用户名: 密码: 验证码:
基于共面波导缺陷结构的RF MEMS滤波器理论研究与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RF MEMS滤波器由于其高集成性、低损耗、小体积、优良线性度及可以实现频率调节等特性,近年来成为国内外研究热点。本文首先研究并联电容式RF MEMS开关基础理论和设计方法,包括对称载荷与非对称载荷MEMS开关的结构模型建立,设计了三种无“吸合效应”的MEMS开关结构模型,利用微带特性阻抗法实现了MEMS电容的提取,提出了高隔离低驱动电压的MEMS开关模型。共面波导传输线由于信号线与地在一个平面上,被广泛的用于RF MEMS滤波器以减少寄生效应等。本文基于保角变换研究了共面波导缺陷结构等效电容值、特性阻抗及对应的等效电路,包括共面波导缺陷地结构与信号线缺陷结构对应的电容值、特性阻抗及对应的等效电路。基于共面波导缺陷地结构设计了三种带阻滤波器结构模型,并提出了一种基于缺陷地特性阻抗的带阻滤波器设计方法,研究了相应的等效电路。在此基础上设计了基于共面波导缺陷地结构的MEMS可调带阻滤波器结构模型,详细分析了该滤波器谐振单元射频响应特性及MEMS开关结构,研究了MEMS开关在可调滤波器中的等效电路和可调原理,分析了MEMS可调滤波器加工、测试及误差,提出了误差修正方法等。
     本文研究了基于共面波导信号线缺陷结构的MEMS滤波器,包括可调带通滤波器、可调带阻滤波器及可调低通滤波器等。分析了基于单个MEMS开关的双阶可调滤波器结构模型,研究了非对称载荷的MEMS开关在滤波器中的等效电路及可调方式。通过对信号线凹槽结构的优化实现滤波器带宽和中心频点的调整,并通过对信号线凹槽的结构调节实现带通与带阻滤波器的转换。同时利用信号线凹槽结构与MEMS开关实现了可调低通滤波器的设计。研究了凹槽结构、数量对该类型可调低通滤波器的影响,基于保角变换实现了基于共而波导结构的低通滤波器等效电路提取。
     本文同时分析了滤波器工艺加工及测试方法,包括非可调滤波器及MEMS可调滤波器的加工和测试。分析了MEMS开关的工艺加工流程,设计了具体的工艺流程单和对应的掩模板,并实现了加工测试。与此同时文中对MEMS开关失效进行分析,提出了相应的解决方案。
     本文主要创新点:
     1.设计了三种无“吸合”效应和一种高隔离度低驱动电压的MEMS开关结构模型,利用微带特性阻抗法实现了MEMS开关等效电容提取;提出了共面波导缺陷结构等效电容和特性阻抗计算方法,实现了CPW地和信号线缺陷结构等效电容和特性阻抗的计算,为基于CPW凹槽结构设计微波器件提供支持。(第二、三章)
     2.基于CPW缺陷地结构特性阻抗,提出了一种CPW带阻滤波器的设计方法,实现了从集总参数带阻滤波器向分布式CPW结构带阻滤波器的转换,提供了一种基于CPW带阻滤波器的设计途径。(第四章)
     3.设计了一种基于CPW缺陷地和MEMS开关的混合谐振器,该谐振器可以有效减小体积。建立了MEMS开关高度变化与谐振频率点之间非线性关系的数学模型.用于分析开关驱动电压、开关高度和对应的谐振频率点之间的关系。(第四章)
     4.提出了基于单个MEMS开关的二阶可调带通滤波器结构模型,该模型有效的减小了滤波器体积,提高了滤波器稳定性和开关同步性,可调范围达30%。(第五章)
Because the features of RF MEMS filter, such as the highly integrated, low loss, small size, excellent linearity and frequency adjustment, RF MEMS filter become the research focus in the world. The paper studied the basic knowledge and design methods of shunt capacitive RF MEMS switch first, including symmetry load and asymmetry load structures of MEMS switch model. It designed three kinds of "no pull-down" MEMS switch, achieved the extraction of MEMS capacitance using the micro-strip characteristic impedance method, and proposed a MEMS structure model with high isolation and low drive voltage. The coplanar waveguide transmission line was widely used in RF MEMS filter to reduce the parasitic effect of parameters, since the signal line and ground in a planar. The paper studied the equivalent capacitance and characteristic impedance of CPW defect structures based on conformal transformation, including the defect structure in CPW ground and CPW signal line. It designed three kinds structure model of band-stop filter, proposed a design method of band-stop filter based on characteristic impedance of defect CPW structure, studied the equivalent circuit of the filter, on this basis, It designed the tunable band-stop MEMS filter model using defect ground in CPW structure, analyzed frequency feature and MEMS switch structure of filter unit, studied the equivalent circuit and adjustable principle of MEMS switch in the tunable filter, and then analyzed the fabrication, test and test error of MEMS switch, proposed the method of error correction and so on.
     The paper studied the MEMS filter using defect structure in signal line of CPW, including tunable band-pass filter, tunable band-stop filter and tunable low-pass filter. The paper also analyzed the single MEMS switch for achieving two stage tunable filter model, the equivalent circuit and adjustable method of symmetry load MEMS switch in the filter was analyzed and studied. It achieved the adjustment of filter band, center frequency and the conversion with pass and band-stop filter by revising the slots in signal line. It used the signal line slot and MEMS switch to design the tunable low-pass filter. The slot structure of this kind filter was studied, and the filter equivalent circuit was extracted by using conformal transformation.
