用户名: 密码: 验证码:
方向图可重构天线单元及其在阵列中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天线是无线信息系统不可缺少的部分。当前无线信息技术的快速发展,对天线系统提出了越来越高的要求,如期望天线单元具有宽波束、宽频带、高增益特性而阵列具高增益、低副瓣电平特性等。大量研究表明,这些要求对于基于传统技术的天线及阵列设计而言,是非常具有挑战性的。为此,人们不断探索各种天线新概念与新技术,以突破相关难题。近年来,可重构天线概念被提出来了。它通过调整集成于通用辐射孔径中的诸如开关、变容二极管等状态可控器件的状态,实现对天线性能的重构。由于可重构天线释放出了新的设计自由度,极大地扩展了传统天线及阵列设计解空间,为提升天线及阵列特性提供了巨大潜能,同时也为天线及其阵列设计带来了一系列新的课题。本文围绕方向图可重构天线单元及其在平面/共形阵列中的应用展开了系统而深入的研究,取得了一系列创新性成果。本文的主要工作简介如下。
     第一章,阐述了可重构天线及其阵列的研究背景,系统地回顾了方向图可重构天线及阵列的发展历程与现状,介绍了本文的主要研究内容和章节安排。
     第二章,研究和设计了三款方向图可重构天线单元。第一款是二极管开关加载的方向图可重构微带八木天线,良好地解决了开关直流偏置网络与天线辐射体之间的电磁兼容问题;第二款是具有低交叉极化特征的改进型方向图可重构微带八木天线,为解决共形阵列的高交叉极化缺陷提供了基础。第三款天线是一个太阳光辐射式的方向图可重构Hilbert天线,该天线能在多个平面内实现方向图重构,通过波束切换其波束几乎可以连续地覆盖整个上半空间,且有宽带优势。
     第三章,详细分析了加载可变电抗的二元阵列方向图、振子表面电流相位和加载电抗值之间的关系,研究了方向图可重构机理,在此基础上提出了一种方向图可重构天线的高效设计方法。从具体研究的加载二元阵列出发,提取了阵列辐射特性一般分析模型,通过系列分析指出,通过对具有差波束特征的原天线加载可变电抗以实现波束重构是方向图可重构天线快速设计的一种有效方法,并依照此方法设计了几种方向图可重构天线单元,验证了该方法的实用意义。
     第四章,通过研究方向图可重构天线单元与平面/共形阵列波束特性之间的联系,提出了基于方向图可重构天线的大角度范围扫描阵列新方案,极大地提高了阵列波束扫描特性。首先从阵列天线理论出发,推导并阐述了阵列方向图综合中如有源单元方向图等几个容易混淆的概念。其次,将方向图可重构单元应用到平面/共形阵列中,系统研究了阵列布阵方式、阵元工作状态,并基于有源单元方向图方法对阵列方向图进行综合,理论及原理实验表明新型方向图可重构阵列能够实现阵列大角度范围波束扫描。最后,通过对多个微带八木天线的寄生振子加载可变电抗的研究,提出了建立大角度范围波束扫描的大规模的可重构天线阵列的方法。
     第五章,提出了混合蔓延野草和粒子群演绎算法,为方向图可重构阵列的综合提供了快捷高效的方法。以微带共形天线阵列为例,验证了该算法在阵列综合方面的优势,即该综合方法既吸收了蔓延野草算法的优势又具有粒子群演绎算法的优势。该方法在第四章中的方向图可重构天线平面/共形阵列的方向图综合中得到了很好的应用,展示了其高效的优化性能和解决电磁问题的潜力。
     第六章,总结与展望。对本文的主要工作进行了归纳和总结,并提出方向图可重构天线的发展趋势,指出了有待未来进一步探索的重要课题。
Antenna is an indispensable part of wireless information systems. With the rapiddevelopment of current wireless information technology, the performance of antennaelement and array is required higher and higher. For example, antenna element isexpected to work at wideband spectrum with a wide beam and a high gain whileantenna array is required to have high gain and low sidelobe level, and so on. Numerousstudies show that it is a very challenging task to design the antenna elements and arrayson the basis of traditional technology to simultaneously satisfy the several requirementsmentioned above. Therefore people make unremitting efforts to explore new antennaconcepts and technologies to break through the related problems. Recently,reconfigurable antenna concept has been proposed to save the problems. Areconfigurable antenna reconfigures its performance by adjusting the variablecomponents integrated in the antenna aperture, such as PIN switch, MEMS switch, andvaractor diode. Due to the design freedom of reconfigurable antenna, the solution spacesare extended and the potential is exploited for the traditional antenna element and array.Also, a series of new issues come out for the antenna array design. Researches on theanalysis of pattern reconfigurable antenna (PRA) elements and their applications inplanar and conformal arrays have been done in depth and a series of innovativeachievements have been made in this dissertation. Major studies of the dissertation areas follows:
     In Chapter1, the research background of this dissertation is presented. Firstly, theresearch background and significance of PRA element and array are described. Thentheir development histories and recent advancements are reviewed. Finally, the mainworks and framework of this dissertation are outlined.
