用户名: 密码: 验证码:
PPV中双键顺反异构过程及衍生的物理性质变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二苯乙烯是聚苯撑乙烯类化合物最简单、也是最典型的模型化合物,众多理论计算方法和现代物理学方法被用于研究这一系统的光化学与光物理现象。二苯乙烯具有顺反两种构型,由于顺反异构化的能垒非常低,因此光化学异构化非常容易发生,异构化后反式异构体与顺式异构体的能级结构与物理性质都有一定程度的变化。在聚合物体系中,顺式PPV其双键的构型更加扭曲,打断了聚合物主链的共轭,其性质更接近于小分子齐聚物;而反式PPV构型接近于平面化,其π-电子离域性更好,更有利于共轭,因此PPV聚合物顺反异构化后,这种结构差异可能会引起聚合物物理以及光学性质的巨大改变,这方面的研究也必将从更深层次上揭示聚合物顺反异构化的基本过程以及衍生的物理性质差异。本论文立足于研究高顺式含量的PPV聚合物,详细讨论了其光化学异构化过程及其衍生的物理性质变化,主要内容如下:
     1.合成出具有不同顺式双键含量(87%~0.05%)的PPV聚合物,研究了其顺式双键含量对PPV光学性质、溶解性和折射率等物理性质的影响,提出了顺式PPV(扭曲构型)与反式PPV(平面构型)间较大的构型差别是引起其光学及物理性质变化的根本原因。
     2.发现在没有柔性取代基团的全芳香PPV主链中引入一定含量的顺式双键后,其溶解性明显改善,成为一种可溶液加工的聚合物材料。此材料的薄膜显示出蓝光发射(λ=485nm)及非常高的固态发光效率(η=78%),是已知的PPV聚合物中具有最高固态发光效率的材料之一。
     3.发现光诱导PPV体系顺式-反式异构化引起聚合物折射率、溶解度巨大改变的共轭聚合物体系新的放大效应。并利用顺反异构诱导的巨大折射率变化制备了全息光栅的原型器件;利用顺反异构诱导的巨大溶解性改变实现了对PPV分子水平上的光操控并应用于二维和三维图案的制备。
The photoisomerization of stilbenes and its simple derivatives as the most simple model compound of PPVs has been studied for many years, considerable attention is devoted to stibenes in modern textbooks on photochemistry, and they have been covered in numerous reviews. Stilbene can adopt cis or trans configuration and the cis-trans isomerization process can occur very easily because of the low barrier. Cis-/trans-DPDSB are important models of DP-PPVs, which theoretical studies,chemical structure determination, crystal stacking mode, optical properties and isomerization procedure is studied in details. Based on the study of the model compound of PPVs, we found that there is a certain extent change of energy gap and physical properties between cis and trans isomer after cis-trans isomerization, As para-phenylene vinylene segments in PPV with cis- conformation, theπ-conjugation will be interrupted partially, while the trans- phenylene vinylene segments allow the electronic delocalizability. Thus the photo cis-trans(or Z-E) isomerization occurred in PPV will induce big change of physical and optical properties of the polymers, c.a. electronic absorption and light-emission color. So the study of cis-trans isomerizaiton procedure of PPV polymers provides a model for us to invesitigate the basic process and its derivative change of physical properties.
     Because of the chromophore in PPV containing many para-phenylene vinylene recurring units, the cis/trans- vinylene ratio within the chromophore could play an important role in luminescence enhancement. So the effect of the vinylene bond configuration on the photoluminescence of PPV appears to be relatively important studies. Great efforts have been made on the investigation of relationships that exist between the cis/trans-conformation in a polymer chain and resulting luminescent properties, the cis-isomer is generally considered as“defect”in PPV polymers because of its weak luminescence, consequently the discussion around whether the cis-conformation is the defect or not have attracted special attention. 1995, Son S. and Galvin M. E. reported that a random placement of cis-segments along the PPV chain significantly increases the EL efficiency of the polymer. They considered that the introduction of cis-segments into polymer chains can reduce the interchain interactions and enhances the solid-state PL efficiency. Yi Pang and Liao Liao synthesized PPVs with different content of cis- and trans-olefins by Wittig and Wittig-Horner reaction, however the olefin bond geometry is random, the luminescence properties of PPVs with different cis-contents have not been studied systemically
     The understanding of these dependencies is still incomplete which is partially due to a lack of the study of the optical properties of cis-PPVs. But it is very difficult to synthesis PPV polymers with all cis-vinylenes due to its high energy of groud state compared to trans-isomer. So it is critical to synthesize PPV polymers with different content of cis-configurations. Above all is to synthsis cis-PPVs. By now, chemist have designed many synthsis route to synthesize PPV derivatives. For example, Glich reaction, Wessling reaction, Wittig reaction, Wittig-Horner reaction, Heck reaction, ROMP reaction and so on. But the same dilemma of these method is the configuration of the vinylenes is indefinite, which makes the configuration of PPV chains is complicated. 2005, Hiroyuki Katayama et al have reported the synthesis of the geometrically pure all-cis PPVs by Suzuki-Miyaura-type polycondensation, but the synthesis route is very complicated. Recently we found that the use of biphenyl-substituted benzaldehydes in Wittig reaction exhibits a pronounced enhancement for Z-selectivity, and produces all cis-oligomeric PPV compound. This investigation provides an opportunity to synthesize PPVs with larger number of cis-segments.
     We have synthesized cis-DPO-PPV with the highest cis-configuration up to 87% using Wittig reaction. And the cis-trans isomeriztion of cis-DPO-PPV can occur in both in solution and in film, this is due to the alkyl substitution decrease the rotation barrier of the vinylenes. Cis-DPO-PPV shows the same UV and PL spectra of in dilute solution and in thin film reflect the lessπ-πor excimer species present in polymer films. This is due to the twisted backbone configuration of the polymer, which suppresses the inter-chain interactions. By using the cis-trans isomerizaiton properties of cis-DPO-PPV, we got six PPV polymers with different contents of cis-olefins by photoirradiation which named DPO-PPV1-6. The content of cis-CH=CH bond linkage of these six polymers is estimated by integrating the proton resonance signals of–OCH2– unit in the alkoxy side chains, the resonance signal at 3.49 ppm and 3.83 ppm which are attributed to the–OCH2- unit in the alkoxy side chains are related to cis- and trans- olefins respectively. And the cis-olefins contents of DPO-PPV1-6 are calculated to be 87%, 82%, 75%, 55%, 24% and 0.05% respectively The photophysical characterization using NMR, UV, PL and fluorescence quantum efficiency measurements indicate that as the cis-content is equal or higher than 75% in polymer chains; the cis-trans isomerization together with rotational motions of the double bonds compete with the emission process, resulting in low luminescence of polymers. Along with the decrease of cis- configuration, the polymer adopts a more planar conformation which is beneficial for theπconjugation, and is in favor of improving the intensity of photoluminescence. The study on the optical and physical change during cis-trans isomerization of PPVs is the basis for designing high efficience PPVs and new applications.