     The fabrication and test of filter in this paper were analyzed and studied, including non-tunable filter and tunable MEMS filter. It analyzed the process of fabrication, designed the filter MASKs, and complete the filter test. The paper also analyzed the fall of MEMS switch, and proposed the related solution.
     The main innovation in this paper:
     1. Design three kinds "no-pull down" MEMS switch and a kind High isolation low drive voltage MEMS switch. It used micro-strip characteristic impedance method to achieve the equivalent capacitance extraction of the MEMS switch and applied a double integral to obtain the elasticity coefficient extraction of asymmetric loading MEMS switch. Proposed the calculate method of capacitance and characteristic impedance of defect CPW structure, achieved the method support of designing the filter using such characteristic impedance.(Chapter two and three)
     2. Proposed a method to design band-stop filter using defect CPW ground based on the CPW characteristic impedance. The method achieve the conversion of band-stop filters from lumped parameter to the distributed CPW band-stop filter, which provide away to design the CPW filter.(Chapter four)
     3. Design a hybrid resonator based on defect CPW ground and MEMS switch, the resonator can usefully reduce the unit volume. It also establish the mathematical model of the nonlinear relationship between the height variation of MEMS switches and the resonant frequency, which is used to analyze the relationship among the drive voltage, height, and resonator frequency of MEMS switch.(Chapter four)
     4. Design the band pass tunable filter structure model based on a single MEMS switch, which can reduce the filter size, the stability and synchronous, adjustable range of up to30%.(Chapter five)
引文
[1]Harrie A C Tilmans, Walter De Raedtand Erie Beyne, MEMS for wireless communications:'from RF-MEMS components to RF-MEMS-SIP', Journal of micromechanics and micro-engineering, Vol.13(4),2003, pp:139-163.
    [2]Clark T C Nguyen, Linda P B Katehi, and Gabriel M Rebeiz, Micro-machined Devices for Wireless Commnunications, Proeeedings of the IEEE, Vol 86(8), Aug1998,pp:1756-1768.
    [3]朱峰,基于电磁带隙的RF MEMS滤波器研究,硕士学位论文,北京邮电大学,2010
    [4]陈付昌,新型平面多频带滤波器研究,博士学位论文,华南理工大学,2010.
    [5]Nihad I. Dib, Minoo Gupta, George E. Ponchak, and Linda P.B. Katehi, Characterization of Asymmetric Coplanar Waveguide Discontinuities, IEEE Trans. Microwave Theory Tech., Vol.41(9), Sep.1993, pp--
    [6]Linner and E. L. Kollberg, CAD models for shielded multilayered CPW, IEEE Trans. Microwave Theory Tech., Vol.43(4), April 1995, pp.772-779.
    [7]Lei Zhu, and Ke Wu, Characterization of Finite-Ground CPW Reactive Series-Connected Elements for Innovative Design of Uniplanar M(H)MICs, IEEE Trans. Microw. TheoryTech. Vol.50(2), Feb.2002, pp:549-557.
    [8]N. Dib, Comprehensive study of CAD models of several coplanar waveguide (CPW) discontinuities, IEE Proc.-Microw. Antennas Propag., Vol.152(2), April 2005, pp:69-76.
    [9]Jin-Won No, Hee-Yong Hwang, A Design of Cascaded CPW Low-Pass Filter With Broad Stopband, IEEE Microwave and Wireless Components letters, Vol.17(6), Jun. 2007, pp--
    [10]Muhammad Faeyz Karim, Ai-Qun Liu, A. Alphones, and Aibin Yu, A Reconfigurable Micromachined Switching Filter Using Periodic Structures, IEEE Trans. Microw. TheoryTech. Vol.55, (6), Jun 2007, pp:1154-1153.
    [11]Jong-Sik Lim, Chul-Soo Kim, Young-Taek Lee, Dal Ahn, and Sangwook Nam, A Spiral-Shaped Defected Ground Structure for Coplanar Waveguide, IEEE Microwave and Wireless Components letters, Vol.12(9), Sep.2002, pp:330-332.
    [12]A. Ve'lez F. Aznar M. Dura'n-Sindreu J. Bonache F. Marti'n, Tunable coplanar waveguide band stop and band-pass filters based on open split ring resonators and open complementary split ring resonators, IET Microw. Antennas Propag., Vol.5(3). 2011, pp.277-281
    [13]Amr M. E. Safwat, Florence Podevin, Philippe Ferrari, and Anne Vilcot, Tunable Bandstop Defected Ground Structure Resonator Using ReconfigurableDumbbell-Shaped Coplanar Waveguide, IEEE Trans. Microw. TheoryTech. Vol.54(9), Sep 2006, pp:3559-3565
    [14]J. Kim, C.S. Cho and J.W. Lee, CPW bandstop filter using slot-type SRRs, Electronics lettets. Vol.41(24), Nov.2005, pp:-
    [15]M.F. Karim, A.-Q. Liu, A. Alphones, X.J. Zhang and A.B. Yu, CPW band-stop filter using unloaded and loaded EBG structures, IEE Proc.-Microw. Antennas Propag., Vol. 152(6), Dec.2005, pp:343-341.
