用户名: 密码: 验证码:
超宽带天线与相控阵天线系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信技术的快速发展,对于各种天线也提出了越来越高的要求。一方面,室内高速无线数据接入技术的兴起对超宽频带天线提出了广泛需求。同时,由于在超宽带通信系统的工作频段范围内,还存在诸如无线局域网(WLAN)、全球微波互联接入(WiMAX)等通信系统,为了降低不同通信系统之间的相互干扰,具有陷波特性的超宽带天线近来获得了广泛关注。
     相控阵天线具有反应迅速、灵敏、准确,同时可以探测、识别和跟踪多个目标等特点,是一种十分先进的多功能综合天线。可用于几乎所有的军用雷达系统,此外在空中交通管制,气象预测预报等领域的民用事业中也有广阔的用武之地。
     连续切向节(CTS)天线作为一种新型天线,具有许多优点,有着广阔的应用前景。
     本文对超宽带天线、相控阵天线系统以及CTS天线做了一些研究。主要工作包括以下几个方面:
     1.研究了一种超宽带天线及三种超宽带双陷波天线的设计实现方法。提出一种月牙形结构的印刷单极天线,并通过调整月牙形结构的各项参数,使天线获得了理想的阻抗带宽;在此天线的结构基础上,通过在辐射体上开U形槽或引入缺陷地结构(DGS)两种方法结合设计了三种双陷波天线,着重分析了U形槽或DGS结构参数变化对陷波性能的影响。对以上几种天线制作了实物,并对其驻波比及辐射特性进行了测量,实测结果与仿真结果一致性较好。
     2.研究了一种共形低副瓣无源相控阵天线系统。设计了一种结构简单的印刷振子天线单元,并组成线阵实现了低副瓣以及扫描特性;设计了一种分形结构的微带天线单元,有效减小了天线尺寸;提出一种结构新颖的小型化功分器结构,通过引入微带开路以及短路枝节,缩小了功分器的体积,且具有谐波抑制功能;利用DGS设计了一种微带带通滤波器,该滤波器可以对其寄生通带加以抑制,测试性能良好;对该系统馈电网络中的移相器及衰减器电路进行了设计,测试性能良好;最后对整个相控阵天线系统进行了测试,结果满足设计要求。
     3.研究了一种Ku频段低轮廓小型化相控阵天线系统。设计了双H开槽口径耦合微带天线单元,测试结果满足设计要求;设计了一种新型的口径耦合天线单元,仿真结果表明其具有宽带,高隔离度等性能;设计了并馈及串并馈结合的微带功分器,从测试结果比较了两者的优缺点;对该系统馈电网络中的移相器及衰减器电路做了设计,测试结果表明其性能良好;针对该通信系统的极化失配问题提出一种有效的有源变极化方案,通过控制双极化单元两端馈电幅度大小,实现极化跟踪,减小极化失配,并通过实验验证了该方案;最后结合设计要求对于整个阵列进行了综合,并给出了整个阵列的方向图以及扫描特性。
     4.研究了一种新型的CTS天线,该天线可以实现小型化,低剖面,低成本,共形等特性,是一种性能优越的相控阵单元形式。对单个天线单元特性做了仿真分析,通过改变单元各个参数研究其对辐射特性的影响;在分析单元的基础上,仿真设计了5元阵,且对各单元尺寸进行简单综合得到低副瓣;并通过填充铁电材料实现了E面扫描;设计了5×5阵列,实现了良好的双线极化以及圆极化。
With the fast development of wireless communication technology, higher and higher demands have been put forward for various antennas. On one hand, the rise of the indoor high-speed wireless data access technology calls for the ultra-wideband antennas. Meanwhile, to avoid the interference between ultra-wideband (UWB) system and some other existing communication systems, such as WLAN and WiMAX, the UWB antennas should be band-notched.
