用户名: 密码: 验证码:
微波平面传输线不连续性问题场分析与仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在微波集成电路和高速数字电路中,平面传输线不连续性是一个普遍存在的问题,也是理论分析和工程应用中一个较为复杂的问题。常用的平面传输线有微带线、共面波导、带状线、槽线等多种形式,其中应用最广的是微带线。由于不连续性结构具有不规则性,所以必须借助于数值方法来分析它。在电磁场数值方法中,FDTD方法是一种简单有效的时域方法,具有综合各种非线性材料和器件的能力,在天线设计、微波电路、生物电磁效应、EMC/EMI问题和光电等领域得到了广泛的应用,成为目前电磁学理论研究和工程应用的一个热点。
     本文以时域有限差分(FDTD)方法为主要分析手段,以微带线为重点,对典型微波平面传输线的不连续性问题进行了分析和研究。针对平面传输线不连续性结构的特点开发了基于FDTD方法的电磁仿真软件,系统地研究了平面传输线不连续性的电磁特性,分析并优化了平面传输线转换结构,初步研究了不连续性引起的辐射和高阶模特性。全文主要内容及创新之处如下:
     (1)研究了电磁场的FDTD数值计算方法,完成了具有自主知识产权的三维FDTD全波电磁分析软件主要的算法实现和开发工作。该软件包含了电磁建模和FDTD数值计算两大模块,具有较强的电磁建模功能和数值计算效率,通过实际应用和测试,以及与业界著名的商用软件HFSS、 ADS等仿真结果的对比,验证了软件的功能,保证了数值求解过程的正确与高效。
     (2)采用FDTD方法分析了平面传输线不连续性的频率特性和色散特性,研究了不连续性结构的补偿和优化方法。对典型的微带不连续性结构,如拐弯、宽度跃变、T型节、十字节等进行了补偿研究,优化了微带不连续性的传输特性。通过数值方法得到了不连续性效应在传输方向上呈指数衰减的结论,给出了衰减量随距离变化的定量结果,有利于电路小型化设计中不连续性影响的消除。
     (3)研究了微带到其他传输线的各种转换结构,分析了微带-同轴、微带-波导、微带-共面波导等转换结构的电磁传输特性,对常用的微带转换结构进行了仿真,并进行了相关参数的优化,为实现微带转换结构的优化设计提供了理论依据。在微带-共面波导直角转换中提出了一种新的结构设计,使性能参数获得了较大的改善。
     (4)采用FDTD方法和坡印廷矢量法相结合,初步研究了拐角、短截线等微带不连续性的辐射特性。不连续性处的表面波和空间波辐射损耗随着频率的增加而显著增大。以宽度跃变为例,首次提出并采用逆向分析法研究了高阶模激发和衰减的频率特性,得出了主模和高阶模的比例关系,为深入研究不连续性高阶模问题打下了基础。
Planar transmission lines are commonly used in microwave integrated circuit and high speeddigital circuits and their discontinuities are always complex problems in theoretical research andengineering applications. There are some conventional types of planar transmission lines:microstrip, coplanar waveguide (CPW), stripline, slotline and so on. The microstrip is actually themost widely employed. The transmission line discontinuities should be analyzed by means of thenumerical method due to their irregular shapes. The finite differential time domain (FDTD) is oneof the most effective electromagnetic numerical methods. Because of its simple, robust nature andits ability to incorporate a broad range of nonlinear materials and devices, FDTD is useful for awide range of applications such as antenna design, microwave circuits, bio/EM effects, EMC/EMIproblems and photonics.
     Typical discontinuities in various planar transmission lines, mainly in microstrip, are analyzedby using the electromagnetic simulation software which was developed especially for transmissionline discontinuities based on FDTD method. The electromagnetic characteristics for planartransmission line discontinuities and transitions are studied. The radiation and high order modescaused by discontinuities are preliminarily investigated. The main research contents andinnovations are as follows:
     (1) The FDTD three-dimensional full-wave electromagnetic simulation software based and itsalgorithm are presented. The software consists of two main modules: one is the objectelectromagnetic modeling and the other is the FDTD solver of Maxwell's equations ofelectromagnetism. The advantages of the software include simple and robust numerical algorithm,applicable to nearly any geometries,3D visualization, good scalability and so on. The simulationresults, compared with those of commercial EM software and experiment measurements, showthat the software is efficient.
     (2) The frequency and dispersive characteristics of planar transmission lines’ discontinuities (e.g.bend, step in width, T-junction, cross-junction) are analyzed based on FDTD method. Thecompensation and optimization for typical microstrip discontinuities are discussed in detail. Thediscontinuities’ influence on the microstrip propagation characteristics decay exponentially awayfrom the discontinuities and the quantitative results of are obtained.