    [16]Yi-Chieh Lee, Jwo-Shiun Sun, CPWBand-Stop Filter with Tapered-Shaped Defected Ground Structure, Proceedings ofAsia-Pacific Microwave Conference 2007
    [17]I.A.I. Al-Naib and M. Koch, Highly miniaturised single metal layer CPW bandstop filters based on spiral resonators, Electronics lettets. Vol.46 (18), Sep.2010, pp:
    [18]Web:http://memst.csmnt.org.cn/read-htm-tid-1653.html
    [19]Gabriel M. Rebeiz, RF MEMS:Theory, Design, and Technology, John Wiley & Sons, Ann Arbor,2003.
    [20]K. Entesari, K. Obeidat, A. R. Brown, and G. M. Rebeiz, "A 25-75 MHz RF MEMS tunable filter," IEEE Trans. Microwave Theory Tech., vol.55(11),, Nov.2007, pp. 2399-2405.
    [21]R. L. Borwick, Ⅲ, P. A. Stupar, J. F. DeNatale, R. Anderson, and R. Erlandson, "Variable MEMS capacitors implemented into RF filter systems," IEEE Trans. Microwave Theory Tech., vol.51(1), Jan.2003, pp.315-319.
    [22]J. 3rank, J. Yao, M. Eberly, A. Malczewski, K. Varian, and C. L. Goldsmith, "RF MEMS-based tunable filters," Int. J. RF Microwave Comput. Aided Eng., Vol.11, Sept. 2001,pp:276-284.
    [23]R. M. Young, J. D. Adam, C. R. Vale, T. T. Braggins, S. V. Krish-naswamy, C. E. Milton, D. W. Bever, L. G. Chorosinski, L. S. Chen, D. E. Crockett, C. B. Freidhoff, S. H. Talis, E. Capelle, R. Tranchini, J. R. Fende, J. M. Lorthioir, and A. R. Torres, "Low-loss bandpass RF filter using MEMS capacitance switches to achieve a one-octave tuning range and independently variable bandwidth," in IEEE MTT-S Int. Microwave Symp. Dig.. Philadelphia, PA, June 2003, pp.1781-1784.
    [24]M. A. El-Tanani and G. M. Rebeiz, "High performance 1.5-2.5 GHz RF MEMS tunable filters for wireless applications," 2009.
    [25]I. C. Reines, A. R. Brown, and G. M. Rebeiz, "1.6-2.4 GHz RF MEMS tunable 3-pole suspended combline filter," in IEEE MTT-S Int. Microwave Symp. Dig., Atlanta, GA, June 2008, pp.133-136.
    [26]S. Park, M. A. El-Tanani, I. C. Reines, and G. M. Rebeiz, "Low loss 4-6 GHz with 3-bit orthogonal RF MEMS capacitance network," IEEE Trans. Microwave Theory Tech., vol.56(10), Jan.2008, pp.2348-2355.
    [27]G. M. Kraus, C. L. Goldsmith, C. D. Nordquist, C. W. Dyck, P. S. Finnegan, F. Austin, IV, A. Muyshondt, and C. T. Sullivan, "A widely tunable RF MEMS end-coupled filter," in IEEE MTT-S Int. Microwave Symp. Dig., Dallas, TX, June. 2004, pp.429-432.
    [28]K. Entesari and G. M. Rebeiz, "A differential 4-bit 6.5-10 GHz RF MEMS tunable filter," IEEE Trans. Microwave Theory Tech.., vol.53(3), Mar.2005, pp:1103-1110.
    [29]A. Pothier, J.-C. Orlianges, E. Zheng, C. Champeaux, A. Catherinot, D. Cros, P. Blondy, and J. Papapolymerou, "Low loss two bit tunable bandpass filters using MEMS dc contact switches," IEEE Trans. Microwave Theory Tech., vol.53(1), Jan. 2005, pp.354-360.
    [30]K. Entesari and G. M. Rebeiz, "A 12-18 GHz 3-pole RF MEMS tunable filter," IEEE Trans. Microwave Theory Tech., vol.53(8), Aug.2005, pp.2566-2571.
    [31]A. A. Tamijani, L. Dussopt, and G. M. Rebeiz, "Miniature and tunable filters using MEMS capacitors," IEEE Trans. Microwave Theory Tech., vol.51(7), July 2003, pp. 1878-1885.
    [32]J. Costa, T. Ivanov, J. Hammond, (?). Gering, E. Glass, J. Jorgenson, D. Denning, D. Kerr, J. Reed, S. Crist, T. Mercier, S. Kim, and P. Gorisse,"An Integrated MEMS switch technology on SOI-CMOS," in Proc. Solid State Sensors, Actuators, and Microsystems Work shop, Hilton Head, June 2008, pp:18-21.
    [1]Gabriel M. Rebeiz, Kamran Entesari, Isak C. Reines, Sang-June Park, Mohammed A. El-Tanani, Alex Grichener, and Andrew R. Brown, Tuning in to RF MEMS, IEEE microwave magazine, Oct.2009, pp:55-72.
    [2]B. Acikel, T. R. Taylor, P. J. Hansen, J. S. Speck, and R. A. York, "A new high performance phase shifter using BaSrTiO thin films," IEEE Microwave Wireless Compon. Lett., vol.12(7), July 2002, pp.237-239.