     Phased array antenna is responsive, sensitive, accurate and can detect, identify and track multiple targets, so it is a very advanced multi-functional integrated antenna. It can be used almost in all of the military radar system, in addition to the air traffic control, weather forecasting in civilian areas.
     Continuous transverse stub (CTS) has many advantages as a new antenna, it has a vast arena.
     The dissertation makes deeply insight to UWB antennas, phased array antenna system and CTS antenna. The author’s major contributions are as follows:
     1. The design and realization of a type of UWB antenna and three UWB double band-notched antennas are presented. A crescent microstrip-fed printed UWB antenna is proposed. By adjusting the parameters of the antenna, the antenna yields ideal impedance bandwidth. Based on this UWB antenna, three types of double band-notched UWB antenna are designed through etching U-shaped slot in the radiation plane or defected ground structure (DGS), the influence of their parameters on band-notched characteristic is analyzed. Finally, all the antennas mentioned above are fabricated and measured. The measured results agree well with simulated ones.
     2. A conformal low side-lobe passive phased array antenna system has been studied. A simple and wideband printed dipole is designed, then a linear array is also presented based on this element, and the low sidelobe and beam scanning is realized. A fractal microstrip antenna is proposed to reduce the antenna size. A novel and compact power divider is presented by introducing microstrip open-ended and short-ended stubs to reduce the size and suppress the harmonics. A type of microstrip band-pass filter with DGS is designed to suppress the parasitic pass-band and the measured results agree well with the simulated ones. Then the design of digital phase shifter and attenuator applied in feeding work is given, the measured results are well. At last, the phased array antenna is measured in the anechoic chamber, and the results could meet the design requirements.
     3. A Ku band low profile and compact phased array antenna system has been studied. A double H-slot aperture-coupled microstrip antenna is presented and the measured results meet the requirements. A new aperture-coupled wideband micristrip element is proposed and the simulation results show it has wider bandwidth and higher isolation. Two types of microstrip divider are designed and fabricated, the measured results show their own advantages and disadvantages. Then the digital phase shifter and attenuator used in feeding network are designed and measured, the measured results are well. And an effective active variable polarization method is put forward to solve the problem of polarization mismatch, it can achieve polarization tracking and decrease the polarization mismatch by controlling the antenna element amplitude of the two ports, and the method is verified by the experiment. Finally, the array synthesis is done according to the specification, the array radiation pattern and the scanning characteristic is given.
     4. A type of CTS antenna is presented. The antenna can realize miniaturization, low profile, low cost, conformal properties and it is a very promising candidate phased array antenna element. The antenna characteristic is analyzed by changing its parameters. Then a 5 element array is designed and the parameters of the CTS element are synthesized to achieve low side-lobe. Based on the former synthesized array, the array realizes scanning by virtue of ferroelectric material. At last, a 5×5 CTS array achieves good dual linear polarization and circular polarization.
引文
[1] C. A. Balanis. Antenna theory: analysis and design. Second edition. New York: Wiley, 1997.
    [2]林昌禄.近代天线设计.北京:人民邮电出版社,1990.
    [3]吕文俊,朱洪波.具有陷波功能的超宽带缝隙天线的设计与研究.中国电子科学研究院学报. 2007.
    [4] J. X. Liang. Antenna study and design for ultra-wideband communication applications. July, 2006.
    [5]范琪凯.超宽带天线的研究与仿真.哈尔滨工程大学硕士学位论文, 2006.
    [6]毕战红.应用在短距离无线通信中的超宽带天线研究.北京邮电大学硕士学位论文, 2006.
    [7] Federal Communications Commission:‘First Report and Order’, Revision of Part 15 of the Commission’s Rules Regarding Ultra- Wideband Transmission Systems, Feb. 2002.
    [8]张光义,赵玉洁.相控阵雷达技术.北京:电子工业出版社,2006.
    [9] V. Rumsey. Frequency independent antennas. Academc Press. New York, 1966.