     In Chapter2, three types of PRA are researched and designed. The first type ofantenna is a microstrip Yagi PRA loaded with PIN switches, which resolves theelectromagnetic compatibility between the DC bias net and antenna radiator. The secondtype of antenna is a modified microstrip Yagi PRA with low cross-polarization level, which provides a basis for conformal array to suppress the cross-polarization. The thirdtype of antenna is a Hilbert PRA. The antenna can reconfigure its patterns in eightdirections with wide bandwidth and the space above the antenna plane can be nearlycovered by switching its beams.
     In Chapter3, the relationship among the radiation pattern, the surface current phaseand the loaded reactance value of the two loaded-dipole array is analyzed in detail. Themechanism of pattern being reconfigured has been researched. On the basis of themechanism, an efficient method of PRA design has been proposed. Starting from thespecific study of the loaded two-dipole array, a model of array analysis is extracted andstudied and we point out that it is an efficient method to design PRA by loading variablereactance component on the antennas with conical beam. According to the method,several PRAs are designed to verify the practical significance of this method.
     In Chapter4, a new scheme is proposed to design a wide-angle scanning rangearray on the basis of PRA element after the relation between the beam ofplanar/conformal array and PRA element has been researched. The beam scanningperformance of array is improved. Firstly, a few easily confused concepts in arraypattern synthesis are deduced and distinguished. Secondly, the planar/conformal arraysare set up and their patterns are synthesized with the active element pattern method. Inthese arrays the different arrangements and operating states of the antenna elements areanalyzed. The theory and experiment results showed that the new PRA array can scan inwide-angle range. Finally, a method has been proposed to design the PRA array withlarge-scale PRA elements and wide-angle scanning range by analyzing thecharacteristics of the array in which many parasitic dipoles are loaded with variablereactance component.
     In Chapter5, a hybrid IWO/PSO algorithm is proposed and it is a fast and efficientmethod to synthesize the patterns of PRA array. A microstrip conformal array wasdesigned to validate the advantages of the algorithm over the IWO algorithm and thePSO algorithm. Then some pattern syntheses of the PRA arrays have been preformed byapplying the hybrid IWO/PSO algorithm, which demonstrated that the proposedalgorithm has efficient optimizing capability and has a great potential to solveelectromagnetic problems.
     In Chapter6, the research work of this dissertation is summarized and the future works are predicted.