    [3]A. Tombak, J.P. Maria, F. T. Ayguavives, J. Zhang, G. T. Stauf, A. I. Kingon, and A. Mortazawi, "Voltage-controlled RF filters employing hin-film barium-strontium-titanate tunable capacitors," IEEE Trans. Microwave Theory Tech., vol.51(2), Feb.2003, pp.462-467.
    [4]G. M. Rebeiz, RF MEMS:Theory, Design, and Technology. Hoboken, NJ:Wiley, 2003.
    [5]R. J. Roark and W. C. Young, Formulas for stress and strain,6th edition, McGraw Hill, New York,1989.
    [6]J. M. Gere and S. P. Timoshenko, Mechanics of Materiala,4th edition, PWS Publishing Company, Boston,1997.
    [7]W. Weaver, Jr., S. P. Timoshenko, and D. H. Young, Vibration Problems in Engineering, 5th edition, John Wiley&Sons, New York,1990.
    [8]C. Kittel, Elementary Statistical Physics, John Wiley & Sons, New York,1958.
    [9]E. K. Chan, E. C. Kan, R. W. Dutton, and P. M. Pinsky, Nonlinear dynamic modeling of micromachined microwave switches, in IEEE MTT-S International Microwave Symposium Digest, Denver, CO, June 1997, pp.1511-1514.
    [10]L. Castaner and S. Senturia, Speed-energy optimization of electrostatic actuators based on pull-in, IEEE J Microelectromechanical Sytems, Vol.8(3), Sep.1999, pp. 290-297.
    [11]R. K. Gupta and S. Senturia, Pull-in time dynamics as a measure of absolute pressure, in IEEE 10th International Conference on Microelectromechanical Systems, Jan.1997, pp.290-294.
    [1]Wen, C.P., Coplanar Waveguide:A Surface Strip Transmission Line Suitable for Non-Reciprocal Gyromagnetic Device Application. IEEE Trans. Microwave Theory Tech. Vol.18(17),1969, pp:1087-1090.
    [2]C. P. Wen. Coplanar waveguide directional couplers. IEEE Trans. MTT.1970, Vol.18(12), pp:318-32.
    [3]M.E.Davis,et al. Finite boundary corrections to the coplanar waveguide analysis. IEEE Trans, on MTT.,21(9),1973, pp:594-596.
    [4]C. Veyres and V. Fouad Hanna. Extension of the application of conformal mapping techniques to coplanar lines with finite dimensions. INTJ. Electronics, Vol.48(1),1980, pp:47-56
    [5]C. N. Chang. Full-wave analysis of coplanar wave guides by variational conformal mapping technique.IEEE Trans. MTT., Vol.38(9),1990, pp:1339-1343.
    [6]J.B. Korr and K. D. Kuehier, Analysis of coupled slots and coplanar strips on dieleetrie substrate. IEEE Trans. on MTT., Vol.23(7),1975, pp:541-548.
    [7]A.Gopinath. Losses in coplanar waveguides, IEEE Trans.MTT.,30(7),1982, pp:1101-1104.
    [8]Qing-Xin Chu, and Ying-Ying Yang, A Compact Ultrawideband Antenna With 3.4/5.5GHz Dual BandNotched Characteristics, IEEE Trans, on antennas and propagation, Vol.56(12), Dec.2008, pp:3637-3644.
    [9]Giovanni Ghione and Carlo U.Naldi, Coplanar Waveguides for MMIC Applications: Effect of Upper Shielding, Conductor Backing, Finite-Extent Ground Planes, and Line-to-Line Coupling. IEEE Trans. Microw. Theory Tech. Vol.35(3), Mar.1987, pp: 260-267.
    [10]Linner and E. L. Kollberg, CAD models for shielded multilayered CPW, IEEE Trans. Microwave Theory Tech., Vol.43(4), April 1995, pp.772-779.
    [11]Rainee. Simons, Coplanar Waveguide Circuits Components and System, John Wiley & Sons, Ann Arbor,2001.
    [12]房少军,非对称共面波导的特性及其场结构图的研究,博士论文,大连海事大学,2001
    [13]N.-B. Zhang and Z.-L. Deng, Method to design microwave band-stop filter based on CPW, Electronics Letters, Vo.47, Mar.2011, pp:450-451.
    [14]邹焕片上共面波导关键技术及其应用研究博士论文电子科技大学2005
    [15]Lei Zhu, and Ke Wu, Characterization of Finite-Ground CPW Reactive Series-Connected Elements for Innovative Design of Uniplanar M(H)MICs, IEEE Trans. Microw. TheoryTech. Vol.50(2), Feb.2002, pp:549-557.
    [16]Lei Zhu, and Ke Wu, Characterization of Finite-Ground CPW Reactive Series-Connected Elements for Innovative Design of Uniplanar M(H)MICs, IEEE Trans. Microw. TheoryTech. Vol.50(2), Feb.2002, pp:549-557.
    [17]J. Kim, C.S. Cho and J.W. Lee, CPW bandstop filter using slot-type SRRs, ELECTRONICS LETTERS 24th, Vol.41(24), Nov.2005, pp—
    [18]A. Takacs, H. Aubert, P. Tons, T. Parra, R. Plana and J. Graffeuil, Miniature coplanar bandstop filter for Ka-band applications based on original resonant coupling irises topology, ELECTRONICS LETTERS 30th Vol.40 No.20, Sep.2004. pp—
    [19]K.C.Gupta, R.Garg, I.Bahl, and P.Bhartia, Chapter 7 coplanar lines:Coplanar waveguide and coplanar strips, in Microstrip Lines and Slot lines,2nd ed. Norwood, MA:Artech House,1996.S.Gevorgian, L. J. P.