     Based on the study of cis-DPO-PPV, we can find that the cis-vinylenes with twisted configuration can reduce the interchain interactions of PPV polymers. So we introduce cis-vinylenes into the backbone of a all aromatic PPVs, a soluble all-aromatic PPV without any alkyl substitution was synthesized by Wittig reaction. The structural characterizations indicate that over 50% content of cis-vinylene units exist in polymer backbone. The high cis-segments in polymer backbone induce a highly twisted chain configuration, resulted in the high solubility of such all-aromatic PPV derivative. 2,5-DP-PPV emits sky-blue fluorescence with peak at 485 nm both in dilute solution and in film. Previous studies reported that phenyl-substituted PPVs usually emit green light (λmax = 515 nm). In the present case, the twisting configuration of cis-segments in the polymer cause significant steric effects on the backbone and reduce the effective conjugation length. At the same time, the introduction of cis-segments into polymer chains significantly reduces the interchain interactions and enhances the solid-state PL efficiency (78%). The solid-state PL efficiency of 2,5-DP-PPV is among the highest values reported forπconjugated PPVs. So introducing cis-segments into the PPVs backbone is a good idea to design high efficiency PPVs.
     The study on the physical properties of cis-DPO-PPV during cis-trans isomerizaiton indicates that the refractive index and the solubility between cis-DPO-PPVand trans-DPO-PPV have a tremdous change, but the property change of the cis and trans model oligomers is very small, we consider it due to the amplification effect of the polymers. The optical properties of some conjugated polymers can be strongly modified by varying the molecular surroundings, which have been used to develop a new chemosensory system. The conjugated polymers have showed significant sensitivity enhancements (amplification) over small-molecular analogues, due to the energy migration along the electronic delocalized polymer backbone. A weeny structural change of certain part of the conjugated polymers will effects the properties of entire polymers.
     We measured the refractive index of cis-DPO-PPV before and after photoirradiation, and find that the refractive index of cis-DPO-PPV is 1.695(±0.0005) (533nm), the refractive index of all trans-DPO-PPV is 1.8813(±0.0008) (533nm), the refractive index change after isomerization is△n533=0.1863, which is 11% up compared to cis-polymer. The refractive index of DPO-PPV model compound (cis/trans-DPO-DSB) (shown in Figure 2) are n533=1.6641 (cis-DPO-DSB) and n533=1.695(trans-DPO-DSB), the refractive index change is△n533=0.0416, which is only 2.5% up compared to cis isomer.The reason of the tremendous change of cis and trans polymer is that, based on Lorentz-lorenz equation,△n is relative to the change of molecular polarizability, and as a structural change c.a. cis- to trans- isomerization in a PPV backbone, it may induce a larger change in molecular polarizability and energy gap. This phenomenon could be rationalized by considering that cis-polymer shows a similar refractive index compared to cis-oligomer, owing to the twisted configuration of the cis-vinylenes in polymer interrupts the conjugation of the polymer chain. But along with the increasing of trans- configuration of DPO-PPV, the polymer adopts a more planar conformation, and the planar conformation is advantage for theπconjugation, thereby increasing the delocalizability ofπelectron, which is in favor of improving the polarizability of the polymer, The photon refractive index varies directly with the electronic polarizability, resulted in the increasing of the refractive index of the polymer finally. From the analysis of the relationship between energy gap and refractive index of PPVs with different contents of cis-vinylenes, we can see that the refractive index change is inversely proportional to the energy gap of the polymers. Thus, by accurately controlling the cis-trans isomerization degree of the polymers, we can dominate the energy gap of the polymer, and then further control the refractive index of the polymer. By utilizing a cis- PPV polymer films, a prototype polymer grating fabricated by a dual-beam interfering system is realized.
     We measured the solubility of cis-DPO-PPV before and after photoirradiation, and find that the solubility of cis-DPO-PPV is 15 mg/mL, the solubility of all trans-DPO-PPV is only 0.05 mg/mL, the solubility of cis-DPO-PPV is 300 times compared to trans-DPO-PPV. The solubility of DPO-PPV model compound (cis/trans-DPO-DSB) are also measured, the solubility of cis-DPO-DSB is only 20 times cmparede to trans-isomer.The essential reason on the tremendous change of the solubility during cis-trans isomerization of the cis-DPO-PPV is the amplification of polymers. This phenomenon could be rationalized by considering that the structure of cis-polymer chains likes the letter“Z”owing to the twisted configuration of the cis-vinylenes, which can interrupts the conjugation of the polymer chain in favor of improving the solubility of polymers. But structure of trans-polymer likes a line owing to the more planar conformation of trans-vinylenes resulting in a poor solubility of the polymers. Using cis-trans isomerization induced tremendous solubility change of cis-DPO-PPV, we fabricate a seriers pattern by two-photo laser.
引文
[1] Hammond, G. S.; Saltiel, J.,‘Photosensitized Cis-Trans Isomerization of Stilbenes.’Journal of the American Chemical Society 1962, 84 (24), 4983-&.
    [2] Saltiel, J.; Hammond, G. S.,‘Mechanisms of Photochemical Reactions in Solution .17. Cis-Trans Isomerization of Stilbenes by Excitation Transfer from Low Energy Sensitizers.’Journal of the American Chemical Society 1963, 85 (16), 2515-&.
    [3] Saltiel, J.; Megarity, E. D.; Kneipp, K. G., Mechanism of Direct Cis-Trans Photoisomerization of Stilbenes.’Journal of the American Chemical Society 1966, 88 (10), 2336-&.
    [4] Saltiel, J., Perdeuteriostilbene Role of Phantom States in Cis-Trans Photoisomerization of Stilbenes.’Journal of the American Chemical Society 1967, 89 (4), 1036-&.
    [5] H. G. Gilch, W. L. W.,‘Polymerization of alpha-halogenated p-xylenes with base.’Journal of Polymer Science Part A-1: Polymer Chemistry 1966, 4 (6), 1337-1349.
    [6] R. A.Wessling, R. G. Z., US-B 3 401 152, Chem. Abstr. 1968, 1968 ( 69), 87735.
    [7] Raul O. Garay, U. B., Christoph Bubeck, Klaus Mullen,,‘Low-temperature synthesis of poly(phenyl-phenylenevinylene) by the sulfonium salt route.’Advanced Materials 1993, 5 (7-8), 561-564.
    [8]齐力权,‘《基础有机化学人名反应100例》.’辽宁大学出版社1990,第一版, 253-266.
    [9] Heck, R. F.,‘Palladium-catalyzed vinylation of organic halides.’Org. React. 1982, 27, 345-390.
    [10] W. J. Feast, J. T., K. L. Pouwer, L. Groenendaal, E. W.Meijer,‘Synthesis, Processing and Material Properties of Conjugated Polymers.’Polymer 1996 37, 5017 - 5047.