     (3) The transitions of microstrip to other transmission lines including microstrip-coaxial,microstrip-waveguide and microstrip-CPW are investigated. Simulative experiments andparameters’ optimization are made to improve the transmission characteristic of transitions. A newstructure for the microstrip-CPW transition is proposed and shows an improved performanceproperty.
     (4) By combining the FDTD method with Poynting vector theory, the radiation of microstripbend and stub are preliminarily studied. The results show that the radiation losses of surface waveand spatial wave are obviously increasing with frequency. The reverse method is first proposedto investigate the properties of excitation and decay of the high order modes introduced by themicrostrip step. Some results including the ratio of main modes and high order modes areobtained.
引文
[1] Ali M Niknejad. Siliconization of of60GHz[J]. IEEE Microwave Magazine,2010,11(1):78-85.
    [2] A Maltsev, R Maslennikov, A Sevastyanov, etc. Experimental investigations of60GHzwireless systems in office environment[J]. IEEE J. Select. Areas Commun.,2009,27(8):1488-1499.
    [3] S K Reynolds, B A Floyd, U R Pfeiffer, etc. A silicon60-GHz receiver and transmitter chipsetfor broadband communications[J]. IEEE J. Solid-State Circuits,2006,41(12):2820-2831.
    [4] A M Niknejad, H Hashemi (EDs.). mm-Wave Silicon Technology:60GHz and Beyond[M].New York: Springer,2008.
    [5] International Technology Roadmap for Semiconductors (ITRS)2010Update[Online]:http://www.itrs.net/Links/2010ITRS/Home2010.htm.
    [6] Razavi B.60-GHz CMOS receiver front-end[J]. IEEE J. Solid-State Circuits,2006,41(1):17-22.
    [7] Hsin-Ta Wu, Mengasha Tekle, C Shashank Nallani, etc. Bond Wire Antenna/Feed forOperation Near60GHz[J]. IEEE Trans. Microwave Theory Tech.,2009,57(12):2966-2972.
    [8] Kuan-Neng Chen, Mauro J Kobrinsky, Brandon C. Barnett, etc. Comparisons of conventional,3-D, optical, and RF interconnects for on-chip clock distribution[J]. IEEE Trans. ElectronDevices,2004,51(2):233-239.
    [9] Jun Fan, Xiaoning Ye, Jingook Kim, Bruce Archambeault, etc. Signal Integrity Design forHigh-Speed Digital Circuits: Progress and Directions [J]. IEEE Trans. Electromagn. Compat.,2010,52(2):392-400.
    [10] S Hall, G Hall, J McCall. High-speed Digital System Design: a Handbook of InterconnectTheory and Design Practices[M]. New York: John Wiley&Sons,2000:1-15.
    [11] Johnson H, Graham M. High-Speed Signal Propagation Advanced Black Magic[M]. NewJersey:Englewood Cliffs, Prentice-Hall,2003.
    [12] S Hall, G Hall, J McCall. High-Speed Digital System Design[M]. New York:Wiley,2000:14-26.
    [13] Banerjee K, Mehrotra A. Analysis of On-chip Inductance Effects for Distributed RLCInterconnects[J]. IEEE Trans. on CAD of Integrated Circuits and Systems,2002,21(8):904-915.
    [14] S Kim, H Kim, H Kang, J Yook. Signal Integrity Enhanced EBG Structure With a GroundReinforced Trace [J]. IEEE Tran. on Electronics Packaging Manufacturing,2010,33(4):284-288.
    [15] Palit A K, Anheier W. Estimation of Signal Integrity Loss through Reduced OrderInterconnect Model [C]. Proc IEEE-SPI. Siena: IEEE,2003:163-166.
    [16] Eric B. Signal Integrity-Simplified[M]. New Jersey: Prentice Hall PTR,2003.
    [17] G Ghione, L Maio, G Vecchi. Modeling of multiconductor buses and analysis of crosstalk,propagation delay, and pulse distortion in high speed GaAs logic circuits [J]. IEEE Trans.1989,37(3):445-456.
    [18] V Champac, V Avendano, J Figueras. Built-In Sensor for Signal Integrity Faults in DigitalInterconnect Signals[J]. IEEE Tran. on Very Large Scale Integration (VLSI) Systems,2010,18(2):256-269.
    [19] Inder Bahl, Prakash Bhartia. Microwave solid state circuit design(2nded)[M]. New Jersey:John Wiley&Sons, Inc., Hoboken,2003.
    [20] D G Kam, J Kim.40-Gb/s package design using wire-bonded plastic ball grid array[J]. IEEETrans. Adv. Packag.,2008,31(2):258-266.
