]R. Leeb, R. Scherer, F. Lee, H. Bischof, and G. Pfurtscheller. Navigation in virtual environments through motor imagery [C]. In:9th Computer Vision Winter Workshop, 2004:99-108.
    [29]G. Pfurtscheller, G. R. Muller, J. Pfurtscheller, H. J. Gerner, and R. Rupp. Thought1-control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia [J]. Neuroscience Letters,2003,351(1):33-36.
    [30]M. Cheng, X. Gao, S. Gao, and D. Xu. Design and implementation of a brain-computer interface with high transfer rates [J]. IEEE Transactions on Biomedical Engineering, 2002,49(10):1181-1186.
    [31]G. R. Miiller-Putz and G. Pfurtscheller. Control of an electrical prosthesis with an SSVEP-based BCI [J]. IEEE Transactions on Biomedical Engineering,2008,55(1): 361-364.
    [32]L. J. Trejo, R. Rosipal, and B. Matthews. Brain-computer interfaces for 1-D and 2-D cursor control:Designs using volitional control of the EEG spectrum or steady-state visual evoked potentials [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2006,14(2):225-229.
    [33]E. C. Lalor, S. P. Kelly, C. Finucane, R. Burke, R. Smith, R. B. Reilly, and G. McDarby. Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment [J]. Eurasip Journal on Applied Signal Processing,2005,2005(19): 3156-3164.
    [34]H. Bakardjian, T. Tanaka, and A. Cichocki. Optimization of SSVEP brain responses with application to eight-command Brain-Computer Interface [J]. Neuroscience Letters, 2010,469(1):34-38.
    [35]G. Pfurtscheller, B. Z. Allison, C. Brunner, G. Bauernfeind, T. Solis-Escalante, R. Scherer, T. O. Zander, G. Mueller-Putz, C. Neuper, and N. Birbaumer. The hybrid BCI [J]. Frontiers in Neuroscience,2010,4(42):1-11.
    [36]G. R. Miiller-Putz, C. Breitwieser, F. Cincotti, R. Leeb, M. Schreuder, F. Leotta, M. Tavella, L. Bianchi, A. Kreilinger, A. Ramsay, M. Rohm, M. Sagebaum, L. Tonin, C. Neuper, and R. Millan Jdel. Tools for Brain-Computer Interaction:A General Concept for a Hybrid BCI [J]. Frontiers in Neuroinformatics,2011,5(30):1-10.
    [37]D. J. Krusienski and J. R. Wolpaw. Brain Computer Interface Research at the Wadsworth Center:Developments in Noninvasive Communication and Control [J]. International Review of Neurobiology,2009,86:147-157.
    [38]G. Pfurtscheller. Functional brain imaging based on ERD/ERS [J]. Vision Research, 2001,41(10-11):1257-1260.
    [39]G. Pfurtscheller and C. Neuper. Motor imagery activates primary sensorimotor area in humans [J]. Neuroscience Letters,1997,239(2-3):65-68.
    [40]G. Pfurtscheller, C. Brunner, A. Schlogl, and F. H. L. da Silva. Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks [J]. NeuroImage,2006,31(1):153-159.
    [41]C. Neuper, R. Scherer, S. Wriessnegger, and G. Pfurtscheller. Motor imagery and action observation:modulation of sensorimotor brain rhythms during mental control of a brain-computer interface [J]. Clinical Neurophysiology,2009,120(2):239-247.
    [42]B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K. R. Miiller. Optimizing spatial filters for robust EEG single-trial analysis [J]. IEEE Signal Processing Magazine, 2008,25(1):41-56.
    [43]N. Birbaumer, T. Hinterberger, A. Kubler, and N. Neumann. The thought-translation device (TTD):Neurobehavioral mechanisms and clinical outcome [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2003,11(2):120-123.
    [44]X. Gao, D. Xu, M. Cheng, and S. Gao. A BCI-based environmental controller for the motion-disabled [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2003,11(2):137-140.
    [45]Z. H. Wu and D. H. Yao. Frequency detection with stability coefficient for steady-state visual evoked potential (SSVEP)-based BCIs [J]. Journal of Neural Engineering,2008, 5(1):36-43.
    [46]F. Guo, B. Hong, X. R. Gao, and S. K. Gao. A brain-computer interface using motion-onset visual evoked potential [J]. Journal of Neural Engineering,2008,5(4): 477-485.