引文
[1]王小琴.宽波束四臂螺旋天线设计.通信对抗.2009,3:62-64
    [2] S. Chattopadhyay, J. Y. Siddiqui, and D. Guha. Rectangular microstrip patch on a compositedielectric substrate for high-gain wide-beam radiation patterns. IEEE Transactions on Antennasand Propagation,2009,57(10), pp.3324-3327
    [3]毛文辉,朱旗等.宽波束柱面共形毫米波微带天线设计.电波科学学报.2008,23(2):272–275
    [4]郭琳,朱小三,和邹永庆.一种宽波束相控阵天线单元.雷达科学与技术.2007,5(2):157-160
    [5] D. H. Schaubert. Frequency-agile, polarization diverse microstrip antennas and frequencyscanned arrays. US Patent4367474,1983, Jan.4
    [6] W. Rotman and A. Maestri. An electromechanically scannable trough waveguide array.Proceedings of the IRE International Convention Record,1960,8:67-83
    [7] W. Rotman and A. Oliner. Asymmetrical trough waveguide antennas. IEEE Transactions onAntennas and Propagation,1959,57:153-162
    [8] P.J.B. Clarricoats and H. Zhou. The design and performance of a reconfigurable mesh reflectorantenna. Proceedings of IEE Seventh International Conference on Antennas and Propagation,1991,1:322-325
    [9] P.J.B. Clarricoats, H. Zhou, and A. Monk. Electronically controlled reconfigurable reflectorantenna. Proceedings of the IEEE/URSI International Symposium on Antennas and Propagation,1991,1:179-181
    [10] G. Washington, H.-S. Yoon, and M. Angelino, et al. Design, modeling, and optimization ofmechanically reconfigurable aperture antennas. IEEE Transactions on Antennas andPropagation,2002,50(5):628-637
    [11] J.-C. Chiao, Y. Fu, and I. M. Chio. MEMS reconfigurable Vee antenna. IEEE MTT-SInternational Microwave Symposium Digest,1999,4:1515-1518
    [12] R. F. Harrington. Reactively controlled directive arrays. IEEE Transactions on Antennas andPropagation,1978,26(3):390-395
    [13] B.Schaer, K. Rambabu, and J. Bornemann, et al. Design of reactive parasitic elements inelectronic beam steering arrays. IEEE Transactions on Antennas and Propagation,2005,53(6):1998-2003
    [14] E. Taillefer, A. Hirata, and T. Ohira. Reactance-domain ESPRIT algorithm for a hexagonallyshaped seven-element ESPAR antenna. IEEE Transactions on Antennas and Propagation,2005,53(11):3486-3495
    [15] Q. Han, K. Inagaki, and Brett Hanna, et al. Evanescent reactive-near-field measurement forESPAR antenna characterization. IEEE Transactions on Antennas and Propagation,2006,54(10):2953-2962
    [16] W. H. Chen and Z. H. Feng. Planar reconfigurable pattern antenna by reactive-load switch,Microwave and Optical Technology Letters,2005,47(5):506-507
    [17] P. Deo, A. Mehta, and D. M. Syahkal, et al. An HIS-based spiral antenna for patternreconfigurable applications. IEEE Antenna and Wireless Propagation Letters,2009,8:196-199
    [18] R. Raj, B. Poussot, and J.-M. Laheurte, et al. Pattern reconfigurable of microstrip antenna usingflip-chip mounted packaged MEMS. Microwave and Optical Technology Letters,2010,52(3):574-577
    [19] W. H. Chen, J. W. Sun, and X. Wang, et al. A novel planar switched parasitic array antenna withsteered conical Pattern. IEEE Transactions on Antennas and Propagation,2007,55(6):1883-1887
    [20] T. Kim, Y. Yoon, and G. Kim, et al. A linear phased array antenna composed of inductive loadedpatch antennas. IEEE Antenna and Wireless Propagation Letters,2011,11:1051-1054
    [21] H. Ng and K. Leung. Frequency tuning of the linearly and circularly polarized dielectricresonator antennas using multiple parasitic strips. IEEE Transactions on Antennas andPropagation,2006,54(1):225-230