    [1]Qing-Xin Chu, Fu-Chang Chen, Zhi-Hong Tu, and Huan Wang, A Novel Crossed Resonator and Its Applications to Bandpass Filters, IEEE Trans. Microw. Theory Tech, Vol.57(7), July 2009, pp.1753-1759.
    [2]P. Kozakowski, A. Lamecki, P. Sypek, and M. Mrozowski, Eigen-value approach to synthesis of prototype filters with source/loadcoupling, IEEE Microw. Wireless Compon. Lett., Vol.15(2), Feb.2005, pp.98-100.
    [3]Z. L. Deng, N. B. Zhang, and J.-M. Huang, A Tunable Ultra-wideband Band-stop Filter Based on EBG StructuresUsing MEMS Technology, the 2009 IEEE International Conference on Mechatronics and Automation, Aug.2009, pp:3579-3583.
    [4]C.-K. Liao and C.-Y. Chang, Design of micorstrip quadruplet filters, with source-load coupling, IEEE Trans.Microw. Theory Tech, Vol.53(7), Jul.2005, pp.2302-2308.
    [5]Huang Yulan, Theory and design of radiofrequency circuits, Posts & Telecom Press, Beijing,2008.
    [6]Jia-sheng Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Applications, New york,2001.
    [7]C.-K. Liao and C.-Y. Chang, Design of micorstrip quadruplet filters,withsourceload coupling, IEEE Trans.Microw.Theory Tech, Vol.53(7), Jul.2005, pp.2302-2308.
    [8]K. C. Gupta, R. R. Garg, I. I. Bahl, and P. P. Bhartia, Microstrip Lines and Slotlines., 2nd ed. New York:Artech House,1996.
    [9]S.Gevorgian, L. J. P. Linner and E. L. Kollberg, CAD models for shielded multilayered CPW, IEEE Trans. Microwave Theory Tech., Vol.43(4), April 1995, pp.772-779.
    [10]J.-M. Huang, Y.-M. He, Z. L. Deng, An Ultra-Wideband Bandpass Filter Using EBG Structure, IEEE 2008 9th International Conference on Solid-state and Integrated-Circuit Technology Proceedings (ICSICT 2008), Beijing, China, pp.1373-1375, Oct 2008.
    [11]Huang, J.-M., Zhu, F.; Deng, Z.L. A Novel Design of Tunable Band-Stop Filter Using MEMS Technology, The 5th International Conference on Wireless Communications, Networking and Mobile Computing.2009, pp.1-3, Sept.2009.
    [12]J. S. Hayden and G. M. Rebeiz, Very low loss distributed band and -band MEMS phase shifters using metal-air-metal capacitors, IEEE Trans. Microw. Theory Tech., vol.51(1), Jan.2003, pp.309-314.
    [13]G.L. Matthaei, Narrow-band, fixed-tuned, and tunable bandpass filters with zig-zag hairpin comb resonators, IEEE Trans.Microwave Theory Tech., vol.51(4), Apr. 2003, pp.1214-1219.
    [14]N.S. Barker, "Distributed MEMS transmission lines," Ph.D. dissertation, Dept. Elect. Eng. Comput.Sci., The Univ. Michigan at Ann Arbor, Ann Arbor, MI,1999.
    [15]A. Garia Lamperez, S. Llorente Romano, M. Salazar-Palma, and T. K.Sarkar, "Efficient electromagnetic optimization of microwave filters and multiplexers using rational models," IEEE Trans. Microw. Theory Tech., vol.52(2), Feb.2004, pp. 508-521.
    [16]甘本祓,吴万春,现在微波滤波器的结构与设计,科学出版社,1974
    [17]郑新,赵玉洁,刘永宁,潘厚忠(译),微波固态电路设计(第二版),电子工业出版社,2006
    [18]张肇仪,周乐柱,吴德明(译),微波工程(第二版),电子工业出版社,2006
    [19]梁昌洪,谢拥军,简明微波,高等教育出版社,2005
    [20]Rainee. Simons, Coplanar Waveguide Circuits, Components, and System, John Wiley & Sons, Ann Arbor,2001.
    [21]M.F. Karim, A.-Q. Liu, A. Alphones, X.J. Zhang and A.B. Yu, "CPW band-stop filter using unloaded and loaded EBG structures", IEE Proc.-Microw. Antennas Propag., Vol.152(6), Dec.2005, pp:434-440.
    [22]V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, Novel 2-D photonic Band gap structure for microstrip lines, IEEE Microwave Guided Wave Lett., vol.8, Feb.1998, pp. 69-71.
    [23]Y. Qian and T. Itoh, Planar periodic structures for microwave and millimeterwave circuit applications, in IEEE MTT-S Int. Microwave Symp.Dig..,June 1999, pp. 1533-1536.
    [24]Y. Qian, V. Radisic, and T. Itoh, Simulation and experiment of photonicbandgap structures for microstrip circuits, in Proc. APMC,1997, pp.585-588.