    [47]B. Hong, F. Guo, T. Liu, X. Gao, and S. Gao. N200-speller using motion-onset visual response [J]. Clinical Neurophysiology,2009,120(9):1658-1666.
    [48]T. Kaufmann, S. M. Schulz, C. Grunzinger, and A. Kubler. Flashing characters with famous faces improves ERP-based brain-computer interface performance [J]. Journal of Neural Engineering,2011,8(5):056016.
    [49]B. Blankertz, S. Lemm, M. Treder, S. Haufe, and K. R. Miiller. Single-trial analysis and classification of ERP components-A tutorial [J]. NeuroImage,2011,56(2):814-825.
    [50]F. Sharbrough, G. Chatrian, R. Lesser, H. Lders, M. Nuwer, and W. Picton. American-Electroencephalographic-Society Guidelines for Standard Electrode Position Nomenclature [J]. Journal of Clinical Neurophysiology,1991,8(2):200-202.
    [51]R. Toro, M. Perron, B. Pike, L. Richer, S. Veillette, Z. Pausova, and T. Paus. Brain size and folding of the human cerebral cortex [J]. Cerebral Cortex,2008,18(10):2352-2357.
    [52]万柏坤,高扬,赵丽,綦宏志.脑-机接口:大脑对外信息交流的新途径[J].国外医学生物医学分册,2005,28(1):4-9.
    [53]G. R. Miiller-Putz, R. Scherer, C. Brauneis, and G. Pfurtscheller. Steady-state visual evoked potential (SSVEP)-based communication:impact of harmonic frequency components [J]. Journal of Neural Engineering,2005,2(4):123-130.
    [54]高上凯.基于节律性脑电信号的脑-机接口[J].生命科学,2008,20(5):722-724.
    [55]N. Birbaumer. Slow cortical potentials:Plasticity, operant control, and behavioral effects [J]. The Neuroscientist,1999,5(2):74-78.
    [56]B. Allison, T. Luth, D. Valbuena, A. Teymourian, I. Volosyak, and A. Graser. BCI demographics:how many (and what kinds of) people can use an SSVEP BCI? [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2010,18(2):107-116.
    [57]Z. H. Wu, Y. X. Lai, Y. Xia, D. Wu, and D. Z. Yao. Stimulator selection in SSVEP-based BCI [J]. Medical Engineering & Physics,2008,30(8):1079-1088.
    [58]D. Zhu, J. Bieger, G. Molina, and R. Aarts. A survey of stimulation methods used in SSVEP-based BCIs [J]. Computational Intelligence and Neuroscience,2010, 2010(Article ID 702357.
    [59]S. M. T. Muller, W. C. Celeste, T. F. Bastos, and M. Sarcinelli. Brain-computer Interface Based on Visual Evoked Potentials to Command Autonomous Robotic Wheelchair [J]. Journal of Medical and Biological Engineering,2010,30(6):407-415.
    [60]H. Cecotti. A self-paced and calibration-less SSVEP-based brain-computer interface speller [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2010, 18(2):127-133.
    [61]Z. L. Lin, C. S. Zhang, W. Wu, and X. R. Gao. Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs [J]. IEEE Transactions on Biomedical Engineering,2006,53(12):2610-2614.
    [62]C. H. Wu, H. C. Chang, P. L. Lee, K. S. Li, J. J. Sie, C. W. Sun, C. Y. Yang, P. H. Li, H. T. Deng, and K. K. Shyu. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing [J]. Journal of Neuroscience Methods,2011,196(1):170-181.
    [63]E. W. Sellers and E. Donchin. A P300-based brain-computer interface:initial tests by ALS patients [J]. Clinical Neurophysiology,2006,117(3):538-548.
    [64]J. Jin, B. Z. Allison, E. W. Sellers, C. Brunner, P. Horki, X. Wang, and C. Neuper. Optimized stimulus presentation patterns for an event-related potential EEG-based brain-computer interface [J]. Medical and Biological Engineering and Computing,2011, 49(2):181-191.
    [65]J. Jin, B. Z. Allison, E. W. Sellers, C. Brunner, P. Horki, X. Y. Wang, and C. Neuper. An adaptive P300-based control system [J]. Journal of Neural Engineering,2011,8(3): 036006.
    [66]M. S. Treder and B. Blankertz. (C)overt attention and visual speller design in an ERP-based brain-computer interface [J]. Behavioraland Brain Functions,2010,6(1): 1-13.