    [11] Miao, Y.-J.; Bazan, G. C.,‘Paracyclophene Route to Poly(p-phenylenevinyle ne).’Journal of the American Chemical Society 1994, 116 (20), 9379-9380.
    [12] Conticello, V. P.; Gin, D. L.; Grubbs, R. H.,‘Ring-opening metathesis polymerization of substituted bicyclooctadienes: a new precursor route to poly(1,4-phenylenevinylene).’Journal of the American Chemical Society 1992, 114 (24), 9708-9710.
    [13] Saltiel, J. D. A., J.; Megarity, E. D.; Metts, L.; Neuberger, K. R.; Wrighton, M.; Zafirious, O. C,‘Organic Photochemistry; Chapman, .’O.L.,Ed.; Marcel Dekker: New York 1973, 3.
    [14] Saltiel, J. C., J.L.,‘Rearrangements in Ground and Exicited States.’Mayo, Ed.; Academic Press: New York 1980, 3.
    [15] Saltiel, J. S., Y.P.,‘Photochromism-Molecules and Systems.’Durr, H., Bouas-Laurent, H.,Eds.; Elsevier: Amster-dam 1990, 64.
    [16] Fleming, G. R.,‘Chemical Applications of Ultrafast Spectroscopy.’Oxford: New York 1986.
    [17] Waldeck, D. H.,‘Photoisomerization dynamics of stilbenes.’Chemical Reviews 1991, 91 (3), 415-436.
    [18] Meier, H.,‘The photochemistry of stilbenoid compounds and their role in material technology.’Angew. Chem. Int. Edit. 1992, 31, 1399-1420.
    [19] Kwasniewski S P, F. o. J. P.,‘Effect of Thermal Motions on the Structure and UV2 Visible Electronic Spectra of Stilbene and Model Oligomers of Poly ( p2 Phenylene Vinylene ).’J . Phys . Chem. A 2003,, 107, 5168 - 5180.
    [20] Frederick, D.,‘Excited State Properties of Donor-Acceptor Substituted trans-Stilbenes.’J . Phys . Chem. A 2000, 104, 8146 - 8153.
    [21] Gregory, A. R.; Williams, D. F.,‘Stilbene. A critical commentary and some new calculations on its structure and isomerization.’The Journal of Physical Chemistry 1979, 83 (20), 2652-2662.
    [22] Orlandi, G.; Palmieri, P.; Poggi, G.,‘An abinitio study of the cis-trans
    [11] Miao, Y.-J.; Bazan, G. C.,‘Paracyclophene Route to Poly(p-phenylenevinyle ne).’Journal of the American Chemical Society 1994, 116 (20), 9379-9380.
    [12] Conticello, V. P.; Gin, D. L.; Grubbs, R. H.,‘Ring-opening metathesis polymerization of substituted bicyclooctadienes: a new precursor route to poly(1,4-phenylenevinylene).’Journal of the American Chemical Society 1992, 114 (24), 9708-9710.
    [13] Saltiel, J. D. A., J.; Megarity, E. D.; Metts, L.; Neuberger, K. R.; Wrighton, M.; Zafirious, O. C,‘Organic Photochemistry; Chapman, .’O.L.,Ed.; Marcel Dekker: New York 1973, 3.
    [14] Saltiel, J. C., J.L.,‘Rearrangements in Ground and Exicited States.’Mayo, Ed.; Academic Press: New York 1980, 3.
    [15] Saltiel, J. S., Y.P.,‘Photochromism-Molecules and Systems.’Durr, H., Bouas-Laurent, H.,Eds.; Elsevier: Amster-dam 1990, 64.
    [16] Fleming, G. R.,‘Chemical Applications of Ultrafast Spectroscopy.’Oxford: New York 1986.
    [17] Waldeck, D. H.,‘Photoisomerization dynamics of stilbenes.’Chemical Reviews 1991, 91 (3), 415-436.
    [18] Meier, H.,‘The photochemistry of stilbenoid compounds and their role in material technology.’Angew. Chem. Int. Edit. 1992, 31, 1399-1420.
    [19] Kwasniewski S P, F. o. J. P.,‘Effect of Thermal Motions on the Structure and UV2 Visible Electronic Spectra of Stilbene and Model Oligomers of Poly ( p2 Phenylene Vinylene ).’J . Phys . Chem. A 2003,, 107, 5168 - 5180.
    [20] Frederick, D.,‘Excited State Properties of Donor-Acceptor Substituted trans-Stilbenes.’J . Phys . Chem. A 2000, 104, 8146 - 8153.
    [21] Gregory, A. R.; Williams, D. F.,‘Stilbene. A critical commentary and some new calculations on its structure and isomerization.’The Journal of Physical Chemistry 1979, 83 (20), 2652-2662.
    [22] Orlandi, G.; Palmieri, P.; Poggi, G.,‘An abinitio study of the cis-trans
    [33] Saltiel, J.; Megarity, E. D.,‘Mechanism of Direct Cis-Trans Photoisomerization of Stillbenes' . Nature of Azulene Effect.’Journal of the American Chemical Society 1969, 91 (5), 1265-&.
    [34] Saltiel, J.; Megarity, E. D.,‘Mechanism of Direct Cis-Trans Photoisomerization of Stilbenes - Solvent Viscosity and Azulene Effect.’Journal of the American Chemical Society 1972, 94 (8), 2742-&.
    [35] Saltiel, J.; Waller, A. S.; Sears, D. F.,‘Dynamics of Cis-Stilbene Photoisomerization - the Adiabatic Pathway to Excited Trans-Stilbene.’J Photoch Photobio A 1992, 65 (1-2), 29-40.
    [36] Saltiel, J.; Waller, A. S.; Sears, D. F.,‘The Temperature and Medium Dependencies of Cis-Stilbene Fluorescence - the Energetics for Twisting in the Lowest Excited Singlet-State.’Journal of the American Chemical Society 1993, 115 (6), 2453-2465.
    [37] Saltiel, J.; Zafiriou, O. C.; Megarity, E. D.; Lamola, A. A.,‘Tests of Singlet Mechanism for Cis-Trans Photoisomerization of Stilbenes.’Journal of the American Chemical Society 1968, 90 (17), 4759-&.
    [38] Malkin, S.; Fischer, E.,‘Temperature Dependence of photoisomerization part II.1 quantum yields of cis-trans isomerization in zao-compounds.’The Journal of Physical Chemistry 1962, 66 (12), 2482-2486.
    [39] Saltiel, J.; D'Agostino, J. T.,‘Separation of viscosity and temperature effects on the singlet pathway to stilbene photoisomerization.’Journal of the American Chemical Society 1972, 94 (18), 6445-6456.
    [40] Saltiel, J.; Marchand, G. R.; Kirkorkaminska, E.; Smothers, W. K.; Mueller, W. B.; Charlton, J. L.,‘Nonvertical Triplet Excitation Transfer to Cis-Stilbene and Trans-Stilbene.’Journal of the American Chemical Society 1984, 106 (11), 3144-3151.