    [10]周海进.超宽带天线设计及阵列天线赋形研究.西安电子科技大学博士学位论文, 2009.
    [11] M. J. Ammann. Square planar monopole antennas, in Inst. Elect. Eng. NCAP, York, U.K., 1999: 37-40.
    [12] S. N. Khan, L. Ti, J. Hu, S. He. A diamond-like vertical monopole antenna for ultra-wideband communication. Microwave and optical technology letters. 2007, 49(10):2443-2446.
    [13] S. W. Su, K. L. Wong, C. L. Tang. Ultra-wideband square planar momopole antenna for IEEE 802.16a operation in the 2-11GHz band. Microwave and optical technology letters. 2004, 42(6):463-466.
    [14]高国平.超宽带天线设计及其阵列研究.兰州大学硕士学位论文, 2009
    [15] R. Chair, A. A. Kishk, K. F. Lee. Microstrip line and CPW fed ultra-wideband slot antennas with U-shaped tuning stub and reflector. Progress in Electromagnetics Research, PIER 56: 163-182, 2006.
    [16] M. A. Saed. Reconfigurable broadband microstrip antenna fed by a coplanar waveguide. Progress in Electromagnetics Research. PIER 55: 227-239, 2005.
    [17] Sh. W. QU, Ch. L. Ruan, B. Zh.Wang. Bandwidth enhancement of wide-slotantenna fed by CPW and microstrip line. IEEE Antennas and Wireless Propagation Letters. May, 2005. 5: 15-17.
    [18] S. H. Kim, J. H. Chio, J. W. Baik. CPW-fed log-periodic dumb-bell slot antenna array. Electronics Letters. April, 2006. 42(8): 416-417.
    [19] J. Y. Chiou, J. Y. Sze, K. L. Wong. A broad-band CPW-fed strip-loaded square slot antenna. IEEE Transactions on Antennas and Propagation. April, 2003. 51(4): 719-721.
    [20] H. D. Chen, H. T. Chen. A CPW-fed dual-frequency monopole antenna. IEEE Transactions on Antennas and Propagation. April, 2004. 52(4): 978-982.
    [21] Sh. M. Deng, M. D. Wu, P. Hsu. Analysis of coplanar waveguide fed micro-strip antennas. IEEE Transactions on Antennas and Propagation. July, 1995. 43(7): 734-737.
    [22] E. A. Soliman, S. Brebels, P. Delmotte. Bow-tie slot antenna fed by CPW. Electronics Letters. April, 1999. 35(7): 514-515.
    [23] C. Y. Huang, D. Y. Lin. CPW-fed bow-tie slot antenna for ultra-wideband communications. Electronics Letters. Sep, 2006. 42(19): 813-814.
    [24]程崇虎,吕文俊,程勇.共面波导馈电单极子天线的设计与研究.微波学报,2003. 19(4): 58-61.
    [25]苏晓恩,薄亚明.共面波导馈电宽带矩形边蝶形缝隙天线的仿真分析与设计.微波学报,2006. 22(4):35-39.
    [26]汪伟,钟顺时,陈胜兵.宽带共面波导馈电“△”单极天线.西安电子科技大学学报,2005. 32(2):323-326.
    [27] W. C. Liu. Design of a multi-band CPW-fed monopole antenna using a particle swarm optimization approach. IEEE Transactions on Antennas and Propagation. October, 2005. 53(10): 3273-3279.
    [28] X. L. Liang, S. S. Zhong, W. Wang. Elliptical planar monopole antenna with extreme-wideband. Electronics Letters. Aug, 2006. 41(8): 441-442.
    [29] J.Liang, C.C.Chiau, X. Chen, et al. Printed circular ring monopole antenna. Microwave and optical technology letters. 2005, 45(5):372-375.
    [30] Y.C.Lee, J.S.Sun, W.J. Huang. A study of printed monopole antenna for ultra-wideband applications. Microwave and optical technology letters. 2007, 49(6):1435-1438.