    [67]L. Acqualagna, M. S. Treder, M. Schreuder, and B. Blankertz. A novel brain-computer interface based on the rapid serial visual presentation paradigm [C]. In:Annual International Conference Proceeding of IEEE Engineering in Medicine and Biology Society (EMBC),2010:2686-2689.
    [68]L. Acqualagna and B. Blankertz. A gaze independent spelling based on rapid serial visual presentation [C]. In:Annual International Conference Proceeding of IEEE Engineering in Medicine and Biology Society (EMBC),2011:4560-4563.
    [69]F. Lotte and C. Guan. An efficient P300-based brain-computer interface with minimal calibration time [C]. In:Assistive Machine Learning for People with Disabilities Symposium (NIPS'09 Symposium),2009:1-4.
    [70]R. Li, J. C. Principe, M. Bradley, and V. Ferrari. A spatiotemporal filtering methodology for single-trial ERP component estimation [J]. IEEE Transactions on Biomedical Engineering,2009,56(1):83-92.
    [71]T. Liu, L. Goldberg, S. Gao, and B. Hong. An online brain-computer interface using non-flashing visual evoked potentials [J]. Journal of Neural Engineering,2010,7(3): 036003.
    [72]D. Zhang, H. Song, H. Xu, W. Wu, S. Gao, and B. Hong. An N200 speller integrating the spatial profile for the detection of the non-control state [J]. Journal of Neural Engineering,2012,9(2):026016.
    [73]G. Pfurtscheller, T. Solis-Escalante, R. Ortner, P. Linortner, and G. R. Miiller-Putz. Self-Paced Operation of an SSVEP-Based Orthosis With and Without an Imagery-Based "Brain Switch:" A Feasibility Study Towards a Hybrid BCI [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2010,18(4):409-414.
    [74]R. C. Panicker, S. Puthusserypady, and Y. Sun. An Asynchronous P300 BCI With SSVEP-Based Control State Detection [J]. IEEE Transactions on Biomedical Engineering,2011,58(6):1781-1788.
    [75]Y. Li, J. Long, T. Yu, Z. Yu, C. Wang, H. Zhang, and C. Guan. A hybrid BCI system for 2-D asynchronous cursor control [C]. In:Annual International Conference Proceeding of IEEE Engineering in Medicine and Biology Society (EMBC),2010,2010:4205-4208.
    [76]B. Z. Allison, C. Brunner, C. Altstatter, I. C. Wagner, S. Grissmann, and C. Neuper. A hybrid ERD/SSVEP BCI for continuous simultaneous two dimensional cursor control [J], Journal of Neuroscience Methods,2012,209(2):299-307.
    [77]J. Jin, B. Z. Allison, X. Y. Wang, and C. Neuper. A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials [J]. Journal of Neuroscience Methods,2012,205(2):265-276.
    [78]尧德中,刘铁军,雷旭,杨平,徐鹏,张杨松.基于脑电的脑-机接口:关键技术和应用前景[J].电子科技大学学报,2009,38(5):550-554.
    [79]徐宝国,宋爱国,费树岷.在线脑机接口中脑电信号的特征提取与分类方法[J].电子学报,2011,39(5):1025-1030.
    [80]F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B. Arnaldi. A review of classification algorithms for EEG-based brain-computer interfaces [J]. Journal of Neural Engineering,2007,4(2):R1-R13.
    [81]D. J. Krusienski, M. Grosse-Wentrup, F. Galan, D. Coyle, K. J. Miller, E. Forney, and C. W. Anderson. Critical issues in state-of-the-art brain-computer interface signal processing [J]. Journal of Neural Engineering,2011,8(2):025002.
    [82]G. Townsend, B. Graimann, and G. Pfurtscheller. Continuous EEG classification during motor imagery-Simulation of an asynchronous BCI [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2004,12(2):258-265.
    [83]U. Hoffmann, J. M. Vesin, T. Ebrahimi, and K. Diserens. An efficient P300-based brain-computer interface for disabled subjects [J]. Journal of Neuroscience Methods, 2008,167(1):115-125.
    [84]U. Hoffmann, J. M. Vesin, and T. Ebrahimi. Recent Advances in Brain-Computer Interfaces [J]. Ecole Polytechnique Federale de Lausanne (EPFL), Switzerland,2008.