    [41] Saltiel, J.; Ganapathy, S.; Werking, C.,‘The Delta-H for Thermal Trans-Stilbene/Cis-Stilbene Isomerization - Do S0 and T1 Potential-EnergyCurves Cross.’J Phys Chem-Us 1987, 91 (11), 2755-2758.
    [42] Saltiel, J.; Townsend, D. E.; Sykes, A.,‘Role of Higher Triplet-States in the Anthracene-Sensitized Photo-Isomerization of Stilbene and 2,4-Hexadiene.’Journal of the American Chemical Society 1983, 105 (9), 2530-2538.
    [43] Sumitani, M. Y., K. Bull.,‘Direct Observation of the Rate for Cis-Trans and Trans-Cis Photoisomerization of Stilbene with Picosecond Laser Photolysis.’Chem. SOC. Jpn. 1982, 55, 85.
    [44] Malkin, S. F., E.,‘Temperature dependence of Direct and sensitized photoisomerization of stilbenes.’J. Phys. Chem. 1964, 68, 1153-1163
    [45] Doany, F. E.; Hochstrasser, R. M.; Greene, B. I.; Millard, R. R.,‘Femtosecond-Resolved Ground-State Recovery of Cis-Stilbene in Solution.’Chem. Phys. Lett. 1985, 118 (1), 1-5.
    [46] Doany, F. E.; Hochstrasser, R. M.; Greene, B. I.,‘Isomerization Intermediates in Solution Phase Photochemistry of Stilbenes.’P. Soc. Photo-Opt. Inst. 1985, 533, 25-29.
    [47] Yoshihara, K.; Namiki, A.; Sumitani, M.; Nakashima, N.,‘Picosecond Flash-Photolysis of Cis-Stilbene and Trans-Stilbene - Observation of an Intense Intra-Molecular Charge-Resonance Transition.’J Chem Phys 1979, 71 (7), 2892-2895.
    [48] Petek, H.; Yoshihara, K.; Fujiwara, Y.; Frey, J. G.,‘Isomerization of Cis-Stilbene in Rare-Gas Clusters Direct Measurements of Trans-Stilbene Formation Rates on a Picosecond Time Scale.’J. Opt. Soc. Am. B 1990, 7 (8), 1540-1544.
    [49] Xie, Z. Q.; Yang, B.; Liu, L. L.; Li, M.; Lin, D.; Ma, Y. G.; Cheng, G.; Liu, S. Y.,‘Experimental and theoretical studies of 2,5-diphenyl-1,4-distyrylbenzenes with all-cis- and all-trans double bonds: chemical structure determination and optical properties.’J. Phys. Org. Chem. 2005, 18 (9), 962-973.
    [50] Xie, Z. Q.; Liu, L. L.; Yang, B.; Yang, G. D.; Ye, L.; Li, M.; Ma, Y. G.,‘Polymorphism of 2,5-diphenyl-1,4-distyrylbenzene with two cis double bonds: The essential role of aromatic CH/pi hydrogen bonds.’Cryst. Growth. Des. 2005, 5 (5), 1959-1964.
    [51] Xie, Z. Q.; Yang, B.; Li, F.; Cheng, G.; Liu, L. L.; Yang, G. D.; Xu, H.; Ye, L.; Hanif, M.; Liu, S. Y.; Ma, D. G.; Ma, Y. G.,‘Cross dipole stacking in the crystal of distyrylbenzene derivative: The approach toward high solid-state luminescence efficiency.’Journal of the American Chemical Society 2005, 127 (41), 14152-14153.
    [52] Xie, Z. Q.; Yang, B.; Xie, W. J.; Liu, L. L.; Shen, F. Z.; Wang, H. A.; Yang, X. Y.; Wang, Z. M.; Li, Y. P.; Hanif, M.; Yang, G. D.; Ye, L.; Ma, Y. G.,‘A class of nonplanar conjugated compounds with aggregation-induced emission: Structural and optical properties of 2,5-diphenyl-1,4-distyrylbenzene derivatives with all cis double bonds.’J. Phys. Chem. B 2006, 110 (42), 20993-21000.
    [53] Xie, W. J.; Li, F.; Wang, H.; Xie, Z. Q.; Shen, F. Z.; Ma, Y. G.; Lu, W.; Zhang, D. K.; Ma, D. G.,‘Stimulated emission from distyrylbenzene derivative crystals grown by vapor.’Appl. Optics. 2007, 46 (20), 4431-4433.
    [54] Xie, Z. Q.; Wang, H.; Li, F.; Xie, W. J.; Liu, L. L.; Yang, B.; Ye, L.; Ma, Y. G.,‘Crystal structure of a highly luminescent slice crystal grown in the vapor phase: A new polymorph of 2,5-diphenyl-1,4-distyrylbenzene.’Cryst. Growth. Des. 2007, 7 (12), 2512-2516.
    [55] Xie, Z. Q.; Xie, W. J.; Li, F.; Liu, L. L.; Wang, H.; Ma, Y. G.,‘Controlling supramolecular microstructure to realize highly efficient nondoped deep blue organic light-emitting devices: The role of diphenyl substituents in distyrylbenzene derivatives.’J. Phys. Chem. C 2008, 112 (24), 9066-9071.
    [56] Xu, H.; Yang, B.; He, F.; Xie, Z. Q.; Tian, L. L.; Liu, X. D.; Yu, J. S.; Ma, Y. G.,‘Theoretical studies on ground state structure, electronic energy level and absorption spectra of PPV oligomers with biphenyl bridge.’Chem. J. Chinese U.2006, 27 (3), 510-514.
    [57] Yang, B.; Xie, Z. Q.; Zhang, H. Y.; Xu, H.; Hanif, M.; Gu, X.; He, F.; Yu, J. S.; Ma, Y. G.; Shen, J. C.; Liu, X. D.; Feng, J. K.,‘Theoretical study of 2,5-diphenyl-1,4-distyrylbenzene (a model compound of PPV): A comparison of the electronic structure and photophysical properties of cis- and trans-isomers.’Chem. Phys. 2008, 345 (1), 23-31.
    [58] Tang, C. W.; Vanslyke, S. A.,‘Organic Electroluminescent Diodes.’Appl. Phys. Lett. 1987, 51 (12), 913-915.
    [59] Tsumura, A.; Koezuka, H.; Ando, T.,‘Macromolecular Electronic Device - Field-Effect Transistor with a Polythiophene Thin-Film.’Appl. Phys. Lett. 1986, 49 (18), 1210-1212.
    [60] Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B.,‘Light-Emitting-Diodes Based on Conjugated Polymers.’Nature 1990, 347 (6293), 539-541.
    [61] Kraft, A.; Grimsdale, A. C.; Holmes, A. B.,‘Electroluminescent conjugated polymers - Seeing polymers in a new light.’Angew. Chem. Int. Edit. 1998, 37 (4), 402-428.