    [31] W.S.Chen, S.C.Wu, K.N.Yang. A study of printed monopole antenna for ultra-wideband IEEE 802.16a/UWB applications. IEEE antenna and propagation society international symposium 2006:1685-1688.
    [32] M.Klemm, G. Troester. Textile UWB antennas for wireless body area networks. IEEE Transactions on Antennas and Propagation. 2006, 54(11):3192-3197.
    [33] M.Abbosh, M.E.Bialkowski. Design of ultrawideband planar monopole antennas of circular and elliptical shape. IEEE transition on antenna and propagation. 2008, 56(1):17-23.
    [34] P. J. Gibson. The Vivaldi aerial. Proc. 9th Euro. Microwave Conference. Brighton, 1979: 101-105.
    [35] E. Gazit. Improved design of the Vivaldi antenna. IEE Proceedings H Microwaves, Antenna and propagation. 1988, 135(2): 89-92.
    [36] J. D. S. Langley, P. S. Hall, P. Newham. Novel ultra-wideband Vivaldi antenna and low cross-polarisation. Electronics Letters. Dec, 1993. 29(23): 2004-2005.
    [37] Y. W. Jang. Broadband cross-shaped microstrip-fed slot antenna. Electronics Letters. Nov, 2000. 36(25): 2056-2057.
    [38]姚凤薇,钟顺时.新型带扇形馈源的宽带缝隙天线.电波科学学报. 2005,20(5):675-677.
    [39] F. W. Yao, S. S. Zhong, X. L. Liang. Wideband slot antenna with a novel microstrip feed. Microwave and Optical Technology Letters. 2005, 46(3): 275-278.
    [40] S. Sadat, M. Fardis. A compact micro-strip square-ring slot antenna for UWB applications. IEEE Antennas Propagat. Symp. Albuquerque, New Mexico, 2006: 4629-4633.
    [41] D.C.Chang, J. C. Liu, M. Y. Liu. Improved U-shaped stub rectangular slot antenna with tuning pad for UWB applications. Electronics Letters. Nov, 2005. 41(20): 1092-1097.
    [42] S. A. Evangelos, A. Z. Anastopoulos, et al. Circular and elliptical CPW-fed slot and microstrip-fed antennas for ultra-wideband applications. IEEE Antennas and Wireless Propagation Letters. 2006, 5: 294-297.
    [43] J. W. Niu, S. S. Zhong. A CPW-fed broadband slot antenna with linear taper. Microwave and Optical Technology Letters. 2004, 41(3): 218-221.
    [44] M. A. Saed. Broadband CPW-fed planar slot antennas with various tuning stubs. Progress in Electromagnetics Research. PIER 66, 199-212, 2006.
    [45] H. D. Chen. Broadband CPW-fed square slot antennas with a widened tuning stub. IEEE Transactions on Antennas and Propagation. August, 2003. 51(8): 1982-1986.
    [46] A.U. Bhobe, C. L. Holloway, R. Hall. Coplanar waveguide fed wideband slot antenna. Electronics Letters. August, 2000. 36(16): 1340-1342.
    [47] B.A. Eldek, A. Z. Elsherbeni, C. E. Smith. Rectangular slot antenna with patchstub for ultra wideband application and phased array systems. Progress in Electromagnetics Research. PIER 53, 227-237, 2005.
    [48] H.D.Chen, J.S.Chen, J.N.Li. Ultra-wideband square-slot antenna. Microwave and Optical Technology Letters. 2006, 48(3): 500-502.
    [49] C.Marchais, G. Le Ray, A.Sharaiha. Stripline solt antenna for UWB communications. IEEE antenna and wireless propogation letters. 2006,5:319-322.
    [50] F. Consoli, F. Maimone, S.Barbarino. Study of a cpw-fed circular slot antenna for UWB communications. Microwave and Optical Technology Letters. 2006, 48(11): 2272-2277.