    [21] A Koul, P Anmula, M Koledintseva, etc. Improved technique for extracting parameters oflow-loss dielectrics on printed circuit boards [C]. Proc. IEEE Int. Symp. EMC, Austin, TX,Aug.17-22,2009:191-196.
    [22] C R Paul. Analysis of Multiconductor Transmission Lines(2ed)[M]. New Jersey: JohnWiley&Sons, Inc.,2007.
    [23] G Antonini, A Orlandi, C R Paul. Internal impedance of conductors of rectangular crosssection[J]. IEEE Trans. Microw. Theory Tech.,1999,47(7):979-985.
    [24] C L Holloway, E F Kuester. DC internal inductance for a conductor of rectangular crosssection[J]. IEEE Trans. Electronagn. Compat.,2009,51(2):338-344.
    [25] Mohanavelu R, Peydari P. A novel ultra high-speed flip-flop-based frequency divider [C].Proceedings of2004IEEE Int. Symposium on Circuits and Systems., IEEE,2004,vol(4):169-172.
    [26] Joo S H, Kim D Y, Lee H Y. A S-bridged Inductive Electromagnetic Bandgap Power Planefor Suppression of Ground Bounce Noise[J]. IEEE Microw Wireless Compon Lett,2007,17(10):487-489.
    [27] Sabbagh M A E, Mansour R R. Ultra-wide Suppression Band of Surface Waves UsingPeriodic Microstrip-based Structures [J]. IEEE Trans on Microwave Theory Tech,2008,56(3):671-683.
    [28] Palit A K, Anheier W, Meyer V. Modeling and Analysis of Crosstalk Coupling Effect on theVictim Interconnect Using the ABCD Network Model[C].19th IEEE Int.Symposium onDefect and Fault Tolerance in VLSI Systems. Cannes: IEEE,2004:174-182.
    [29] J-G Yook, N Dib, and L Katehi. Characterization of high frequency interconnects using finitedifference time domain and finite element methods[J], IEEE Trans. Microwave Theory Tech.,1994,42(9):1727-1736
    [30]李征帆,毛军发.微波与高速电路理论[M].上海交通大学出版社,2001:2-9.
    [31] T C Edwards, M B Steer. Foundations of Interconnect and Microstrip Design(3rd Edition)[M].John Wiley&Sons Ltd,2000. ch.1,5,9
    [32] T Itoh. Planar Transmission Line Structures[M], NewYork: IEEE Press,1987.
    [33] K C Gupta, R Garg, I Bahl, P Bhartia. Microstrip Lines and Slotlines(2ed)[M]: Artech House,Norwood, MA,2006.
    [34] David M Pozar. Microwave Engineering(3rd Edition)[M]. John Wiley&Sons, Inc.2004.
    [35] Rakesh Chadha, K C Gupta. Compensation of Discontinuities in Planar Transmission Lines[J]. IEEE Trans. Microwave Theory Tech,1982,30(12):2151-2156.
    [36] M Kirschning, R H Jansen, N H L Koster. Measurement and Computer-Aided Modeling ofMicrostrip Discontinuities by an Improved Resonator Method[C].1983IEEE MTT-S Int.Microwave Symposium Digest, May1983:495-497.
    [37] Moore J, Ling H. Characterization of a90°microstrip bend with arbitrary miter via thetime-domain finite difference method[J]. IEEE Trans., Microwave Theory Tech.1990,38(4):405-410.
    [38] P Benedek, P Silvester. Microstrip discontinuity capacitances for right-angle bends, Tjunctions, and crossings[J]. IEEE Trans. Microwave Theory Tech.,1973,21(5):341-346.
    [39] R Horton. Electrical characterization of a right-angled bend in microstrip line[J]. IEEE Trans.,Microwave Theory Tech,1973,21(6):427-429.
    [40] Jianbo Mao, Mingwu Yang, Huaguo Liang, etc. Characteristics and Optimal Miter ofMicrostrip Bend via theFinite Difference Time Domain Method[C]. The3rd IEEE Symp. onMAPE for Wireless Communications. Bejing,27-29Oct.2009:885-888
    [41] Feix N, Lalande M, Jecko B. Harmonical characterization of a Microstrip bends via the finitedifference time domain method [J]. IEEE Trans., Microwave Theory Tech.1992,40(5):955-961.
    [42] Rene J P Douville, David S James. Experimental study of symmetric microstrip bends andtheir compensation[J]. IEEE Trans. Microwave Theory Tech.,1978,26(3):175-182.
    [43] Jianbo Mao, Yingshen Xu, Rui. Zhang, etc., Analysis of microstrip discontinuities and theircompensation via the finite difference time domain method[C]. Int. Conf. on Microwave Tech.&Computational Electromagnetics, Beijing, Nov.2009:235-237.