    [62] Mitschke, U.; Bauerle, P.,‘The electroluminescence of organic materials.’J. Mater. Chem. 2000, 10 (7), 1471-1507.
    [63] Kranzelbinder, G.; Toussaere, E.; Zyss, J.; Pogantsch, A.; List, E. W. J.; Tillmann, H.; Horhold, H. H.,‘Optically written solid-state lasers with broadly tunable mode emission based on improved poly (2,5-dialkoxy-phenylene-vinylene).’Appl. Phys. Lett. 2002, 80 (5), 716-718.
    [64] McGehee, M. D.; Heeger, A. J.,‘Semiconducting (conjugated) polymers as materials for solid-state lasers.’Advanced Materials 2000, 12 (22), 1655-1668.
    [65] Ling, M. M.; Bao, Z. N.,‘Thin film deposition, patterning, and printing in organic thin film transistors.’Chem. Mater. 2004, 16 (23), 4824-4840.
    [66] de Boer, R. W. I.; Gershenson, M. E.; Morpurgo, A. F.; Podzorov, V.,‘Organicsingle-crystal field-effect transistors.’Phys. Status. Solidi. A 2004, 201 (6), 1302-1331.
    [67] Butko, V. Y.; Chi, X.; Ramirez, A. P.,‘Free-standing tetracene single crystal field effect transistor.’Solid State Commun. 2003, 128 (11), 431-434.
    [68] Braun, D.; Heeger, A. J.,‘Visible-Light Emission from Semiconducting Polymer Diodes.’Appl. Phys. Lett. 1991, 58 (18), 1982-1984.
    [69] Shi, Y.; Liu, J.; Yang, Y.,‘Device performance and polymer morphology in polymer light emitting diodes: The control of thin film morphology and device quantum efficiency.’J. Appl. Phys. 2000, 87 (9), 4254-4263.
    [70] Wan, W. C.; Antoniadis, H.; Choong, V. E.; Razafitrimo, H.; Gao, Y.; Feld, W. A.; Hsieh, B. R.,‘Halogen precursor route to poly[(2,3-diphenyl-p-phenylene)vinylene] (DP-PPV): Synthesis, photoluminescence, electroluminescence, and photoconductivity.’Macromolecules 1997, 30 (21), 6567-6574.
    [71] Andersson, M. R.; Yu, G.; Heeger, A. J.,‘Photoluminescence and electroluminescence of films from soluble PPV-polymers.’Synthetic. Met. 1997, 85 (1-3), 1275-1276.
    [72] Hsieh, B. R.; Wan, W. C.; Yu, Y.; Gao, Y. L.; Goodwin, T. E.; Gonzalez, S. A.; Feld, W. A.,‘Synthesis of highly phenylated poly(p-phenylenevinylenes) via a chlorine precursor route.’Macromolecules 1998, 31 (3), 631-636.
    [73] Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B.,‘Efficient Light-Emitting-Diodes Based on Polymers with High Electron-Affinities.’Nature 1993, 365 (6447), 628-630.
    [74] Chen, S. A.; Chang, E. C.,‘Structure and properties of cyano-substituted poly(2,5-dialkoxy-p-phenylene vinylene)s.’Macromolecules 1998, 31 (15), 4899-4907.
    [75] Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.;Salaneck, W. R.,‘Electroluminescence in conjugated polymers.’Nature 1999, 397 (6715), 121-128.
    [76] Katayama, H.; Nagao, M.; Nishimura, T.; Matsui, Y.; Umeda, K.; Akamatsu, K.; Tsuruoka, T.; Nawafune, H.; Ozawa, F.,‘Stereocontrolled synthesis and optical properties of all-cis poly(phenylene vinylenes) (PPVs): a method for direct patterning of PPVs.’Journal of the American Chemical Society 2005, 127 (12), 4350-4353.
    [77] Katayama, H.; Taniguchi, K.; Kobayashi, M.; Sagawa, T.; Minami, T.; Ozawa, F.,‘Ruthenium-catalyzed hydrosilylation of terminal alkynes: stereodivergent synthesis of (E)- and (Z)-alkenylsilanes.’J. Organomet. Chem. 2002, 645 (1-2), 192-200.
    [78] Katayama, H.; Nagao, M.; Moriguchi, R.; Ozawa, F.,‘Stereocontrolled synthesis of (E)- and (Z)-poly(p-phenylenevinylene)s via ruthenium-catalyzed hydrosilylation of p-diethynylbenzene.’J. Organomet. Chem. 2003, 676 (1-2), 49-54.
    [79] Nagao, M.; Asano, K.; Umeda, K.; Katayama, H.; Ozawa, F.,‘Highly (Z)-selective hydrosilylation of terminal alkynes catalyzed by a diphosphinidenecyclobutene-coordinated ruthenium complex: Application to the synthesis of (Z,Z)-bis(2-bromoethenyl)arenes.’J. Org. Chem. 2005, 70 (25), 10511-10514.
    [80] Katayama, H.; Nagao, M.; Ozawa, F.; Ikegami, M.; Arai, T.,‘Stereoselective synthesis of cis- and trans-oligo(phenylenevinylene)s via palladium-catalyzed cross-coupling reactions.’J. Org. Chem. 2006, 71 (7), 2699-2705.
    [81] Katayama, H.; Ozawa, F.; Matsumiya, Y.; Watanabe, H.,‘Thermal, structural, and viscoelastic characterization of cis-poly(phenylene vinylene) related to its photo-isomerization.’Polym. J. 2006, 38 (2), 184-189.
    [82] Wong, K. F.; Skaf, M. S.; Yang, C. Y.; Rossky, P. J.; Bagchi, B.; Hu, D. H.; Yu, J.; Barbara, P. F.,‘Structural and electronic characterization of chemical andconformational defects in conjugated polymers.’J. Phys. Chem. B 2001, 105 (26), 6103-6107.
    [83] Chen, Y. S.; Meng, H. F.,‘Intrachain carrier transport in conjugated polymer with structural and chemical defects.’Phys. Rev. B 2002, 66 (3), -.
    [84] Summers, M. A.; Kemper, P. R.; Bushnell, J. E.; Robinson, M. R.; Bazan, G. C.; Bowers, M. T.; Buratto, S. K.,‘Conformation and luminescence of isolated molecular semiconductor molecules.’Journal of the American Chemical Society 2003, 125 (17), 5199-5203.
    [85] Claudio, G. C.; Bittner, E. R.,‘Random growth statistics of long-chain single molecule poly-(p-phenylene vinylene).’J Chem Phys 2001, 115 (20), 9585-9593.
    [86] Pang, Y.; Li, J.; Hu, B.; Karasz, F. E.,‘A highly luminescent poly[(m-phenylenevinylene)-alt-(p-phenylenevinylene)] with defined conjugation length and improved solubility.’Macromolecules 1999, 32 (12), 3946-3950.