    [25]V. Radisic, Y. Qian, and T. Itoh, Broadband power amplifier using dielectric photonic bandgap structure, IEEE Microwave Guide WaveLett., vol.8, Jan.1998, pp.13-14.
    [26]F. R. Yang, Y. Qian, R. Coccioli, and T. Itoh, A novel low lossslow-wave microstrip structure, IEEE Microwave Guide Wave Lett.,vol.8, Nov.1998, pp.372-374.
    [27]K. P. Ma, K. Hirose, F. R. Yang, Y. Qian, and T. Itoh, Realization of magnetic conducting surface using novel photonic bandgap structure, Electron. Lett., vol.34, Nov.1998, pp.2041-2042.
    [28]F. R. Yang, K. P. Ma, Y. Qian, and T. Itoh, A novel TEM waveguideusing uniplanar compact photonic-bandgap (UC-PBG) structure, IEEETrans. Microwave Theory Tech., vol.47, Nov.1999, pp.2092-2098.
    [29]C. S. Kim, J. S. Park, D. Ahn, and J. B. Lim, A novel 1-D periodic Defected ground structure for planar circuits, IEEE Microwave Guided Wave Lett., vol.10, Apr.2000, pp.131-133.
    [30]D.Ahn,J.S.Park,C.S.Kim,J.Kim,Y.Qian,andT.Itoh, A design of The low-pass filter using the novel microstrip defected ground structure, IEEE Trans. Microwave Theory Tech., vol.49, Jan.2001, pp.86-93.
    [31]Jong-Sik Lim, Chul-Soo Kim, Young-Taek Lee, Dal Ahn, and Sangwook Nam, A Spiral-Shaped Defected Ground Structure for Coplanar Waveguide, IEEE Microw. Wireless Compon. Lett., vol.12, (9), Sep.2002, pp-
    [32]Amr M. E. Safwat, Florence Podevin, Philippe Ferrari, and Anne Vilcot, Tunable Bandstop Defected Ground Structure Resonator Using Reconfigurable Dumbbell-Shaped Coplanar Waveguide, IEEE Microwave Theory Tech., Vol.54(9), Sep.2006, pp:3559-3564.
    [33]Muhaminad Faeyz Karim, Ai-Qun Liu, A. Alphcnes, and Aibin Yu, A Reconfigurable Micromachined Switching Filter Using Periodic Structures, IEEE Microwave Theory Tech., Vol.55(6), Jun.2007, pp.1154-1162.
    [34]M. F. Karim, A. Q. Liu, A. Alphones, and A. B. Yu, A novel reconfigurable filter using periodic structures, in IEEE MTT-S Int.Microw. Symp. Dig., San Francisco, CA, Jun.2006, pp.943-946.
    [35]Gabriel M. Rebeiz, RF MEMS:Theory, Design, and Technology, John Wiley & Sons, Ann Arbor,2003.
    [36]Naibo Zhang, Zhongliang Deng, Chang Shu and Huisheng Wang, Analyse and Design a Tunable Band-pass Filter employing RF MEMS Capacitors, IEEE Electron Device Letters, Vol.32, Aug.2011, pp.-
    [37]Kamran Entesari, and Gabriel M. Rebeiz, A Differential 4-bit 6.5-10-GHz RF MEMS Tunable Filter, Microwave Theory Tech., Vol.53(3), Mar.2005, pp: 1103-1110.
    [38]Isak Reines, Sang-June Park, and Gabriel M. Rebeiz, Compact Low-Loss Tunable X-Band Band stop Filter With Miniature RF MEMS Switches, IEEE Trans. Microwave Theory Tech., Vol.58(7), Jul.2010, pp:1887-1895.
    [39]H. T. Kim, J. H. Park, Y. K. Kim, and Y. Kwon, Millimeter wave micro machined tunable filters, in IEEE MTT-S Dig., vol.3, June 1999, pp.1235-1238.
    [40]Kim, Hong-Teuk; Park, Jae-Hyoung; Kim, Yong-Kweon; Kwon, Youngwoo, Low-loss and compact-band MEMS-based analog tunable bandpass filters, IEEE Microw. Wireless Compon. Lett., vol.12(11), Nov.2002, pp:432-434.
    [41]M.Karim, A.Lui, A. Alphones, and A. Yu, A tunable band stop filter via the capacitance change of micromachined switches, J. Micromech. Microeng., vol.16, 2006, pp.851-861.
    [42]A.Abbaspour-Tamijani,L.Dussopt and G.M.Rebeiz, Miniature and tunable filters using MEMS capacitors, IEEE Trans. Microw. TheoryTech., vol.51(7),, Jul.2003 pp:1878-1885.
    [43]Siamak Fouladi, Winter Dong Yan, and Raafat R. Mansour, Microwave Tunable Bandpass Filter with MEMSThermal Actuators, Proceedings of the 3rd European Microwave Integrated Circuits Conference, October 2008, pp:482-485.
    [44]M. Femandez-Bolanos, C. Dehollain, P. Nicole, A. M. Ionescu, Tunable Band-Stop Filter Based on Single RF MEMS Capacitive Shunt Switch with Meander Arm Inductance, Solid-State Electronic Journal (SSE), vol.54,2010, pp.1033-1040.
    [45]Hyung Suk Lee, Dong-Hoon Choi, and Jun-Bo Yoon, MEMS-Based Tunable LC Bandstop Filter Withan Ultra-Wide Continuous Tuning Range, IEEE Microw. Wireless Compon. Lett., vol.19,2009, pp.710-712.