    [51] P. Li, J. Liang, X. Chen. Study of printed elliptical/circular slot antennas for ultrawideband applications. IEEE Transactions on Antennas and Propagation. 2006. 54(6): 1670-1675.
    [52] P. Li, J. Liang, X. Chen. Ultra-wideband elliptical slot antenna fed by tapered microstrip line with U-shaped tuning stub. Microwave and Optical Technology Letters. 2005, 47(2): 140-143.
    [53] J. Yoon. Triangular slot antenna with a double-T-shaped tuning stub for wideband operation. Microwave and Optical Technology Letters. 2007, 49(9): 2123-2128.
    [54] W. S. Lee, D. Z. Kim, K. J. Kim, et al. Wideband plana monopole antennas with dual band-notched characteristics. IEEE Transactions on Microwave Theory and Technology. 2006,54(6):2800-2806.
    [55] K. Chung, J. Kim, J. Choi. Wideband microstrip-FED monopol antenna having frequency band-notch function. IEEE Microwave and Wireless Components Letters. 2005, 15(11):766-768.
    [56] Y.J.Cho, K.H.Kim, D.H.Choi, et al. A miniature UWB planar monopole antenna with 5-GHz band-rejection filter and the time-domain characteristics. IEEE Transactions on Antennas and Propagation. 2006. 54(5): 1453-1460.
    [57] T. P. Vuong, A. Ghiotto, Y. Duroc, et al. Design and chacteristics of a small U-slotted planar antenna for IR-UWB. Microwave and Optical Technology Letters. 2007, 49(7): 1727-1731.
    [58] C. M. Abbosh, M. E. Bialkowski, J. Mazierska, et al. A planar UWB antenna with signal rejection capability in the 4GHz band. IEEE Microwave and Wireless Components Letters. 2006, 16(5):278–280.
    [59] Y. Kim, D. H. Kwon. CPW-FED planar ultra wideband antenna having a frequency band notch function. Electronics Letters. 2004, 40(7):403–405.
    [60] Y. D. Dong, W. Hong, Z. Q. Kuai, et al. Analysis of planar Ultrawideband antennaswith on-ground slot band-notched structures. IEEE Transactions on Antennas and Propagation. 2009. 57(7): 1886-1892.
    [61] J.C.Ding, Z.L. Lin, Z.N. Ying, et al. A compact ultra-wideband slot antenna with multiple notch frequency bands. Microwave and Optical Technology Letters. 2007, 49(12): 3056-3060.
    [62] J. Liu, S. Gong, Y. Xu, X. Zhang, et al. Compact printed ultra-wideband monopole antenna with dual band-notched characteristics. Electronics Letters. 2008, 44(12): 710-711.
    [63] K.H.Kim, S.O.Park. Analysis of the small band-rejected antenna with the parasitic strip for UWB. IEEE Transactions on Antennas and Propagation. 2006. 54(6): 1688-1692.
    [64] W. T. Li, X. W. Shi, Y. Q. Hei. Novel planar UWB monopole antenna with triple band-notched characteristics. IEEE antenna and Wireless Propogation Letters. 2009, 8:1094–1098.
    [65] Y. Zhang, W. Hong, C. Yu, et al. Design and implementation of planar ultra-wideband antennas with multiple notched bands based on stepped impedance resonators. IET Microwaves, Antennas & Propagation. 2009, 3(7):1051-1059.
    [66] H. Steyskal. Pattern synthesis for a conformal wing array. IEEE Aerospace conference Proceedings. 2002, 2:819-824.
    [67] http://ksj123.blog.sohu.com/136159117.html
    [68] Young-Bae Jung; Soon-Ik Jeon; Chang-Joo Kim. A APAA system for Ku-band mobile multimedia service via satellite. IEEE Antennas and Propagation Society International Symposium. 2006:3123-3126.