    [22] E. Taillefer, W. Nomura and J. Cheng, et al. Enhanced reactance-domain ESPRIT algorithmemploying multiple beams and translational-invariance soft selection for direction-of-arrivalestimation in the full azimuth. IEEE Transactions on Antennas and Propagation,2008,56(8):2514-2526
    [23] S. Lim and H. Ling. Design of electrically small, pattern reconfigurable Yagi antenna. IETElectronics Letters,2007,43(24):1326-1327
    [24] S. Zhang, G. H. Huff, and J. Feng, et al. A pattern reconfigurable microstrip parasitic array.IEEE Transactions on Antennas and Propagation,2004,52(10):2773-2776
    [25] W. Kang, S. Lee and K. Kim. Design of symmetric beam pattern reconfigurable antenna. IETElectronics Letters,2010,46(23):1536-1537
    [26] K. Bahng, C.W. Jung and K. Kim. Design and measurement of beam reconfigurable antennabased on folded dipole structure. IET Electronics Letters,2009,45(3):138-139
    [27] S. Zhang, G. H. Huff, G. Cung, and J. T. Bernhard. Three variations of a pattern reconfigurablemicrostrip parasitic array, Microwave and Optical Technology Letters,2005,45(5):369-372
    [28] G. H. Huffand and J. T. Bernhard. Integration of packaged RF MEMS switches with radiationpattern reconfigurable square spiral microstrip antennas. IEEE Transactions on Antennas andPropagation,2006,54(2):464-469
    [29] C.Jung and M. Lee. Reconfigurable scan-beam single-arm spiral antenna integrated withRF-MEMS switches. IEEE Transactions on Antennas and Propagation,2006,54(2):455-463
    [30] S.-J. Ha and W. Jung. Reconfigurable beam steering using a microstrip patch antenna with au-slot for wearable fabric applications. IEEE Antenna and Wireless Propagation Letters,2011,10:1228-1231
    [31] W.-L. Liu, T.-R. Chen, and S.-H. Chen, et al. Reconfigurable microstrip antenna with patternand polarisation diversities. IET Electronics Letters,2007,43(2):77-78
    [32] B.Poussot, J. Laheurte and L. Cirio, et al. Diversity measurements of a reconfigurable antennawith switched polarizations and patterns. IEEE Transactions on Antennas and Propagation,2008,56(1):31-38
    [33] H. Fayad and P. Record. Multi-feed dielectric resonator antenna with reconfigurable radiationpattern. Progress in Electromagnetic Research, PIER76,2007:341-356
    [34]丁卓富,肖绍球等.方向图可重构天线及其相控阵研究.2009年全国天线年会:1522-1525
    [35] W. Cao, Y. Xiang, and B. Zhang, et al. A low-cost compact patch antenna with beam steeringbased on CSRR-loaded ground. IEEE Antenna and Wireless Propagation Letters,2011,10:1520-1523
    [36] G. Lovat, P. Burghignoli, and S. Celozzi. A tunable ferroelectric antenna for fixed frequencyscanning applications. IEEE Antennas and Wireless Propagation Letters,2006,5:353–356.
    [37] Y. Yashchyshyn and J.W. Modelski. Rigorous analysis and investigations of the scan antennason a ferroelectric substrate. IEEE Transactions on Microwave Theory and Techniques,2005,53(2):427-438
    [38] M. F. Iskander, Z. Yun, and Z. Zhang, et al. Design of a low-cost2-D beam-steering antennausing ferroelectric material and CTS technology. IEEE Transactions on Microwave Theory andTechniques,2001,49(5):1000-1003
    [39] J. Borowick, and R. Stern. A line source array for limited scan applications. Proceedings of theIEEE/URSI International Symposium on Antennas and Propagation,1976,1:164-167
    [40]杨雪松.微带可重构天线研究:[博士学位论文].成都:电子科技大学,2006
    [41] C. Plapous, J. Cheng, and E. Taillefer, et al. Reactance domain MUSIC algorithm forelectronically steerable parasitic array radiator. IEEE Transactions on Antennas and Propagation,2004,52(12):3254-3264
    [42]吴炜霞.特征模理论及其在方向图可重构天线研究中的应用:[博士学位论文].成都:电子科技大学,2005.