    [85]黄志华,李明泓,马原野,周昌乐.事件诱发电位信号分类的时空特征提取方法[J].生物化学与生物物理进展,2011,38(9):866-871.
    [86]E. Vedel-Larsen, J. Fuglo, F. Channir, C. E. Thomsen, and H. B. D. Sorensen. A comparative study between a simplified Kalman filter and Sliding Window Averaging for single trial dynamical estimation of event-related potential [J]. Computer Methods and Programs in Biomedicine,2010,99(3):252-260.
    [87]Y. Zhang, Q. B. Zhao, J. Jin, X. Y. Wang, and A. Cichocki. A novel BCI based on ERP components sensitive to configural processing of human faces [J]. Journal of Neural Engineering,2012,9(2):026018.
    [88]V. Bostanov. BCI competition 2003-Data sets Ib and IIb:Feature extraction from event-related brain potentials with the continuous wavelet transform and the t-value scalogram [J]. IEEE Transactions on Biomedical Engineering,2004,51(6):1057-1061.
    [89]A. Schlogl, F. Lee, H. Bischof, and G. Pfurtscheller. Characterization of four-class motor imagery EEG data for the BCI-competition 2005 [J]. Journal of Neural Engineering,2005,2(4):14-22.
    [90]G. Pires, U. Nunes, and M. Castelo-Branco. Statistical spatial filtering for a P300-based BCI:Tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis [J]. Journal of Neuroscience Methods,2011,195(2):270-281.
    [91]A. T. Boye, U. Q. Kristiansen, M. Billinger, O. F. do Nascimento, and D. Farina. Identification of movement-related cortical potentials with optimized spatial filtering and principal component analysis [J]. Biomedical Signal Processing and Control,2008, 3(4):300-304.
    [92]H. Lee and S. Choi. PCA+HMM+SVM for EEG pattern classification [C]. In:7th International Symposium on Signal Processing and Its Applications,2003:541-544.
    [93]N. Xu, X. R. Gao, B. Hong, X. B. Miao, S. K. Gao, and F. S. Yang. BCI competition 2003-Data set IIb:Enhancing P300 wave detection using ICA-based subspace projections for BCI applications [J]. IEEE Transactions on Biomedical Engineering, 2004,51(6):1067-1072.
    [94]C. Brunner, M. Naeem, R. Leeb, B. Graimann, and G. Pfurtscheller. Spatial filtering and selection of optimized components in four class motor imagery EEG data using independent components analysis [J]. Pattern Recognition Letters,2007,28(8):957-964.
    [95]A. Hyvarinen and E. Oja. Independent component analysis:algorithms and applications [J]. Neural Networks,2000,13(4-5):411-430.
    [96]T. P. Jung, S. Makeig, M. Westerfield, J. Townsend, E. Courchesne, and T. J. Sejnowski. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects [J]. Clinical Neurophysiology,2000,111(10):1745-1758.
    [97]A. J. Bell and T. J. Sejnowski. An information maximization approach to blind separation and blind deconvolution [J]. Neural Computation,1995,7(6):1129-1159.
    [98]J. F. Cardoso. High-order contrasts for independent component analysis [J]. Neural Computation,1999,11(1):157-192.
    [99]A. Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis [J]. IEEE Transactions on Neural Networks,1999,10(3):626-634.
    [100]M. Arvaneh, C. Guan, K. K. Ang, and C. Quek. Optimizing the channel selection and classification accuracy in EEG-based BCI [J]. IEEE Transactions on Biomedical Engineering,2011,58(6):1865-1873.
    [101]F. Lotte and C. Guan. Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms [J]. IEEE Transactions on Biomedical Engineering, 2011,58(2):355-362.
    [102]H. Lu, H. L. Eng, C. Guan, K. N. Plataniotis, and A. N. Venetsanopoulos. Regularized common spatial pattern with aggregation for EEG classification in small-sample setting [J]. IEEE Transactions on Biomedical Engineering,2010,57(12):2936-2946.
    [103]H. X. Wang. Optimizing spatial filters for single-trial EEG classification via a discriminant extension to CSP:the Fisher criterion [J]. Medical & Biological Engineering & Computing,2011,49(9):997-1001.
    [104]X. Liao, D. H. Yao, D. Wu, and C. Y. Li. Combining spatial filters for the classification of, single-trial EEG in a finger movement task [J]. IEEE Transactions on Biomedical Engineering,2007,54(5):821-831.