    [87] Liao, L.; Pang, Y.; Ding, L. M.; Karasz, F. E.,‘Synthesis, characterization and luminescence of poly[(m-phenylenevinylene)-alt-(1,4-dibutoxy-2,5-phenylenevinylene)] with different content of cis- and trans-olefins.’Macromolecules 2001, 34 (19), 6756-6760.
    [88] Liao, L.; Ding, L. M.; Karasz, F. E.; Pang, Y.,‘Poly [(2-alkoxy-5-methyl-1,3-phenylene vinylene)-alt(phenylene vinylene)] derivatives with different contents of cis- and trans-olefins: The effect of the olefin bond geometry and conjugation length on luminescence.’J. Polym. Sci. Pol. Chem. 2004, 42 (2), 303-316.
    [89] Yang, N. C.; Jeong, J. K.; Choi, S. J.; Rhee, T. H.; Suh, D. H.,‘A new luminescent poly(phenylenevinylene) having an alternating cis- and trans-vinylene structure, poly (phenylenevinylene-phenylene-3-cyclobutene-1,2-dione).’Macromol. Rapid. Comm. 1999, 20 (11), 586-590.
    [90] Son, S.; Dodabalapur, A.; Lovinger, A. J.; Galvin, M. E.,‘Luminescence Enhancement by the Introduction of Disorder into Poly(P-Phenylene Vinylene).’Science 1995, 269 (5222), 376-378.
    [91] Liao, L.; Pang, Y.,‘Synthesis and characterization of highly blue-emitting poly(m-phenylenevinylene) derivative with different content of cis- and trans-olefins.’Abstr. Pap. Am. Chem. S. 2001, 222, U271-U271.
    [92] Liao, L.; Pang, Y.; Ding, L. M.; Karasz, F. E.,‘Poly[(2-alkyloxy-5-methyl- 1,3-phenylene)-alt-(p-phenylenevinylene)]s with different trans/cis-olefin content: Their synthesis and luminescent properties.’Abstr. Pap. Am. Chem. S. 2002, 223, D10-D10.
    [93] Liao, L.; Pang, Y.; Ding, L. M.; Karasz, F. E.,‘Blue-emitting poly[(m-phenylene vinylene)-alt-(o-phenylene vinylene)]s: The effect of regioregularity on the optical properties.’J. Polym. Sci. Pol. Chem. 2003, 41 (17), 2650-2658.
    [94] Liao, L.; Pang, Y.,‘Poly[(1,4-phenylenevinylene)-alt-(1,3-pheny leneviny lene)]s with different length of side chain: their synthesis and optical properties.’Synthetic. Met. 2004, 144 (3), 271-277.
    [95] Liao, L.; Pang, Y.; Ding, L. M.; Karasz, F. E.,‘Optical properties of poly[(1,4-phenylenevinylene)-alt-(1,3-phenylenevinylene)]s with cis-vinylene structure and short side chain.’Thin Solid Films 2005, 479 (1-2), 249-253.
    [96] Drury, A.; Maier, S.; Ruther, M.; Blau, W. J.,‘Investigation of different synthetic routes to and structure-property relationships of poly(m-phenylenevinylene-co-2,5-dioctyloxy-p-phenylenevinylene).’J. Mater. Chem. 2003, 13 (3), 485-490.
    [97] Dalton, A. B.; Coleman, J. N.; Panhuis, M. I. H.; McCarthy, B.; Drury, A.; Blau, W. J.; Paci, B.; Nunzi, J. M.; Byrne, H. J.,‘Controlling the optical properties of a conjugated co-polymer through variation of backbone isomerism and theintroduction of carbon nanotubes.’J. Photoch. Photobio. A 2001, 144 (1), 31-41.
    [98] Wang, F. F.; He, F.; Xie, Z. Q.; Li, Y. P.; Hanif, M.; Li, M.; Ma, Y. G.,‘Poly(p-phenylene vinylene) derivatives with different contents of cis-olefins and their effect on the optical properties.’Macromol. Chem. Physic. 2008, 209 (13), 1381-1388.
    [99] Wang, F. F.; He, F.; Xie, Z. Q.; Li, M.; Hanif, M.; Gu, X.; Yang, B.; Zhang, H. Y.; Lu, P.; Ma, Y. G.,‘A solution-processible poly(p-phenylene vinylene) without alkyl substitution: Introducing the cis-vinylene segments in polymer chain for improved solubility, blue emission, and high efficiency.’J. Polym. Sci. Pol. Chem. 2008, 46 (15), 5242-5250.
    [100] Robert W. Lenz, C.-C. H., John Stenger-Smith, Frank E. Karasz,,‘Preparation of poly(phenylene vinylene) from cycloalkylene sulfonium salt monomers and polymers.’Journal of Polymer Science Part A: Polymer Chemistry 1988, 26 (12), 3241-3249.
    [101] Sokolik, I.; Yang, Z.; Karasz, F. E.; Morton, D. C.,‘Blue-Light Electroluminescence from P-Phenylene Vinylene-Based Copolymers.’J. Appl. Phys. 1993, 74 (5), 3584-3586.
    [102] Maryanoff, B. E.; Reitz, A. B.; Mutter, M. S.; Inners, R. R.; Almond, H. R.,‘Detailed Rate Studies on the Wittig Reaction of Nonstabilized Phosphorus Ylides Via P-31, H-1, and C-13 Nmr-Spectroscopy - Insight into Kinetic Vs Thermodynamic Control of Stereochemistry.’Journal of the American Chemical Society 1985, 107 (4), 1068-1070.
    [103] Vedejs, E.; Marth, C. F.; Ruggeri, R.,‘Substituent Effects and the Wittig Mechanism - the Case for Stereospecific Oxaphosphetane Decomposition.’Journal of the American Chemical Society 1988, 110 (12), 3940-3948.
    [104] RestrepoCossio, A. A.; Cano, H.; Mari, F.; Gonzalez, C. A.,‘Theoretical study of the mechanism of the Wittig reaction: Ab initio and MNDO-PM3 treatmentof the reaction of unstabilized, semistabilized and stabilized ylides with acetaldehyde.’Heteroatom. Chem. 1997, 8 (6), 557-569.
    [105] Yamataka, H.; Nagase, S.,‘Theoretical calculations on the Wittig reaction revisited.’Journal of the American Chemical Society 1998, 120 (30), 7530-7536.
    [106] Rehahn, M.; Schluter, A. D.; Feast, W. J.,‘A High-Yield Route to 2,5-Di-N-Alkyl-1,4-Benzenedicarboxylic Acids.’Synthesis-Stuttgart 1988, (5), 386-388.
    [107] Xia, C. J.; Advincula, R. C.,‘Ladder-type oligo(p-phenylene)s tethered to a poly(alkylene) main chain: The orthogonal approach to functional light-emitting polymers.’Macromolecules 2001, 34 (20), 6922-6928.