    [43] S. Nikolaou, R. Bairavasubramanian, and C. Lugo, et al. Pattern and frequency reconfigurableannular slot antenna using PIN diodes. IEEE Transactions on Antennas and Propagation,2006,54(2):439-448
    [44] B. Elamaran, I.-M. Chio, and L.-Y. Chen, et al. A beam-steerer using reconfigurable PBGground plane. IEEE Antennas and Propagat. Society International Symp.,2000,2:835-838
    [45] M. Riel and J.-J. Laurin. Design of an electronically beam scanning reflectarray usingaperture-coupled elements. IEEE Transactions on Antennas and Propagation,2007,55(5):1260-1266
    [46] J. Sor, C.-C. Chang, and Y. Qian, et al. A reconfigurable leaky-wave/patch microstrip aperturefor phased-array applications. IEEE Transactions on Microwave Theory and Techniques,2002,50(8):1877-1884
    [47]魏文博.可重构天线研究:[博士学位论文].西安:西安电子科技大学,2008
    [48]肖绍球.平面型可重构天线研究:[博士学位论文].成都:电子科技大学,2003
    [49] M.A.M.Ali. Design and analysis of adaptive and reconfigurable antennas for wirelesscommunication:[the degree of Doctor of Philosophy]. School of Electrical Engineering andComputer Science in the College of Engineering and Computer Science at University of CentralFlorida Orlando, Florida,2004
    [50] S. Zhang and J. T. Bernhard. Performance study of a reconfigurable microstrip parasitic array(RMPA) phased array. IEEE Antennas and Propagation Society International Symposium,2006:2305-2308
    [51] T. L. Roach, G. H. Huff, and J.T. Bernhard. On the applications for a radiation reconfigurableantenna. Second NASA/ESA Conference on Adaptive Hardware and Systems,2007, AHS2007:7-13
    [52] M. P. Daly and J. T. Bernhard. Beamsteering in pattern reconfigurable arrays using directionalmodulation. IEEE Transactions on Antennas and Propagation,2010,58(7):2259-2265
    [53]清华大学《微带电路》编写组.微带电路.人民邮电出版社
    [54]凌伟. x波段T/R组建关键部件研究:[硕士学位论文].成都:电子科技大学,2004
    [55]顾海光.射频微机电开关及移相器的研究和优化:[硕士学位论文].南京:南京航空航天大学,2006
    [56]孙晓峰.基于叉指式共面波导的RF MEMS开关线型移相器研究:[博士学位论文].上海交通大学,2008
    [57] M. H. Norwood and E. Shatz. Voltage-variable capacitor tunning: a review. IEEE Proceedings,1968,56(5):788-798
    [58] D.-H. Choi and S.-O. ParkA. Varactor-tuned active-integrated antenna using slot antenna. IEEEAntenna and Wireless Propagation Letters,2005,4:191-193
    [59] D. Piazza, N. J. Kirsch, and A. Forenza. Design and evaluation of a reconfigurable antennaarray for MIMO systems. IEEE Transactions on Antennas and Propagation,2008,56(3):869-881
    [60]吴国春.微带开口环电调滤波器设计:[硕士学位论文].西安:西安电子科技大学,2010
    [61] L. Chiu and Q. Xue. Investigation of a wideband90hybrid coupler with an arbitrary couplinglevel. IEEE Transactions on Microwave Theory and Techniques,2010,58(4):1022-1029
    [62] J.-X. Chen, C,-H, K. Chin, and Q. Xue. Double-sided parallel-strip line with an insertedconductor plane and Its applications. IEEE Transactions on Microwave Theory and Techniques,2007,55(9):1899-1904
    [63] S.-G. Kim and K. Chang. Ultrawide-band transitions and new microwave components usingdouble-sided parallel-strip lines. IEEE Transactions on Microwave Theory and Techniques,2004,52(9):2148-2152
    [64]郑新,赵玉杰,和刘永宁等.微波固态电路设计(第二版).电子工业出版社,北京,2006
    [65]张泳.方向图可重构平面分形天线设计:[硕士学位论文].成都:电子科技大学,2007
    [66] L. Petit, L. Dussopt and J.-M. Laheurte. MEMS-switched parasitic-antenna array for radiationpattern diversity. IEEE Transactions on Antennas and Propagation,2006,54(9):2624-2631