    [105]H. Hotelling. Relations between two sets of variates [J]. Biometrika,1936,28(3-4): 321-377.
    [106]D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis:An overview with application to learning methods [J]. Neural Computation,2004,16(12): 2639-2664.
    [107]O. Friman, J. Cedefamn, P. Lundberg, H. Borga, and H. Knutsson. Detection of neural activity in functional MRI using canonical correlation analysis [J]. Magnetic Resonance in Medicine,2001,45(2):323-330.
    [108]J. Pan, X. Gao, F. Duan, Z. Yan, and S. Gao. Enhancing the classification accuracy of steady-state visual evoked potential-based brain-computer interfaces using phase constrained canonical correlation analysis [J]. Journal of Neural Engineering,2011, 8(3):036027.
    [109]R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification [M].2nd ed. New York: Wiley,2001.
    [110]C. M. Bishop. Pattern recognition and machine learning [M]. New York:Springer, 2006.
    [111]R. A. Fisher. The use of multiple measurements in taxonomic problems [J]. Annals of Eugenics,1936,7(1):179-199.
    [112]D. J. Krusienski, E. W. Sellers, F. Cabestaing, S. Bayoudh, D. J. McFarland, T. M. Vaughan, and J. R. Wolpaw. A comparison of classification techniques for the P300 Speller [J]. Journal of Neural Engineering,2006,3(4):299-305.
    [113]N. R. Draper and H. Smith. Applied regression analysis [M].2d ed. New York:Wiley, 1981:307-312.
    [114]D. J. Krusienski, E. W. Sellers, D. J. McFarland, T. M. Vaughan, and J. R. Wolpaw. Toward enhanced P300 speller performance [J]. Journal of Neuroscience Methods, 2008,167(1):15-21.
    [115]G. Townsend, B. K. LaPallo, C. B. Boulay, D. J. Krusienski, G. E. Frye, C. K. Hauser, N. E. Schwartz, T. M. Vaughan, J. R. Wolpaw, and E. W. Sellers. A novel P300-based brain-computer interface stimulus presentation paradigm:Moving beyond rows and columns [J]. Clinical Neurophysiology,2010,121(7):1109-1120.
    [116]J. Schafer and K. Strimmer. A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics [J]. Statistical Applications in Genetics and Molecular Biology,2005,4(1):Article32.
    [117]C. Vidaurre, N. Kramer, B. Blankertz, and A. Schlogl. Time Domain Parameters as a feature for EEG-based Brain-Computer Interfaces [J]. Neural Networks,2009,22(9): 1313-1319.
    [118]P. Xu, P. Yang, X. Lei, and D. Z. Yao. An enhanced probabilistic LDA for multi-Class brain computer interface [J]. PLoS One,2011,6(1):e14634.
    [119]T. Van Gestel, J. A. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor, and J. Vandewalle. Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel Fisher discriminant analysis [J]. Neural Computation, 2002,14(5):1115-1147.
    [120]M. Kaper, P. Meinicke, U. Grossekathoefer, T. Lingner, and H. Ritter. BCI competition 2003-Data set Ⅱb:Support vector machines for the P300 speller paradigm [J]. IEEE Transactions on Biomedical Engineering,2004,51(6):1073-1076.
    [121]T. N. Lal, M. Schroder, T. Hinterberger, J. Weston, M. Bogdan, N. Birbaumer, and B. Scholkopf. Support vector channel selection in BCI [J]. IEEE Transactions on Biomedical Engineering,2004,51(6):1003-1010.
    [122]M. Thulasidas, C. Guan, and J. K. Wu. Robust classification of EEG signal for brain-computer interface [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2006,14(1):24-29.
    [123]葛瑜,刘杨,周宗潭,胡德文.用于脑-机接口P300实验的支持向量机分类方法[J].计算机工程与设计,2008,29(11):2859-2862.
    [124]N. Jrad, M. Congedo, R. Phlypo, S. Rousseau, R. Flamary, F. Yger, and A. Rakotomamonjy. sw-SVM:sensor weighting support vector machines for EEG-based brain-computer interfaces [J]. Journal of Neural Engineering,2011,8(5):056004.
    [125]Q. Xu, H. Zhou, Y. J. Wang, and J. Huang. Fuzzy support vector machine for classification of EEG signals using wavelet-based features [J]. Medical Engineering & Physics,2009,31(7):858-865.