    [44] G Shiue, W Guo, C Lin, etc. Noise reduction using compensation capacitance for benddiscontinuities of differential transmission lines[J]. IEEE Trans. Adv. Package,2006,29(3):560-569.
    [45] Koster N H L, Jansen R H. The Microstrip Step Discontinuity: A Revised Description[J].IEEE Trans. on Microwave Theory And Techniques,1986,34(2):213-223.
    [46] Mats A Larsson. Compensation of Step Discontinuities in Stripline[C].10th EuropeanMicrowave Conference Digest,Warszawa,8-11Sept.1980:367-371.
    [47] Hoefer W J R. A Contour Formula for Compensated Microstrip Steps and Open Ends[C].IEEE MTT-S Digest,1983:524-526.
    [48] Yansheng Xu, Renato G.Bosisio. An Effective Approach for Study of Multiple Discontinuitiesof Transmission Lines[J]. IEEE Trans. on Microwave Theory And Techniques,1995,43(11):2585-2589.
    [49] Yaowu Liu, Jingsong Hong, Kenneth K Mei. Analysis of a double Step MicrostripDiscontinuity Using Generalized Transmission Line Equations[J]. IEEE Trans. On Adv. Pack.,2003,26(4):368-374.
    [50] Tak Sum Chu, Tatsuo Itoh. Generalized Scattering Matrix Method for Analysis of Cascadedand Offset Microstrip Step Discontinuities [J]. IEEE Transactions On Microwave Theory AndTechniques,1986,34(2):280-284.
    [51] Xiaofeng Xuan, Jianbo Mao, Mingwu Yang, etc. Effective Optimization of MicrostripTransformer Using FDTD Simulation and Cascade Connection of Scattering Matrices[C].The3rd IEEE Inter.l Symp. on MAPE for Wireless Communications. Bejing,27-29Oct.2009:310-313.
    [52] Joong Chang Chun, Wee Sang Park. Analysis of a double Step Microstrip Discontinuity inthe Substrate Using the3-D-FDTD Method [J]. IEEE Transactions On Microwave TheoryAnd Techniques,1996,44(9):1600-1603.
    [53]张瑞、毛剑波、刘金现,等.一种新的微带宽度跃变补偿方法[C].第二届仪表、自动化与先进集成技术大会论文集.2008.11:464-467.
    [54] B M Neale, A Copinath. Microstrip discontinuity inductances [J]. IEEE Trans. MicrowaveTheory Tech.,1978,26(10):827-831.
    [55] W Tang, Y L Chow, K F Tsang. Different microstrip line discontinuities on a singlefield-based equivalent circuit model[J]. IEE Proc. on Microwave Antennas Propag.,2004,151(3):256-262.
    [56] Wittwer D C, Ziolkowski R W. The Effect of Dielectric Loss in FDTD Simulations ofMicrostrip Structures[J]. IEEE Trans., Microwave Theory Tech,2001,49(2):250-262.
    [57] R L Veghte, C A Balanis. Dispersion of transient signals in microstrip transmission line[J].IEEE Trans. Microwave Theory Tech.,1986,34(12):1427-1436.
    [58] M Kirschning, R H Jansen. Accurate models for effective dielectric constant of microstripand validity up to millimeter-wave frequencies[J]. Electron. Lett.,1982,18(2):272-273.
    [59] T Leung, C A Balanis. Pulse dispersion distortion in open and shielded microstrips using thespectral-domain method[J]. IEEE Trans. Microwave Theory Tech.,1988,36(7):1223-1226.
    [60] E Yamashita, K Atsuki. Analysis of microstrip-like transmission lines by non-uniformdiscretization of integral equations[J]. IEEE Trans. Microwave Theory Tech.,1976,24(1):195-200.
    [61] K M Rahman, C Nguyen. On the analysis of single and multiple step discontinuities for ashielded three-layer coplanar waveguide[J]. IEEE Trans. Microwave Theory Tech.,1993,41(9):1484-1488.
    [62] X Zhang, J Fang, K K Mei, etc. Calculations of the dispersive characteristics of microstrip bythe time-domain finite difference method[J]. IEEE Trans. Microwave Theory Tech.,1988,36(12):263-267.
    [63] W J Getsinger. Microstrip dispersion model[J]. IEEE Trans. Microwave Theory Tech.,1973,21(1):34-39.
    [64] E Yamashita, K Atsuki, T Ueda. An approximate dispersion formula of microstrip lines forcomputer-aided design of microwave integrated circuits[J]. IEEE Trans. Microwave TheoryTech.,1979,27(12):1036-1038.