    [67]朱守正和安同一.天线理论与设计(第2版).人民邮电出版社,2006:57-60
    [68] Y.-X. Guo, M. Y.W. Chia, and Z. N. Chen. Wide-band L-probe fed circular patch antenna forconical-pattern radiation. IEEE Transactions on Antennas and Propagation,2004,52(4):1115-1116
    [69] Z. Shen, and J. Wang. Top-hat monopole antenna for conical-beam radiation. IEEE Antenna andWireless Propagation Letters,2011,10:396-399
    [70] J.-S. Row and M.-C. Chan. Reconfigurable circularly-polarized patch antenna with conicalbeam. IEEE Transactions on Antennas and Propagation,2010,58(8):2753-2757
    [71] M. Donelli, R. Azaro, and L, Fimognari, et al. A planar electronically reconfigurable wi-fi bandantenna based on a parasitic microstrip structure. IEEE Antenna and Wireless PropagationLetters,2007,6:623-626
    [72] H. Nakano, R. Aoki, and R. Kobayashi, et al. A patch antenna surrounded by parasitic Yelements for beam scanning. IEEE Antennas and Propagation Society International Symposium,2006:2317-2320
    [73] S. V. Shynu Nair and Max J. Ammann. Reconfigurable antenna with elevation and azimuthbeam switching. IEEE Antenna and Wireless Propagation Letters,2010,9:367-370
    [74] A. Pal, A. Mehta, and D. Mirshekar-Syahkal. Doughnut and tilted beam generation using asingle printed star antenna. IEEE Transactions on Antennas and Propagation,2009,57(10):3413-3418
    [75] K. C. Gupta, R. Garg, and I. Bah, et al. Microstrip lines and slotilines. Second ed. Norwood,MA: Artech House:282-286
    [76] SMV2019-SMV2023Series: Hyperabrupt Junction Tuning Varactors data sheet. google搜索.
    [77] W. C. Barott and P. G. Steffes. Grating lobe reduction in aperiodic linear arrays of physicallylarge antennas. IEEE Antenna and Wireless Propagation Letters,2009,8:406-409
    [78] R Raven. Redistribution of phase grating lobes by an aperiodic phased array. IEEE Transactionson Antennas and Propagation,1970,18(6):809-811
    [79] J.S. Petko and D. H. Werner. Pareto optimization of thinned planar arrays with ellipticalmainbeams and low sidelobe levels. IEEE Transactions on Antennas and Propagation,2011,59(5):1748-1751
    [80] R. L. Haupt. Optimized element spacing for low sidelobe concentric ring arrays. IEEETransactions on Antennas and Propagation,2008,56(1):266-268
    [81] R. L. Haupt and D. W. Aten. Low sidelobe arrays via dipole rotation. IEEE Transactions onAntennas and Propagation,2009,57(5):1975-1979
    [82]何庆强.共形辐射单元及共形阵列研究:[博士学位论文].成都:电子科技大学,2008
    [83] D. F. Kelley and W. L. Stutzman. Array antenna pattern modeling methods that include mutualcoupling effects. IEEE Transactions on Antennas and Propagation,1993,41(12):1625-1632
    [84] D. M. Pozar. The Active Element Pattern. IEEE Transactions on Antennas and Propagation,1994,42(8):1176-1178
    [85] D. M. Pozar. A Relation between the active input impedance and the active element pattern of aphased array. IEEE Transactions on Antennas and Propagation,2003,51(9):2486-2489
    [86]张玉洪和保铮.最佳非均匀间隔稀布阵列的研究.电子学报,1989,17(4):81-87
    [87]张玉洪和保铮.加权直线天线阵的最佳稀布.电子学报,1990,18(5):34-39
    [88] W.-J. Zhao, L.-W. Li, and E.-P. Li, et al. Analysis of radiation characteristics of conformalmicrostrip arrays using adaptive integral method. IEEE Transactions on Antennas andPropagation,2012,60(2):1176-1181
    [89] J. R. James and P. S. Hall. Handbook of Microstrip Antennas. London, U.K.: Peregrinus,1989.