    [126]X. Liao, D. Z. Yao, and C. Y. Li. Transductive SVM for reducing the training effort in BCI [J]. Journal of Neural Engineering,2007,4(3):246-254.
    [127]E. Haselsteiner and G. Pfurtscheller. Using time-dependent neural networks for EEG classification [J]. IEEE Transactions on Rehabilitation Engineering,2000,8(4): 457-463.
    [128]R. Palaniappan. Brain computer interface design using band powers extracted during mental tasks [C]. In:2nd International IEEE EMBS Conference on Neural Engineering, 2005:321-324.
    [129]D. Balakrishnan and S. Puthusserypady. Multilayer perceptrons for the classification of brain computer interface data [C]. In:31st Annual Northeast Proceedings of the IEEE Bioengineering Conference,2005:118-119.
    [130]L. R. Rabiner. A tutorial on hidden Markov models and selected applications in speech recognition [J]. Proceedings of the IEEE,1989,77(2):257-286.
    [131]B. Obermaier, C. Guger, C. Neuper, and G. Pfurtscheller. Hidden Markov models for online classification of single trial EEG data [J]. Pattern Recognition Letters,2001, 22(12):1299-1309.
    [132]S. Lemm, C. Schafer, and G. Curio. BCI competition 2003-Data set III:Probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements [J]. IEEE Transactions on Biomedical Engineering,2004,51(6):1077-1080.
    [133]K. R. Muller, M. Krauledat, G. Dornhege, G. Curio, and B. Blankertz. Machine learning techniques for brain-computer interfaces [J]. Biomedizinische Technik/Biomedical Engineering,2004,49(1):11-22.
    [134]J. F. Borisoff, S. G. Mason, A. Bashashati, and G. E. Birch. Brain-computer interface design for asynchronous control applications:Improvements to the LF-ASD asynchronous brain switch [J]. IEEE Transactions on Biomedical Engineering,2004, 51(6):985-992.
    [135]J. H. Friedman. On bias, variance,0/1-Loss, and the curse-of-dimensionality [J]. Data Mining and Knowledge Discovery,1997,1(1):55-77.
    [136]F. Cincotti, A. Scipione, A. Timperi, D. Mattia, A. G. Marciani, J. Millan, S. Salinari, L Bianchi, and F. Bablioni. Comparison of different feature classifiers for brain computer interfaces [C]. In:First International IEEE EMBS Conference on Neural Engineering, 2003:645-647.
    [137]A. Rakotomamonjy and V. Guigue. BCI Competition Ⅲ:Dataset Ⅱ-Ensemble of SVMs for BCI P300 Speller [J]. IEEE Transactions on Biomedical Engineering,2008, 55(3):1147-1154.
    [1 38]李晓欧,范婵娇.集成学习在脑机接口分类算法中的研究[J].电子测量与仪器学报,2011,25(11):940-945.
    [139]L. Hyekyung and C. Seungjin. PCA+HMM+SVM for EEG pattern classification [C]. In:Proceeding of Seventh International Symposium on Signal Processing and Its Applications,2003,1:541-544.
    [140]S. P. Kelly, E. C. Lalor, R. B. Reilly, and J. J. Foxe. Visual spatial attention tracking using high-density SSVEP data for independent brain-computer communication [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2005,13(2): 172-178.
    [141]R. Wang, Z. G. Zhang, X. Gao, and S. Gao. Lead selection for SSVEP-based binocular rivalry [C]. In:lst International Conference on Neural Interface and Control Proceeding, Wuhan, China,2005:75-78.
    [142]S. Parini, L. Maggi, A. C. Turconi, and G. Andreoni. A robust and self-paced BCI system based on a four class SSVEP paradigm:Algorithms and protocols for a high-transfer-rate direct brain communication [J]. Computational Intelligence and Neuroscience,2009,2009:864564.
    [143]A. Cichocki, R. Zdunek, A. H. Phan, and S.-I. Amari. Nonnegative matrix and tensor factorizations:Applications to exploratory multi-way data analysis and blind source separation [M]. Chichester, U.K.:John Wiley,2009.
    [144]T. Kim and R. Cipolla. Canonical correlation analysis of video volume tensors for action categorization and detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(8):1415-1428.