    [65] E Yamashita, K Atsuki, T Hirahata. Microstrip dispersion in a wide-frequency range[J]. IEEETrans. Microwave Theory and Tech.,1981,29(6):610-611.
    [66] P Pramanick, P Bhartia. An accurate description of dispersion in microstrip[J]. Microwave J.,1983,27(12):89-92.
    [67] E Hammerstad, O Jensen. Accurate models for microstrip computer-aided-design[C]. IEEEMTT-S Int. Microwave Symp. Dig., May1980:407-409.
    [68] M Kobayashi. A Dispersion formula satisfying recent requirements in microstrip CAD[J].IEEE Trans. Microwave Theory Tech.,1988,36(8):1246-1250.
    [69] Jianbo Mao, Mingwu Yang, Huaguo Liang, etc. Dispersion Characteristics of the MicrostripBend at Millimeter Wave Frequencies[J]. Journal of Measurement Science andInstrumentation.2011,2(3):268-271.
    [70] Izadian J S, Izadian S M. Microwave Transition Design[M]. Norwood, MA: Artech House,1988.
    [71] J P Raskin, G Gauthier, L P B Katehi, etc. Mode conversion at GCPW to microstrip linetransition[J]. IEEE Trans. Microwave Theory Tech.,2000,48(1):158-161.
    [72] Rosine Valois, Dominique Baillargeat, Serge Verdeyme, etc. High Performances of ShieldedLTCC Vertical Transitions From DC up to50GHz [J]. IEEE Trans. Microwave Theory&Tech.,2005,53(6):2026-2032.
    [73] Yinsheng Xu, Jianbo Mao, Mingwu Yang, etc. Design and Optimization ofMicrostrip-to-CPW Right-angled Transition Using Finite Difference Time Domain Method
    [C]. The3rd IEEE Inter. Symp. on MAPE for Wireless Communications. Bejing,27-29Oct.2009:908-911
    [74] J E Thomas, J P Raskin. A broadband CPW-to-microstrip modes coupling technique[J]. Int.Journal of Infrared and Millimeter Waves,2002,23(9):1357-1369.
    [75] T-H Lin. Via-free broadband microstrip to CPW transition[J]. Electron.Lett,2001,37(15):960-961.
    [76] Young-Gon Kim, Kang Wook Kim, Young-Ki Cho. An ultra-wide band microstrip-to-CPWtransition, Microwave Symposium Digest[C].2008IEEE MTT-S International, Atlanta, GA,June.2008:1079-1082.
    [77] G Zheng, J Papapolymerou, M M Tentzeris. Wideband coplanar waveguide RF probe pad tomicrostrip transitions without via holes[J]. IEEE Microw. Wireless Compon. Lett,2003,13(12):544-546.
    [78] A M E Safwat, K A Zaki, W Johnson, etc. Novel transition between different configurationsof planar transmission lines[J]. IEEE Microwave Wireless Compon.2002, Lett.,12(4):128-130.
    [79] Lei Zhu, Wolfgang Menzel. Broad-Band Microstrip-to-CPW Transition via FrequencyDependent Electromagnetic Coupling[J]. IEEE Trans. Microwave Theory&Tech.,2004,52(5):1517-1522.
    [80] Senad Bulja, Dariush Mirshekar-Syahkal. Novel Wideband Transition Between CoplanarWaveguide and Microstrip Line[J]. IEEE Trans. Microwave Theory&Tech.,2010,58(7):1851-1857.
    [81] Kongpop U-yen, Edward J Wollack, Samuel H Moseley, and etc. Via-less MicrowaveCrossover Using Microstrip-CPW Transitions in Slotline Propagation Mode[C]. IEEE MTT-SDigest:1029,2009.
    [82]张运传,李佩,王秉中.一种新型的微带—槽线过渡[J].无线电工程,2007,37(7):35-36.
    [83] M M Zinieris, R Sloan, L E Davis. A Broadband Microstrip-to-slotline Transition[J].Microwave and Optical Technology Letters, August1998,18(5):339-342.
    [84] Rui Li, Lei Zhu. Ultra-Wideband (UWB) Bandpass Filters With Hybrid Microstrip/SlotlineStructures[J]. IEEE Microwave and Wireless Components Letters. November2007,17(11):778-780.
    [85] Hui-Wen Yao, Abdelmonem A, Ji-Fuh Liang, etc. Analysis and design ofmicrostrip-to-waveguide transitions[J]. IEEE Tran. Microwave Theory and Techniques,1994,42(12):2371-2380.
    [86] W Grabherr, B Huder, W Menzel. Microstrip to waveguide Transition compatible withmm-wave integrated circuits[J]. IEEE Trans. Microwave Theory Tech.,1994,42(9):1842-1843.