    [108] Moriya, T.; Miyaura, N.; Suzuki, A.,‘Synthesis of Allenes by Palladium-Catalyzed Cross-Coupling Reaction of Organoboron Compounds with Propargylic Carbonates - Transmetalation of Organoboron Compounds with (Alkoxo)Palladium Complexes under Neutral Conditions (Pg 149, 1994).’Syn. lett. 1994, (4), 304-304.
    [109] Swatos, W. J.; Gordon, B.,‘Polymerization of 2,5-Di-Normal-Hexyloxy-Alpha-Alpha'-Dichloro-Para-Xylene with Potassium Tert-Butoxide - a Novel Route to Poly(2,5-Di-Normal-Hexyloxy-Para-Phenylen e Vinylene).’Abstr. Pap. Am. Chem. S. 1990, 199, 230-POLY.
    [110] Hsieh, B. R.; Feld, W. A.,‘A Dehydrochlorination (Dhcl) Route to Poly(2,3-Diphenyl-1,4-Phenylene Vinylene) (Dp-Ppv).’Abstr. Pap. Am. Chem. S. 1993, 206, 62-Poly.
    [111] Becker, H.; Spreitzer, H.; Ibrom, K.; Kreuder, W.,‘New insights into the microstructure of GILCH-polymerized PPVs.’Macromolecules 1999, 32 (15), 4925-4932.
    [112] Pfeiffer, S.; Rost, H.; Horhold, H. H.,‘Investigation of poly(arylenevinylene)s, - 42 - Synthesis of PPV-based copolymers containing alkyldiphenylamine andtriphenylamine in the main chain.’Macromol. Chem. Physic. 1999, 200 (11), 2471-2479.
    [113] Chu, H. Y.; Hwang, D. H.; Do, L. M.; Chang, J. H.; Shim, H. K.; Holmes, A. B.; Zyung, T. Y.,‘Electroluminescence from silyl-disubstituted PPV derivative.’Synthetic. Met. 1999, 101 (1-3), 216-217.
    [114] Chen, Z. K.; Huang, W.; Wang, L. H.; Kang, E. T.; Chen, B. J.; Lee, C. S.; Lee, S. T.,‘A family of electroluminescent silyl-substituted poly(p-phenylenevinyle ne)s: Synthesis, characterization, and structure-property relationships.’Macromolecules 2000, 33 (24), 9015-9025.
    [115] Sohn, B. H.; Kim, K.; Choi, D. S.; Kim, Y. K.; Jeoung, S. C.; Jin, J. I.,‘Synthesis and luminescence properties of poly[2-(9,9-dihexylfluorene-2-yl)-1, 4-phenylenevinylene] and its copolymers containing 2-(2-ethylhexyloxy)-5-met hoxy-1,4-phenylenevinylene units.’Macromolecules 2002, 35 (8), 2876-2881.
    [116] Lee, S. H.; Jang, B. B.; Tsutsui, T.,‘Sterically hindered fluorenyl-substituted poly(p-phenylenevinylenes) for light-emitting diodes.’Macromolecules 2002, 35 (4), 1356-1364.
    [117] Johansson, D. M.; Srdanov, G.; Yu, G.; Theander, M.; Inganas, O.; Andersson, M. R.,‘Synthesis and characterization of highly soluble phenyl-substituted poly(p-phenylenevinylenes).’Macromolecules 2000, 33 (7), 2525-2529.
    [118] Yang, Z.; Sokolik, I.; Karasz, F. E.,‘A Soluble Blue-Light-Emitting Polymer.’Macromolecules 1993, 26 (5), 1188-1190.
    [119] Spreitzer, H.; Becker, H.; Kluge, E.; Kreuder, W.; Schenk, H.; Demandt, R.; Schoo, H.,‘Soluble phenyl-substituted PPVs - New materials for highly efficient polymer LEDs.’Advanced Materials 1998, 10 (16), 1340-+.
    [120] Kawamura, Y.; Yamamoto, H.; Goushi, K.; Sasabe, H.; Adachi, C.; Yoshizaki, H.,‘Ultraviolet amplified spontaneous emission from thin films of 4,4 '-bis(9-carbazolyl)-2,2 '-biphenyl and the derivatives.’Appl. Phys. Lett. 2004, 84 (15), 2724-2726.
    [121] Hsieh, B. R.; Yu, Y.; Forsythe, E. W.; Schaaf, G. M.; Feld, W. A.,‘A new family of highly emissive soluble poly(p-phenylene vinylene) derivatives. A step toward fully conjugated blue-emitting poly(p-phenylene vinylenes).’Journal of the American Chemical Society 1998, 120 (1), 231-232.
    [122] Peng, Z. H.; Zhang, J. H.; Xu, B. B.,‘New poly(p-phenylene vinylene) derivatives exhibiting high photoluminescence quantum efficiencies.’Macromolecules 1999, 32 (15), 5162-5164.
    [123] Dinakaran, K.; Hsiao, S. M.; Chou, C. H.; Shu, S. L.; Wei, K. H.,‘Synthesis and characterization of an efficiently fluorescent poly(phenylenevinylene) possessing pendant dendritic phenyl groups.’Macromolecules 2005, 38 (25), 10429-10435.
    [124] Tseng, Y. H.; Wu, F. I.; Shih, P. I.; Shu, C. F.,‘Poly(p-phenylenevinylene) presenting pendent pentaphenylene dendron groups for light-emitting diodes.’J. Polym. Sci. Pol. Chem. 2005, 43 (21), 5147-5155.
    [125] Mikroyannidis, J. A.,‘Synthesis by Heck coupling of soluble, blue-light-emitting fully conjugated poly(p-phenylenevinylene)s with highly phenylated side groups.’Macromolecules 2002, 35 (25), 9289-9295.
    [126] Xie, Z. Q.; Yang, B.; Cheng, G.; Liu, L. L.; He, F.; Shen, F. Z.; Ma, Y. G.; Liu, S. Y.,‘Supramolecular interactions induced fluorescence in crystal: Anomalous emission of 2,5-diphenyl-1,4-distyrylbenzene with all cis double bonds.’Chem. Mater. 2005, 17 (6), 1287-+.
    [127] He, F.; Xu, H.; Yang, B.; Duan, Y.; Tian, L. L.; Huang, K. K.; Ma, Y. G.; Liu, S. Y.; Feng, S. H.; Shen, J. C.,‘Oligomeric phenylenevinylene with cross dipole arrangement and amorphous morphology: Enhanced solid-state luminescence efficiency and electroluminescence performance.’Advanced Materials 2005, 17 (22), 2710-+.
    [128] Kim, Y.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Heo, K.; Park, J.; Kim, H.; McCulloch, I.; Heeney, M.; Ree, M.; Ha, C. S.,‘Polymer chain/nanocrystalordering in thin films of regioregular poly(3-hexylthiophene) and blends with a soluble fullerene.’Soft. Matter. 2007, 3 (1), 117-121.