    [145]Y. Zhang, G. Zhou, Q. Zhao, A. Onishi, J. Jin, X. Wang, and A. Cichocki. Multiway Canonical Correlation Analysis for Frequency Components Recognition in SSVEP-Based BCIs [C]. Neural Information Processing, Shanghai, China,2011,7062: 287-295.
    [146]S. Chatterjee and A. S. Hadi. Influential Observations, High Leverage Points, and Outliers in Linear Regression [J]. Statistical Science,1986,1(3):379-393.
    [147]R. Tibshirani. Regression shrinkage and selection via the Lasso [J]. Journal of the Royal Statistical Society Series B-Methodological,1996,58(1):267-288.
    [148]L. Meier, S. A. van de Geer, and P. Buhlmann. The group lasso for logistic regression [J]. Journal of the Royal Statistical Society Series B-Statistical Methodology,2008, 70(1):53-71.
    [149]K. Schittkowski. NLPQL:A fortran subroutine solving constrained nonlinear programming problems [J]. Annals of Operations Research,1985,5(1-4):485-500.
    [150]Y. Zhang, J. Jin, X. Y. Qing, B. Wang, and X. Y. Wang. LASSO based stimulus frequency recognition model for SSVEP BCIs [J]. Biomedical Signal Processing and Control,2012,7(2):104-111.
    [151]J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Robust Face Recognition via Sparse Representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
    [152]赵丽,万柏坤.基于P300的脑机接口系统研究[J].天津工程师范学院学报,2005,15(2):5-9.
    [153]张宇,张建华,王行愚,金晶.基于FastICA的P300电位快速提取方法[J].华东理工大学学报(自然科学版),2009,35(5):750-755.
    [154]M. Urretavizcaya, I. Moreno, L. Benlloch, N. Cardoner, J. Serrallonga, J. M. Menchon, and J. Vallejo. Auditory event-related potentials in 50 melancholic patients:increased N100, N200 and P300 latencies and diminished P300 amplitude [J]. Journal of Affective Disorders,2003,74(3):293-297.
    [155]H. Serby, E. Yom-Tov, and G. F. Inbar. An improved P300-based brain-computer interface [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2005,13(1):89-98.
    [156]F. Piccione, F. Giorgi, P. Tonin, K. Priftis, S. Giove, S. Silvoni, G. Palmas, and F. Beverina. P300-based brain computer interface:Reliability and performance in healthy and paralysed participants [J]. Clinical Neurophysiology,2006,117(3):531-537.
    [157]A. Banks, J. Vincent, and C. Anyakoha. A review of particle swarm optimization. Part I: background and development [J]. Natural Computing,2007,6(4):467-484.
    [158]张宇,王行愚,张建华,金晶.离散粒子群优化-贝叶斯线性判别分析算法用于视觉事件相关电位P300的分类[J].中国生物医学工程学报,2010,29(1):46-52.
    [159]Y. Chen and C. Lin. Combining SVMs with various feature selection strategies [C]. In: Feature Extraction, Studies in Fuzziness and Soft Computing,2006,207:315-324.
    [160]H. Ramoser, J. Miiller-Gerking, and G. Pfurtscheller. Optimal spatial filtering of single trial EEG during imagined hand movement [J]. IEEE Transactions on Rehabilitation Engineering,2000,8(4):441-446.
    [161]D. Krusienski, E. Sellers, and T. Vaughan. Common spatio-temporal patterns for the P300 speller [C]. In:3rd IEEE EMBS International Conference on Neural Engineering, 2007:421-424.
    [162]Y. Zhang, Q. Zhao, G. Zhou, X. Wang, and A. Cichocki. Regularized CSP with Fisher's criterion to improve classification of single-trial ERPs for BCI [C]. In:9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD),2012: 891-895.
    [163]D. L. Donoho. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006,52(4):1289-1306.
    [164]S. S. B. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit [J]. Siam Journal on Scientific Computing,1998,20(1):33-61.
    [165]M. Zibulevsky and M. Elad. L1-L2 Optimization in Signal and Image Processing [J]. IEEE Signal Processing Magazine,2010,27(3):76-88.
    [166]J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent [J]. Journal of Statistical Software,2010,33(1):1-22.
    [167]J. Friedman, T. Hastie, H. Hofling, and R. Tibshirani. Pathwise coordinate optimization [J]. Annals of Applied Statistics,2007,1(2):302-332.