    [69] Soon-Ik Jeon, Young-Wan Kim, Deog-Gil Oh. A new active phased array antenna for mobile direct broadcasting satellite reception. IEEE Transactions on Broadcasting. 2000,46(1):34-40.
    [70] Ung Hee Park, Young Bae Jung, Jae Seung Yun, et al. An experimental model design of bidirectional communication mobile terminal for Ku-band satellite-internet services. IEEE 58th Vehicular Technology Conference. 2003,4:2665-2668.
    [71] Ferdinando Tiezzi, Stefano Vaccaro. Hybrid phased array antenna for mobile Ku-band DVB-S services. The 3rd European Radar Conference. 2006:124-127.
    [72] Seong Ho Son, Ung Hee Park, Soon Ik Jeon, et al. Mobile antenna system for Ku-band satellite Internet service. IEEE 61st Vehicular Technology Conference. 2005,1:234-237.
    [73] Mousavi, P., Fakharzadeh, M., Safavi-Naeini, S.. A low cost 1K elements phased array antenna. IEEE MTT-S International Microwave Symposium Digest. 2009: 825-828.
    [74] http://www.raysat.com/
    [75] T. E. Morton, K. M. Pasala. Pattern synthesis and performance of conical arrays. Proceedings of the Thirty-Sixth Southeastern Symposium on System Theory. 2004: 145-149.
    [76] H. Holter. Examination of a new numerical code for slot element arrays on the conical metal surface, calculations and measurements. Proceeding of the 4 European Workshops on Conformal Antennas. May 2005:43-46.
    [77] E. Vourch, G. Caille, M. J. Martin, J. R. Mosig, et al. Conformal array antenna for LEO observation platforms. IEEE Antennas and Propagation Society International Symposium. June 1998, 1: 20-23.
    [78] G. Caille, E. Vourch, M. J. Martin, et al. Conformal array antenna for observation platforms in low earth orbit. IEEE Antennas and Propagation Magazine. 2002, 44(3):103-104.
    [79] Y. He, K. Arichandran. Conformal microstrip array for small LEO satellite. 2002 2 nd International Conference on Microwave and Millimeter Wave Technology Proceedings. 2002, 323-326.
    [80] http://www.fgan.de/fgan/fgan_en.html
    [81] M. Kanno, T. Hashimura, T. Katada, et al. Digital beam forming for conformal active array antenna. IEEE International Symposium on Phased Array Systems and Technology. Oct. 1996:37-40.
    [82] W. W. Milroy. The Continuous Transverse Stub (CTS) Array: basic theory, experiment, and application. 1991 Antenna Applications Symposium. Allerton Park, IL, USA.
    [83] W.W. Milroy. Continuous transverse stub element devices and methods of making same. United States Patent 5,266,961,1993.
    [84] W.W. Milroy. Antenna array configurations employing continuous transverse stub elements. United States Patent 5,349,363,1994.
    [85] W.W. Milroy. Continuous transverse stub element device antenna array configurations. United States Patent 5,412,394,1995.
    [86] W.W. Milroy. Continuous transverse stub element devices for flat plate antenna arrays. United States Patent 5,483,248,1996.
    [87] W. W. Milroy. Continuous Transverse Stub element antenna arrays usingvoltage-variable dielectric material. United States Patent 5,583,524,1996.
    [88] W. W. Milroy. Planar antenna radiating structure having quasi-scan, frequencyi-independent driving-point impedance. United States Patent 5,995,055,1999.
    [89] W. W. Milroy. Compact, ultrawideband matched E-plane power divider. United States Patent 5,926,077,1999.
    [90] W. W. Milroy. Compact, ultrawideband, antenna feed architecture comprising a multistage, multilevel network of constant reflection-coefficient components. United States Patent 6,075,494,2000.