    [46]Z. L. Deng, N. B. Zhang, and J.-M. Huang, A Tunable Ultra-wideband Band-stop Filter Based on EBG Structures Using MEMS Technology, Mechatronics and Automation International Conference, Aug.2009, pp:3579-3583.
    [47]Tao Yang, Masaya Tamura, and Tatsuo Itoh, Compact Hybrid Resonator With Series and Shunt Resonances Used in Miniaturized Filters and Balun Filters, IEEE Microwave Theory Tech., Vol.58(2), Feb.2010, pp:390-402.
    [48]I. Bahl, Lumped Elements for RF and Microwave Circuits. Boston, MA:Artech House,2003, pp.230-235.
    [49]Naibo Zhang, Zhongliang Deng, Method to Design the Microwave Band-stop filter based on CPW, Electronics Letters, Vo.47, Mar.2011, pp.450-451.
    [50]R. J. Roark and W. C. Young, Formulas for Stress and Strain,6th edition, McGraw-Hill, New York,1989.
    [51]V. L. Rabinov, R. J. Gupta, and S. D. Senturia, The effect of release etch-holes onthe electromechanical behavior of MEMS structures, in International Conference on Solid-State Sensors Actuators, Chicago, IL, June,1997, pp.1125-1128.
    [52]Source:WebElements [http://www.webelements.com/].
    [53]Jong-Sik Lim, Chul-Soo Kim, Young-Taek Lee, Dal Ahn, and Sangwook Nam, A Spiral-Shaped Defected Ground Structure for Coplanar Waveguide, IEEE Microw. Wireless Compon. Lett., vol.12(9), Sep.2002,pp.330-333.
    [54]A. B. Yu, A. Q. Liu, Q. X. Zhang, A. Alphones, L. Zhu, and S. A.Peter, Improvement of isolation for RF MEMS capacitive shunt switch via membrane planarization, Sens. Actuators, Phys.A, vol.19,2005, pp.206-213.
    [55]A. B. Yu, A. Q. Liu, Q. X. Zhang, and H. M. Hosseini, Effects of surface roughness on electromagnetic characteristics of capacitive switches, J.Micromech. Microeng., vol.16,2006, pp.2157-2166.
    [56]A. B. Yu, A. Q. Liu, Q. X. Zhang;, A. Alphones, and H. M. Hosseini, Micromachined DC contact capacitive switch on low-resistivity silicon substrate, Sens. Actuators,Phys.A, vol.127,2006, pp.24-30.
    [57]J.-M. Huang, H. Z. Zhu, K. Han, and H. Guo, A novel X-band broadband bandstop filter with sharp cut-off frequency using EBG dual-ear structures, Micowave and optical technology letter. vol.53,2011, pp:1671-1674.
    [58]H.W. Liu, T. Yoshimasu and L.L. Sun, CPW bandstop filter using periodically loaded slot resonators, Electrnics letter, Vol.42,2006, pp-
    [1]Gabriel M. Rebeiz, RF MEMS:Theory, Design, and Technology, John Wiley& Sons, Ann Arbor,2003.
    [2]H. T. Kim, J. H. Park, Y. K. Kim, and Y. Kwon, Millimeter wave micro machined tunable filters,"in IEEE MTT-S Dig., vol.3, June 1999, pp.1235-1238.
    [3]Kim, Hong-Teuk; Park, Jae-Hyoung; Kim, Yong-Kweon; Kwon, Youngwoo, Low-loss and compact-band MEMS-based analog tunable bandpass filters, IEEE Microw. Wireless Compon. Lett., vol.12(11), Nov.2002, pp:432-434.
    [4]A.Abbaspour-Tamijani,L.Dussopt and G.M.Rebeiz, Miniature and tunable filters using MEMS capacitors, IEEE Trans. Microw. TheoryTech., vol.51(7), Jul.2003, pp: 1878-1885.
    [5]Kamran Entesari, and Gabriel M. Rebeiz, A Differential 4-bit 6.5-10-GHz RF MEMS Tunable Filter, Microwave Theory Tech., Vol.53(3), Mar.2005, pp:1103-1110.
    [6]Isak Reines, Sang-June Park, and Gabriel M. Rebeiz, Compact Low-Loss Tunable X-Band Band stop Filter With Miniature RF MEMS Switches, IEEE Trans. Microwave Theory Tech., Vol.58, (7), Jul.2010, pp:1887-1895.
    [7]N.-B. Zhang, Z. L. Deng, and J.-M. Huang, A Novel Tunable Band-pass Filter Using MEMS Technology,2010 IEEE International Conference on Information and Automation (ICIA), June 2010, pp:1510-1513.
    [8]S.Gevorgian, L. J. P. Linner and E. L. Kollberg, CAD models for shielded multilayered CPW, IEEE Trans. Microwave Theory Tech., Vol.43(4), April 1995, pp: 772-779.
    [9]R. J. Roark and W. C. Young, Formulas for Stress and Strain,6th edition, McGraw-Hill, New York,1989.
    [10]V. L. Rabinov, R. J. Gupta, and S. D. Senturia, The effect of release etch-holes on the electromechanical behavior of MEMS structures, in International Conference on Solid-State Sensors Actuators, Chicago, IL, June,1997, pp.1125-1128.