    [168]S. J. Raudys and A. K. Jain. Small sample size effects in statistical pattern recognition: Recommendations for practitioners [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(3):252-264.
    [169]M. Schreuder, J. Hohne, M. Treder, B. Blankertz, and M. Tangermann. Performance optimization of ERP-based BCIs using dynamic stopping [J]. In:Annual International Conference of the IEEE Engineering on Medicine and Biology Society (EMBC),2011, 2011:4580-4583.
    [170]O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariance matrices [J]. Journal of Multivariate Analysis,2004,88(2):365-411.
    [171]Y. Zhang, G. Zhou, Q. Zhao, J. Jin, X. Wang, and A. Cichocki. ERP classification via spatial-temporal discriminant analysis:Reducing the calibration time for BCI [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2012 (Under review).
    [172]A. Cichocki, Y. Washizawa, T. Rutkowski, H. Bakardjian, A. H. Phan, S. Choi, H. Lee, Q. B. Zhao, L. Q. Zhang, and Y. Q. Li. Noninvasive BCIs:Multiway signal-processing array decompositions [J]. IEEE Computer,2008,41(10):34-42.
    [173]W. Wu, Z. Chen, S. K. Gao, and E. N. Brown. A hierarchical Bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG [J]. NeuroImage, 2011,56(4):1929-1945.
    [174]W. S. Pritchard. Psychophysiology of P300 [J]. Psychological Bulletin,1981,89(3): 506-540.
    [175]R. J. Itier, M. Latinus, and M. J. Taylor. Face, eye and object early processing:What is the face specificity? [J]. Neurolmage,2006,29(2):667-676.
    [176]D. A. Jeffreys and E. S. A. Tukmachi. The Vertex-Positive Scalp Potential Evoked by Faces and by Objects [J]. Experimental Brain Research,1992,91(2):340-350.
    [177]A. Onishi, Y. Zhang, Q. Zhao, and A. Cichocki. Fast and reliable P300-based BCI with facial images [C]. In:5th International BCI Conference, Graz, Austria,2011:191-195.
    [178]Q. Zhao, A. Onishi, Y. Zhang, J. Cao, L. Zhang, and A. Cichocki. A novel oddball paradigm for affective BCIs using emotional faces as stimuli [C]. In:Neural Information Processing,2011,7062:279-286.
    [179]M. Eimer. Effects of face inversion on the structural encoding and recognition of faces-Evidence from event-related brain potentials [J]. Cognitive Brain Research,2000, 10(1-2):145-158.
    [180]J. W. Tanaka and M. J. Farah. Parts and wholes in face recognition [J]. The Quarterly Journal of Experimental Psychology Section,1993,46(2):225-245.
    [181]M. Moscovitch, G. Winocur, and M. Behrmann. What is special about face recognition? Nineteen experiments on a person with visual object agnosia and dyslexia but normal face recognition [J]. Journal of Cognitive Neuroscience,1997,9(5):555-604.
    [182]B. Rossion, J. F. Delvenne, D. Debatisse, V. Goffaux, R. Bruyer, M. Crommelinck, and J. M. Guerit. Spatio-temporal localization of the face inversion effect:an event-related potentials study [J]. Biological Psychology,1999,50(3):173-189.
    [183]T. Marzi and M. P. Viggiano. Interplay between familiarity and orientation in face processing:An ERP study [J]. International Journal of Psychophysiology,2007,65(3): 182-192.
    [184]R. J. Itier and M. J. Taylor. N170 or Nl? Spatiotemporal differences between object and face processing using ERPs [J]. Cerebral Cortex,2004,14(2):132-142.
    [185]R. J. Itier and M. J. Taylor. Inversion and contrast polarity reversal affect both encoding and recognition processes of unfamiliar faces:A repetition study using ERPs [J]. NeuroImage,2002,15(2):353-372.
    [186]J. Kohlmorgen and B. Blankertz. Bayesian classification of single-trial event-related potentials in EEG [J]. International Journal of Bifurcation and Chaos,2004,14(2): 719-726.
    [187]K. Yu, K. Shen, S. Shao, W. C. Ng, and X. Li. Bilinear common spatial pattern for single-trial ERP-based rapid serial visual presentation triage [J]. Journal of Neural Engineering,2012,9(4):046013.
    [188]B. Z. Allison and J. A. Pineda. ERPs evoked by different matrix sizes:Implications for a brain computer interface (BCI) system [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2003,11(2):110-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700