    [129] Tang, R. P.; Zhan'ao, T.; Cheng, C. X.; Li, Y. F.; Xi, F.,‘Synthesis, electroluminescence, and photovoltaic properties of dendronized poly (p-phenylene vinylene) derivatives.’Polymer 2005, 46 (14), 5341-5350.
    [130] Ando, S.,‘DFT calculations on refractive index dispersion of fluoro-compounds in the DUV-UV-visible region.’J. Photopolym. Sci. Tec. 2006, 19 (3), 351-360.
    [131] (editor-in-chief), D. R. L.,‘Handbook of Chemistry and Physics, seventy-fourth ed’CRCPress, USA, 1993-1994, ISBN: 0-8493-0474-1.
    [132] Sutherland, R. L.; Tondiglia, V. P.; Natarajan, L. V.; Bunning, T. J.; Adams, W. W.,‘Electrically Switchable Volume Gratings in Polymer-Dispersed Liquid-Crystals.’Appl. Phys. Lett. 1994, 64 (9), 1074-1076.
    [133] Moharam, M. G.; Gaylord, T. K.; Sincerbox, G. T.; Werlich, H.; Yung, B.,‘Diffraction Characteristics of Photoresist Surface-Relief Gratings.’Appl. Optics. 1984, 23 (18), 3214-3220.
    [134] Barrett, C. J.; Natansohn, A. L.; Rochon, R. L.,‘Optically-inscribed high efficiency diffraction gratings in azo polymer films.’Abstr. Pap. Am. Chem. S. 1996, 212, 147-PMSE.
    [135] Kim, W. S.; Jeong, Y. C.; Park, J. K.,‘Nanoparticle-induced refractive index modulation of organic-inorganic hybrid photopolymer.’Opt. Express. 2006, 14 (20), 8967-8973.
    [136] Tomita, Y.; Furushima, K.; Ochi, K.; Ishizu, K.; Tanaka, A.; Ozawa, M.; Hidaka, M.; Chikama, K.,‘Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume storage.’Appl. Phys. Lett. 2006, 88 (7), -.
    [137] Takeshima, N.; Kuroiwa, Y.; Narita, Y.; Tanaka, S.; Hirao, K.,‘Fabrication of a periodic structure with a high refractive-index difference by femtosecondlaser pulses.’Opt. Express 2004, 12 (17), 4019-4024.
    [138] Sobolewska, A.; Bartkiewicz, S.,‘Three gratings coupling during the holographic grating recording process in azobenzene-functionalized polymer.’Appl. Phys. Lett. 2008, 92 (25), -.
    [139] Yu, J. M.; Tao, X. M.; Tam, H. Y.,‘Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings.’Opt. Lett. 2004, 29 (2), 156-158.
    [140] Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z. Y.; McCord-Maughon, D.; Parker, T. C.; Rockel, H.; Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Bredas, J. L.,‘Structure-property relationships for two-photon absorbing chromophores: Bis-donor diphenylpolyene and bis(styryl)benzene derivatives.’Journal of the American Chemical Society 2000, 122 (39), 9500-9510.
    [141] Lotrich, V. F.; Szalewicz, K.,‘Perturbation theory of three-body exchange nonadditivity and application to helium trimer.’J Chem Phys 2000, 112 (1), 112-121.
    [142] He, G. S.; Bhawalkar, J. D.; Zhao, C. F.; Park, C. K.; Prasad, P. N.,‘2-Photon-Pumped Cavity Lasing in a Dye-Solution-Filled Hollow-Fiber System.’Opt. Lett. 1995, 20 (23), 2393-2395.
    [143] Perry, J. W.; Albota, M.; Ananthavel, S.; Beljonne, D.; Bredas, J. L.; Cumpston, B.; Dyer, D. L.; Ehlrich, J. E.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Kuebler, S. M.; Lee, I. Y. S.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Rockel, H.; Rumi, M.; Subramanian, G.; Webb, W. W.; Wu, X. L.; Xu, C.,‘Design of organic molecules with large two-photon absorption cross-sections.’Abstr. Pap. Am. Chem. S. 1999, 217, U378-U378.
    [144] Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I. Y. S.; McCord-Maughon, D.; Qin, J. Q.; Rockel, H.; Rumi, M.; Wu, X. L.; Marder, S. R.; Perry, J. W.,‘Two-photon polymerization initiators for three-dimensional optical datastorage and microfabrication.’Nature 1999, 398 (6722), 51-54.
    [145] Sun, H. B.; Tanaka, T.; Takada, K.; Kawata, S.,‘Two-photon photopolymerization and diagnosis of three-dimensional microstructures containing fluorescent dyes.’Appl. Phys. Lett. 2001, 79 (10), 1411-1413.
    [146] Sun, H. B.; Inouye, H.; Inouye, Y.; Okamoto, K.; Kawata, S.,‘Laser-diode-tuned sequential laser atom cooling and trapping for nanofabrications.’Jpn. J. Appl. Phys. 2 2001, 40 (7A), L711-L714.
    [147] Sun, H. B.; Tanaka, T.; Kawata, S.,‘Three-dimensional focal spots related to two-photon excitation.’Appl Phys Lett 2002, 80 (20), 3673-3675.
    [148] Sun, H. B.; Kawata, S.,‘Two-photon laser precision microfabrication and its applications to micro-nano devices and systems.’J. Lightwave. Technol. 2003, 21 (3), 624-633.
    [149] Sun, H. B.; Maeda, M.; Takada, K.; Chon, J. W. M.; Gu, M.; Kawata, S.,‘Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization.’Appl. Phys. Lett. 2003, 83 (5), 819-821.
    [150] Sun, H. B.; Takada, K.; Kim, M. S.; Lee, K. S.; Kawata, S.,‘Scaling laws of voxels in two-photon photopolymerization nanofabrication.’Appl. Phys. Lett. 2003, 83 (6), 1104-1106.
    [151] Sun, H. B.; Nakamura, A.; Shoji, S.; Duan, X. M.; Kawata, S.,‘Three-dimensional nanonetwork assembled in a photopolymerized rod array.’Advanced Materials 2003, 15 (23), 2011-2014.
    [152] Sun, H. B.; Suwa, T.; Takada, K.; Zaccaria, R. P.; Kim, M. S.; Lee, K. S.; Kawata, S.,‘Shape precompensation in two-photon laser nanowriting of photonic lattices.’Appl. Phys. Lett. 2004, 85 (17), 3708-3710.
    [153] Sun, H. B.; Kawata, S.,‘Two-photon photopolymerization and 3D l ithographic microfabrication.’Adv. Polym. Sci. 2004, 170, 169-273.
    [154] Sun, H. B.; Nakamura, A.; Kaneko, K.; Shoji, S.; Kawata, S.,‘Direct laser writing defects in holographic lithography-created photonic lattices.’Opt. Lett.2005, 30 (8), 881-883.
    [155] Kawata, S.; Sun, H. B.; Tanaka, T.; Takada, K.,‘Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption.’Nature 2001, 412 (6848), 697-698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700