    [91] Alan Lemons, Robert Lewis, William Milroy, Ralston Robertson, Stuart Coppedge, and Todd Kastle. W-Band CTS Planar Array, 1999 IEEE International Microwave Theory and Techniques Symposium. Los Angeles, CA,USA.
    [92] W. W. Milroy. Evolution of the Continuous Transverse Stub (CTS) Array in communication applications,(Classified Volume,) MILCOM 97 Symposium. Monterey,CA, USA
    [93]张光义.相控阵雷达系统.北京:国防工业出版社,1994.
    [94] J. D. Taylor. Introduction to ultra-wideband radar systems. Ed. Boca Raton, FL: CRC Press,1995.
    [95] M. G. M. Hussain. Ultra-wideband impulse radar-An overview of the principles. IEEE Aerosp. Electre. Syst. Mag..1998,3(9):9-14.
    [96] M. Z. Win, R. A.Scholtz. Impulse radio: How it works. IEEE Communication Letters.1998, 2(2):36-38.
    [97] R. A. Scholtz. Multiple accesses with time-hopping impulse modulation. IEEE Military Communication Conference. Boston, MA,1993:447-450.
    [98]张金平.超宽带天线及其阵列研究.中国科学技术大学博士学位论文, 2007.
    [99]刘丹谱.超宽带无线通信技术.中兴通讯技术, 2004,10(3):16-19.
    [100] Eric Ojard, Jeyhan Karaoguz. Ultra wide-band modulation schemes: A Communications Theory Perspective [EB/OL]. http://grouper.ieee.org/groups/802/15/pub/2003/Mar03/03095r1P802-15_TG3a-Broadcom-CFP-Presentation.ppt.
    [101]沈文辉.相控阵及微带天线相关问题的研究.上海交通大学博士学位论文, 2005
    [102]束咸荣,何炳发,高铁.相控阵雷达天线.北京:国防工业出版社, 2007.
    [103] C.M.Butler. The equivalent radius of a narrow conducting strip. IEEE Trans. Antennas & Propagation. 1982, 30:755-758.
    [104] W. K. Roberts. A new wideband balun. Proceedings of the IRE. 1957, 45(12):1628–1631.
    [105] R. Baeer, J.W. Wolfe. A printed circuit balun for use with spiral antennas. IRE, Transactions on Microwaves Theory and Techniques. 1960, 8(5):319–325.
    [106] G. Oltman. The compensated balun. IEEE Trans. On MTT. 1966, 14(3): 112-119.
    [107] E.J. Wilkinson. An n-way hybrid power divider. IRE Trans Microwave Theory Tech. vol.8:116-118,1960
    [108]微带电路.清华大学编写组.
    [109] Jia-Lin Li, Shi-Wei Qu, Quan Xue. Capacitively loaded Wilkinson power divider with size reduction and harmonic suppression. Microwave and Optical Technology Letters. Vol.49, No.11:2737-2739, Nov.2007.
    [110] Wen-Hua Tu. Compact Wilkinson power divider with harmonic suppression. Microwave and Optical Technology Letters. Vol.49, No.11:2825-2827, Nov.2007.
    [111] A.-L. Perrier, J.-M. Duchamp, P. Ferrari. A Miniaturized Three-port Divider/Combiner. Microwave and Optical Technology Letters. Vol.50, No.1:72-75, Jan.2008.
    [112] Advanced Design System (ADS). Version 2004A. Agilent Technologies, California, USA, 2004.
    [113] Ansoft Designer. Version 3. Ansoft Corporation.
    [114] T. Lopetegi, M. A. G. Laso, J. Hernandez, et al. New microstrip“wigglyline”filters with spurious passband suppression. IEEE Trans Microwave Theory Tech. 2001 (49): 1593–1598.
    [115] S.-M.Wang, C.-H. Chi, M.-Y. Hsieh, et al. Miniaturized spurious passband suppression microstrip filter using meandered parallel coupled lines. IEEE Trans Microwave Theory Tech. 2005 (53): 747–753.