    [87] Y C Shih, T N Ton, L Q Bui. Waveguide-to-Microstrip Transitions for Millimeter WaveApplications[C]. IEEE MTT-S Int. Microwave Symp. Digest,1988:473-475.
    [88] N Kaneda, Y Qian, T Itoh. A Broadband Microstrip-to-Waveguide Transition UsingQuasi-Yagi Antenna[C]. IEEE MTT-S INT Symp. Digest,1999:1431-1434.
    [89] Bharj S S, Mak S. Waveguide-to-Microstrip Transition Uses Evanescent Mode[J].Microwave RF,1984,23(1):99-100.
    [90] G G Grachev, V V Shevchenko. Microstrip waveguide transitions[J]. Journal ofCommunications Technology and Electronics,2007,52(6):641-644.
    [91] C P Wen. Coplanar Waveguide: A Surface Strip Transmission Line Suitable for NonreciprocalGyromagnetic Device Applications[J]. IEEE Trans. on Microwave Theory and Techniques,1969,7(12):1087-1090.
    [92] R M Barrett. Microwave Printed Circuits The Early Years[J]. IEEE Tran. Microwave Theoryand Techniques,1984,32(9):983-990.
    [93] Cohn S B. Slot Line on a Dielectric Substrate[J]. IEEE Trans. Microwave Theory andTechniques,1969,17(10):768-778.
    [94] Davidson D B, Aberle J T. An introduction to spectral domain method-of-momentsformulations [J]. IEEE Antennas and Propagation Mag.,2004,46(3):11-19.
    [95] Hong-Bae Lee, T Itoh. A systematic optimum design of waveguide to microstrip transition[J].IEEE Trans. Microwave Theory Tech.,1997,45(5):803-809.
    [96] Yee K S. Numerical solution of initial boundary value problems involving Maxwell equationsin isotropic media [J]. IEEE Trans. Antennas and Propagation,1966, AP-14(3):302-307.
    [97] Allen Taflove, Susan C Hagness. Computational Electrodynamics:The Finite-DifferenceTime-Domain Method,3rded[M]. Norwood: Artech House, Inc.,2005.
    [98]葛德彪,闫玉波.电磁波时域有限差分法[M].西安:西安电子科技大学出版社,2005.
    [99] G Kompa, R Mehran. Planar waveguide model for calculating microstrip components[J].Electron. Lett.,1975,11(9):459-460.
    [100] Horng T-S, McKinzie W E. Alexopoulos, N.G., Full-wave spectral-domain analysis ofcompensation of microstrip discontinuities using triangular subdomain functions[J]. IEEETrans. Microwave Theory Tech.,1992,40(12):2137-2147.
    [101] Daniel G, Swanson Jr, Wolfgang J R Hoefer. Microwave circuit modeling usingelectromagnetic field simulation[M]. Artech House,2003.
    [102] Petersson L E R, Jin J M. A three dimensional time-domain finite-element formulation forperiodic structures [J]. IEEE Transactions on Antennas and Propagation,2006,54(1):12-19.
    [103] G Pisharody, D S Weile. An accurate solution to time domain integral equations forinhomogeneous dielectric bodies using higher-order volume bases[C]. Proc. of IEEE Int.Symp. on Antennas and Propagation, July2006:2805-2808.
    [104] Jin Zhao, Zheng-Fan Li. A time-domain full-wave extraction method of frequencydependent equivalent circuit parameters of multiconductor interconnection lines[J]. IEEETrans. on Microwave Theory and Techniques,1997,45(1):23-31.
    [105] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics,1994,114(2):185-200.
    [106] Turkel E, Yefet A. Absorbing PML boundary layers for wave-like equations[J]. Appl. Numer.Math.,1998,27(4):533-557.
    [107]姜彦南,葛德彪,魏兵.时域有限差分并行算法中的吸收边界研究[J].系统工程与电子技术,2008,30(9):1636-1640.
    [108]刘瑜,梁正,杨梓强.混合并行技术在FDTD计算中的应用研究[J].电子科技大学学报,2009,38(2):222-226.
    [109]姜永金,潘谊春,傅文斌,等.不规则贴片微带天线的MPSTD-FDTD混合算法分析[J].电子学报,2009,37(6):1367-1372.
    [110] Liu J, Brio M, Moloney J V. Overlapping Yee FDTD method on nonorthogonal grids[J]. J.Sci. Comput,2009,39(1):129-143.
    [111] Simpson J J, Heikes R P, Taflove A. FDTD modeling of a novel ELF radar for major oildeposits using a three-dimensional geodesic grid of the Earth-ionosphere waveguide[J].IEEE Trans. Antennas and Propagation,2006,54(6):1734-1741.