    [11]N.S.Barker, Distributed MEMS transmission lines, Ph.D. disserta-tion, Dept. Elect. Eng. Comput. Sci. The Univ. Michiganat AnnArbor, Ann Arbor, MI,1999.
    [12]J. S. Hayden and G. M. Rebeiz, Very low loss distributed -band and -band MEMS phase shifter susing metal-air-metal capacitors, IEEE Trans. Microw. Theory Tech., vol.51(1), Jan.2003, pp.309-314.
    [13]L. Dussopt and G. M. Rebeiz, Intermodulation distortion and power handling in RF MEMS switches, varactors and tunable filters, IEEE Trans. Microw. Theory Tech., vol.51(4), Apr.2003, pp.1247-1256.
    [14]Y. Liu, A. Borgioli, A. S. Nagra, and R. A. York, Distributed MEMS transmission lines for tunable filter applications, International Journal of RF and Microwave Compueter-Aided Engineering, vol.11(5), Sep 2001, pp.254-260.
    [15]G.M. Rebeiz, RF MEMS Theory, Design, and Technology. New York:Wiley,2003.
    [16]A.Abbaspour-Tamijani,L.Dussopt, andG.M.Rebeiz, Miniature anu tunable filters using MEMS capacitors, IEEE Trans. Microw. Theory Tech, vol.51(7), Jul.2003, pp. 1878-1885.
    [17]K. Entesari and G. M. Rebeiz, A differential 4-bit 6.5-10-GHz RF MEMS tunable filter, IEEE Trans. Microw. Theory Tech., vol.53(4), Mar.2005, pp.1103-1110.
    [18]R. M. Young, J. D. Adam, C. R. Vale, T. T. Braggins, S. V. Krish-naswamy, C. E. Freidhoff, S. H. Talisa, E. Capelle, R. Tranchini, J.R.Fende, J. M. Lorthioir, and A. R. Torres, Low-loss bandpass RF filterusing MEMS capacitance switche stoachievea one-octave tuning rangeandinde pendently variableb andwidth, in IEEE MTT-S Int. Microwave Symp. Dig. Jun.2003, pp.1781-1784
    [19]J. Brank, J. Yao, A. Malczewski, K. Varian, and C. L. Goldsmith, RF MEMS-based tunable filters, Int. J. RF Microwave Computer-Aided Eng., vol.11, Sep.2001, pp. 276-284.
    [20]Source:WebElements [http://www.webelements.com/].
    [21]G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance Matchesing Networks and Coupling Structures. Norwood,MA:Artech House.,1980, pp.217-228
    [22]I. Hunter, Theory and Design of Microwave Filters. London, U.K.:IEE,2001.
    [23]P. Harscher, R.Vahldieck,andS.Amari, Auto mated filter tuning using, generalized low-pass prototype networks and gradient-based param-eter extraction, IEEE Trans. Microw. Theory Tech., vol.49(12), Dec.2001, pp.2532-2538.
    [24]Rainee. Simons, Coplanar Waveguide Circuits, Components, and System, John Wiley & Sons, Ann Arbor,2001.
    [1]C. Goldsmith, J. Randall, S. Eshelman, T. H. Lin, D. Dennistor, S. Chen, and B. Norvell, Characteristics of micromachined switches at microwave frequencies, in IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, June 1996, pp.1141-1144.
    [2]C. L. Goldsmith, Z. Yao, S. Eshelman, and D. Denniston, Performance of lowloss RF MEMS capacitive switches, IEEE Microwave Guided Wave Lett., Vol.8(8), August 1998, pp.269-271.
    [3]Z. J. Yao, S. Chen, S. Eshelman, D. Denniston, and C. L. Goldsmith, Micromachined low-loss microwave switches, IEEE J. Microelectromech. Systems, Vol.8, June 1999, pp.129-134.
    [4]S. Pacheco, C. T. Nguyen, and L. P. B. Katehi, Micromechanical electrostatic K-band switches, in IEEE MTT-S International Microwave Symposium Digest, Baltimore, MD, June 1998, pp.1569-1572.
    [5]S.-C. Shen and M. Feng, Low actuation voltage RF MEMS switches with signal frequencies from 0.25 GHz to 40 GHz, in Proceedings, IEEE International Electronics Device Meeting, December 1999, pp.689-692.
    [6]C. Chang and P. Chang, Innovative micro-machined microwave switch with very low insertion loss, Sensors and Actuators, Vol.79,2000, pp.71-75.
    [7]Naibo Zhang, Zhongliang Deng, Method to Design the Microwave Band-stop filter based on CPW, Electronics Letters, Vo.47,2011, pp:450-451.
    [8]Nai-Bo Zhang; Zhong-Liang Deng; Ming-yu Zhao, A novel tunable band-stop filter based on RF MEMS technology,2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE), Aug.2010, pp:1-4.
    [9]Naibo Zhang, Zhongliang Deng, Chang Shu and Huisheng Wang, Analyse and Design a Tunable Band-pass Filter employing RF MEMS Capacitors, IEEE Electron Device Letters, Vol.32,2011, pp:1460-1462.
    [10]Gabriel M. Rebeiz, RF MEMS:Theory, Design, and Technology, John Wiley & Sons, Ann Arbor,2003
    [11]张宇峰,毫米波MEMS开关和MEMS移相器的研究,博士学位论文,南京理工大学,2007年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700