    [116] I. K. Kim, N. Kingsley, M. Morton, et al. Fractal-shaped microstrip coupled-line bandpass filters for suppression of second harmonic. IEEE Trans Microwave Theory Tech. 2005 (53):2943–2948.
    [117] Wen-Ling Chen, Guang-Ming Wang. Effective design of novel compact fractal-shaped microstrip coupled-line bandpass filters for suppression of the second harmonic. IEEE Microwave Wireless Compon Lett. 2009 (19): 74–76.
    [118] J.-S. Park, J.-S. Yun, D. Ahn. A design of the novel coupled-line bandpass filter using defected ground structure with wide stopband performance. IEEE Trans Microwave Theory Tech. 2002 (50): 2037-2043.
    [119] J. García-García, F. Martín, F. Falcone, et al. Spurious passband suppression inmicrostrip coupled line band pass filters by means of split ring resonators. IEEE Microwave Wireless Compon Lett. 2004 (14): 416-418.
    [120]冯烈丹,向军.动中通卫星天线的选择《卫星&网络》2009年09期总87期.
    [121]李书杰. Ku波段微带平面阵研究.西安电子科技大学硕士论文. 2006.
    [122]陈亚娟,龙云亮.宽频微带贴片天线的研究进展.电波科学学报. 1999, 14(3):357-361.
    [123] John Huang. Dual-plarized Microstrip Array with High Isolation and Low Crosspolarization. Microwave and Optical Technology Letters. 1991, 4(3): 99-103.
    [124]张需溥,钟顺时.蝶形微带天线的全波分析与宽带设计.电波科学学报. 2001,16(4):419-421
    [125] Hao-Chun Tung, Kin-Lu Wong. A compact dual-polarized patch antenna for1800MHz band operation. Microwave and Optical Technology Letters. 2001, 29(3): 1-2.
    [126] L. HABIB, G. KOSSIAVAS, A. PAPIERNIK. Cross shaped patch with etched bars for dual polarization. Electronics1Letters .1993, 29(10):916-918.
    [127] K. GHORBANI, R. B. WATERHOUSE. Dual polarized wide-band aperture stacked patch antennas. IEEE Transactions on Antennas and Propagation. 2004, 52(8):2171-2175.
    [128] WON G K L, TUN G H C, CHIOU T W. Broadband and dual polarized aperture coupled coupling slots. IEEE Transactions on Antennas and Propagation. 2002, 50 (2):188-191.
    [129] CHIOU T W, WON G K L. Broad band dual-polarized single microstrip patch antenna with high isolation and low cross polarization. IEEE Transactions on Antennas and Propagation. 2002, 50(3):399-401.
    [130]李建新,李迎林,张金平.一种新型星载SAR宽带双极化微带天线研究.电波科学学报. 2009, 24(2):354-358.
    [131]信息产业部电子第十四研究所翻译.微带天线设计手册.南京:信息产业部电子第十四研究所出版. 2002.
    [132] A.Vallecchi, G. B. Gentili. Dual-polarized linear series-fed microstrip arrays with very low losses and cross polarization. IEEE antennas and wireless propagation letters. 2004, 3:123-126.
    [133] B.Vallecchi, G. B. Gentili. Design of dual-polarized series-Fed microstrip arrays with low losses and high polarization purity. IEEE Transactions on antennas and propagation. 2005, 53(5):1791-1798.
    [134] Vallecchi, G. B. Gentili. A Shaped-beam hybrid coupling microstrip planar arrayantenna for X-band dual polarization airport surveillance radars. The Second European Conference. 2007:1-7.
    [135] Vallecchi, G. B. Gentili. A low-cost shaped-beam hybrid-feed microstrip planar array antenna for X-Band polarimetric radar systems. The 3rd European Radar Conference. 2006:124-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700