    [112] De Raedt H, Michielsen K, Kole J S, etc. Solving the Maxwell equations by the Chebyshevmethod: A one-step finite difference time-domain algorithm [J]. IEEE Trans. Antennas andPropagation,2003,51(11):3155-3160.
    [113] Engin A E, Bharath K, Swaminathan M. Multilayered Finite-difference Method (MFDM)for Modeling of Package and Printed Circuit Board Planes [J]. IEEE Trans. on Electromag.Compat,2007,49(2):441-447.
    [114] Yea Z B, Lib S S. Analysis of microstrip discontinuities by FDTD method combined withSOC technique [J]. Int. J. of Electronics and Communications,2009,63,(1):8-14.
    [115] Mario Leib, Michael Mirbach, Wolfgang Menzel. An Ultra-Wideband Vertical Transitionfrom Microstrip to Stripline in PCB Technology[C]. Proceedings of2010IEEE Int.Conference on Ultra-Wideband,2010:978-981.
    [116] Shahid Ahmed, Er-Ping Li. Modal analysis of microstrip lines using singular valuedecomposition analysis of FDTD simulations[J]. IEEE Trans. on ElectromagneticCompatibility,2008,50(8):687-696.
    [117] Shitvov A P, Olsson T, Banna B, Zelenchuk D E. Schuchinsky, A. G., Effects ofGeometrical Discontinuities on Distributed Passive Intermodulation in Printed Lines[J].IEEE Trans. on Microwave Theory and Techniques,2010,58(2):356-362
    [118] Rodriguez-Berral R, Mesa F, Jackson D R. Gap Discontinuity in Microstrip Lines: AnAccurate Semianalytical Formulation[J]. IEEE Trans. on Microwave Theory andTechniques,2011,59(6):1441-1453.
    [119] A G Chiariello, A Maffucci, G Miano, F Villone, W Zamboni. A transmission-line mode forfull-wave analysis of mixed-mode propagation[J]. IEEE Trans. Adv. Packag.,2008,31(2):275-284.
    [120] J Jeong, I Hong, R. Nevels. The time domain propagator method for lossless multicondutorquasi-TEM lines[J]. IEEE Trans. Adv. Packag.,2009,32(3):619-626.
    [121] Sriram Kumar D, Srinivas A, Ratnakar G. Simulation and analysis of coplanar waveguidediscontinuities Recent Advances[C]. Int. Conference on Microwave Theory andApplications, Nov.2008:784-786.
    [122] Oueslati N, Aguili T. Characterization of planar microstrip discontinuities[C]. Int.Conference On Electronics and Information Engineering (ICEIE),2010vol.2:96-100
    [123] Gowri R, Mohanty S, Vidyarthi A, Tripati S. Characterization of various coplanarwaveguide discontinuities[C]. IEEE ICMTCE, May2011:140-144.
    [124] Gazda C, Vande Ginste, D Rogier, etc. A Wideband Common-Mode Suppression Filter forBend Discontinuities in Differential Signaling Using Tightly Coupled Microstrips[J]. IEEETransactions on Advanced Packaging,2010,33(4):969-978.
    [125] Tseng C-H, Ma T-G. Measurement of differential-mode and common-mode scatteringparameters of symmetric coupled-line discontinuity structure[J]. IET Microwaves, Antennas&Propagation,2008,2(3):242-247.
    [126] Donald Hearn.计算机图形学(第二版)[M].蔡士杰,宋继强,蔡敏译.北京:电子工业出版社,2005.
    [127]孙家广.计算机图形学(第三版)[M].北京:清华大学出版社,2005.
    [128]周国祥,程萍,蒋建国,杨明武.直角坐标系下非均匀FDTD网格生成系统[J].微波学报,2005,21(2):56-59.
    [129]毛剑波,杨明武,梁华国,等.基于FDTD的三维全波电磁分析软件及工程应用.计算机应用与软件,2011,28(8):47-49,157.
    [130] X Zhang and K K Mei. Time-domain finite difference approach to the calculation of thefrequency-dependent characteristics of microstrip discontinuities [J]. IEEE Trans. onMicrowave Theory and Techniques,1988,36(12):1775-1787.
    [131] K C Gupta, R Garg, R Chadha. Computer-Aided Design of Microwave Circuits[M],Dedham, MA, Artech House,1981.
    [132] P Bhartia, P Pramanick. A new microstrip dispersion model [J]. IEEE Trans. MicrowaveTheory Tech.,1984,32(10):1379-1384.