    [90] L. Josefsson and P. Persson. Conformal array antenna theory and design. Printed in the UnitedStates of America,1995:319-323
    [91] K. Wong and G. Hsieh. Curvature effects on the radiation pattern of cylindrical microstrip arrays.Microwave and Optical Technology Letters,1998,18(3):206-209
    [92] N. Toyama. Aperiodic array pattern synthesis. IEEE Antennas and Propagation SocietyInternational Symposium,2007:2686-2689
    [93] S. Sun, Y. Gong, and Z. Gou. Optimum transmission beamforming on phase-only antennaarrays. IEEE International Conference on Communications, Circuits and Systems and WestSino Expositions,2002,2:1041-1044
    [94] J. A. Ferreira and F. Ares. Pattern synthesis of conformal arrays by the simulated annealingtechnique. IET Electronics Letters,1997,33(14):1187-1188
    [95] L. I. Vaskelainen. Constrained least-squares optimization in conformal array antenna synthesis.IEEE Transactions on Antennas and Propagation,2007,55(3):859-867
    [96] B.-H. Wang, Y. Guo, and Y.-L. Wang, et al. Frequency-invariant pattern synthesis of conformalarray antenna with low cross-polarisation. IET Microwaves, Antennas&Propagation,2008,2(5):442-450
    [97] J.-L. Guo and J.-Y. Li. Pattern synthesis of conformal array antenna in the presence of platformusing differential evolution algorithm. IEEE Transactions on Antennas and Propagation,2009,59(9):2615-2621
    [98] W. Li, S. Liu, X. S, and Y. Hei. Low-sidelobe pattern synthesis of spherical arrays using thehybrid genetic algorithm. Microwave and Optical Technology Letters,2009,51(6):1487-1490
    [99] B. Babayigit, K. Guney, and A. Akdagli. A clonal selection algorithm for array pattern nullingby controlling the positions of selected elements. Progress in Electromagnetics Research B,2008,6:257-266
    [100]高波,多目标进化算法及其在天线方向图综合问题中的应用,[硕士学位论文].上海:上海交通大学,2007
    [101] S. Karimkashi and A. A. Kishk. Invasive weed optimization and its features inelectromagnetics. IEEE Transactions on Antennas and Propagation,2010,58(4):1269-1278
    [102] G. G. Roy, S. Das, and P. Chakraborty, et al. Design of non-uniform circular antenna arraysusing a modified invasive weed optimization algorithm. IEEE Transactions on Antennas andPropagation,2011,59(1):110-118
    [103] S. H. Sedighy, A. R. Mallahzadeh, and M. Soleimani, et al. Optimization of printed Yagiantenna using invasive weed optimization (IWO). IEEE Antennas and Wireless PropagationLetters,2010,9:1275-1278
    [104] A. R. Mallahzadeh, S. Es'haghi, and A. Alipour. Design of an E-shaped mimo antenna usingIWO algorithm for wireless application at5.8GHz. Prog. Electromagnets. Res.,2009,90:187-203
    [105] A. R. Mehrabian and C. Lucas. A novel numerical optimization algorithm inspired from weedcolonization. Ecological Informatics,2006,1:355-366
    [106] J. Kennedy and R. Eberhart. Particle swarm optimization. IEEE Int. Conf. Neural Netw.,Piscataway, NJ,1995.
    [107] H. Hajimirsadeghi and C. Lucas. A hybrid IWO/PSO algorithm for fast and globaloptimization. IEEE Eurocon2009, Eurcon'09:1964-1971
    [108] D. W. Boeringer and D. H. Werner. Efficiency-constrained particle swarm optimization of amodified bernstein polynomial for conformal array excitation amplitude synthesis. IEEETransactions on Antennas and Propagation,2005,53(8):2662-2673
    [109] D. W. Boeringer and D. H. Werner. Bézier representations for the multiobjective optimizationof conformal array amplitude weights. IEEE Transactions on Antennas and Propagation,2006,54(7):1964-1970

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700