    [133]许银生,毛剑波,姜万顺,等.微型化Wilkinson功分器研究与设计[C].第二届仪表、自动化与先进集成技术大会论文集.2008.11:170-173.
    [134] I D Robertson, S Lucyszyn. RF and MMIC design and Technology[M]. The Institution ofElectrical Engineers, United Kingdom,2001.
    [135] Alan V Oppenheim, Alan S Willsky, S. Hamid Nawab.信号与系统(第2版)[M].刘树棠(译).西安交通大学出版社,1998.
    [136] Kai Chang (editor). Encyclopedia of RF and Microwave Engineering[M]. John Wiley&Sons, Inc., Hoboken, New Jersey, Mar.2005:2655-2662.
    [137] H Liang, K Laskar, H Barnes, D. Estreich. Design and optimization for coaxial-to–microstrip transition on multi-layer substrates[C]. IEEE MTT-S Int. Microwave Symp.Digest,2001,(3):1915-1918.
    [138] R L Eisenhart. A better microstrip connector[C]. IEEE MTT-S Int. Microwave Symp. Digest,1979:318-320.
    [139] T Q Ho, Y Shih. Analysis of microstrip line to waveguide end launchers[J]. IEEE Trans.Microwave Theory Tech.,1988,36(3):561-567.
    [140] D S Phatak, N K Das, A P Defonzo. Dispersion characteristics of optically excited coplanarstriplines: comprehensive full wave analysis[J]. IEEE Trans. on Microwave Theory andTech.,1990,38(5):1719-1730.
    [141] A M E Safwata, K A Saki, W Johnson, etc. Novel design for coplanar waveguide tomicrostrip transition[C]. IEEE MTT-S Int. Microwave Symp. Digest,2001,(2):607-610.
    [142] Hang Jin, Ruediger Vahldieck, Jifu Huang, etc. Rigorous Analysis of Mixed TransmissionLine Interconnects Using the Frequency-Domain TLM Method[J]. IEEE Trans. onMicrowave Theory and Tech.,1993,41(12):2248-2255.
    [143] Harokopus W P, Katehi P B. An accurate characterization of open microstrip discontinuitiesincluding radiation losses[C]. IEEE MTT-S Int. Microwave Symp. Digest,1989:231-234.
    [144] Horng T-S, Wu S-C, Yang H-Y, Alexopoulos N G. A Generalized Method for DistinguishingBetween Radiation and Surface-Wave lossed[J]. IEEE Transactions on Microwave Theoryand Techniques,1990,38(12):1800-1807.
    [145] Sabban A, K C Gupta. Multiport network model for evaluation radiation loss and spuriouscoupling between discontinuities in microstrip circuits[C]. IEEE MTT-S Int. MicrowaveSymp. Digest,1989:707-710.
    [146] Sabban A, K C Gupta. Characterization of radiation loss from microstrip discontinuitiesusing a multiport network modeling approach [J]. IEEE Trans. on Microwave Theory andTechniques,1991,39(4):705-712.
    [147] Gardiol F E. Radiation from microstrip circuits: an introduction[J]. Intl. J MIMICAE,1991,1(2):255-235.
    [148] Pan G, Tan J. Full-wave analysis of radiation effect of microstrip transmission lines[J].Analog Integrated Circuits and Signal Processing,1994,5(1):77-85.
    [149] R K Hoffmann. Handbook of Microwave Integrated Circuits[M]. Norwood, MA: ArtechHouse,1987.
    [150] J R James, P S Hall, C Wood. Microstrip Antennas Theory and Design[M]. Stevenage, U.K.:Peter Peregrinus, Ltd.,1981:89-90.
    [151] N G Alexopoulos, D R Jackson. Fundamental superstrate (cover) effects on printed circuitantenas[J]. IEEE Trans. Antennas Propagat.,1984,32(8):807-816.
    [152] Qiangxu, Kevin J, Raj Mittra. Study of Modal Solution Procedures for Microstrip StepDiscontinuities[J]. IEEE Transactions on Microwave Theory And Techniques,1989,37(2):381-387.
    [153] Yaowu Liu, Jingsong Hong, Kenneth K.Mei. Analysis of a double Step MicrostripDiscontinuity Using Generalized Transmission Line Equations[J]. IEEE Transactions onAdvanced Packing,2003,26(4):368-374.
    [154] Kuroki F, Miyamoto K, Nishida S. Transmission characteristics of the first higher mode in astrip line at millimeter-wavelength[C]. IEEE MTT-S International Microwave Symp. Dig.,June2005.
    [155] Kuroki F, Miyamoto K, Nishida S. New type of band-pass filter using higher mode strip linefor millimeter wave integrated circuits[C]. IEEE Radio and Wireless Conference, Sept.2004:231-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700