用户名: 密码: 验证码:
高温超导薄膜微波非线性的全波分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温超导薄膜的微波非线性性能具有重要的意义,国内外已在实验及理论等方面展开了广泛的研究,并随着该研究的深入向实用化发展。尽管如此,目前对该非线性的精确分析尚无可靠解决方法,因此如何建立有效的分析手段已成为一个迫切需要解决的问题。
     本论文结合时域有限差分法(Finite Difference Time Domain,FDTD法)和Ginzburg-Landau方程(GL方程)的有限差分求解方法,对高温超导微波非线性进行全波分析,仿真计算了不同传输功率下超导的非线性传输特性和电流密度分布,预测了一定线宽时的超导转变功率点。主要完成了以下工作:
     1.研究了适合于微带类型的FDTD算法,如色散吸收边界条件,非均匀网格剖分,以及导电良好材料里面场的差分形式以保证时间迭代上的稳定性,以便对高温超导进行电磁场仿真;
     2.提出了计算实正规矩阵若干特征值问题的神经网络计算办法,并且通过矩阵范数降低技术推广到了任意实矩阵的特征值问题,建立了一个求解实反对称矩阵模最大特征值及其特征向量的模的复神经网络模型,并给出和证明了复神经网络模型的收敛性定理。这些算法可以被应用全波分析GL有限差分求解稳定性判断的问题研究中;
     3.研究了GL方程的有限差分数值解法,包括对GL方程的有限差分离散近似,两个GL方程的有限差分时边界条件的处理,GL方程离散后求解非线性方程组的Newton迭代法,以及内部和边界处场的插值算法;
     4.将FDTD法与GL方程结合,对超导薄膜传输线进行了全波仿真,分析了不同传输功率时电流密度的分布和变化情况,预估了一定线宽时低损耗超导态向高损耗态转变的功率点;
     5.设计实验,测试了超导共面波导传输线的功率非线性传输特性,验证了全波仿真对功率转变点的预估,测试表明预估值与测试值一致,表明了全波分析的有效性。
Microwave nonlinear performance of the high-temperature superconductor thinfilm has an important significance, and extensive researches have been conducted inexperimental and theoretical aspects either at home and abroad. With the deepening ofthe study, the development of the nonlinearity research turns to practical application.Nevertheless, there is no accurate method for nonlinear analysis at present, how toestablish an effective technique for nonlinear study has become an urgent problem to besolved.
     This dissertation combines the finite difference time domain method and finitedifference method for solving the Ginzburg-Landau equations for full-wave analysis ofhigh-temperature superconductor microwave nonlinearity. In this dissertation Thecurrent density distribution and nonlinear transmission characteristics of superconductorare simulated with different transmitted power. Also the transition point of power forsuperconducting transimission line with certain line width is predicted. Such contentsinvolved in this dissertation are as following:
     1. The FDTD algorithm suitable for microstrip type is studied, such as dispersiveabsorbing boundary conditions, non-uniform mesh, as well as the differential forms forfields in a good conductor to ensure stability on the time iteration. All of these works isto smimulate the electromagnetic field in high-temperature superconductor.
     2. some neural network models are proposed for computing some eigenvaluesproblems of normal matrices, and also extended to arbitary real matrices eigenvaluesproblems by matrix norm reducing technique, a complex nueral network model is setupto calculate the modulus largest eigenvector and the corresponding eigenvalue, in thesame time the convergency is improved also. these methods can be applied to the studyof stability problems from numerical computation of Ginzburg-Landau equations infull-wave analysis.
     3. The finite difference numerical solution for the GL equations is studied,including finite difference discrete approximation of the GL equations, treatment ofboundary conditions of the two GL equations discretized by finite difference, the Newton iteration method for solving system of linear equations produced by GLequations' discretization, and internal and boundary field interpolation algorithm.
     4. Full-wave simulation is conducted for superconducting thin film transmissionline by the combination of FDTD method and GL equations numerical solution. Thecurrent density distribution is analyzed when different power is transmitted. Thetransition point of power needed for the transition between low-loss superconductingstate to the high loss state is estimated in the situation of different linewidth.
     5. Experiments are designed to mearsure the power nonlinear propagationproperties of high-temperature superconductor coplanar waveguide transmission line.The estimation for the power transition point is verifying by full-wave analysis. Themeasurements show that the estimation is close to the tested value, and this proves thatfull-wave analysis is effective, we also find that transmission line method for measuringsurface resistance is failure.
引文
[1] D Oates, M Hein, P Hirst, et al. Nonlinear microwave surface impedance of YBCO films: latestresults and present understanding[J]. Physica C: Superconductivity,2002,372:462-468
    [2] H Xin, D Oates, G Dresselhaus, et al. Third-order intermodulation distortion in YBa2Cu3O7-δgrain boundaries[J]. Physical Review B,2002,65(21):214533
    [3] D Dimos, P ChaudhariJ Mannhart. Superconducting transport properties of grain boundaries inYBa2Cu3O7bicrystals[J]. Physical Review B,1990,41(7):4038
    [4] M A Hein, R Humphreys, P Hirst, et al. Nonlinear microwave response of epitaxial YBaCuOfilms of varying oxygen content on MgO substrates[J]. Journal of Superconductivity,2003,16(5):895-904
    [5] C Collado, J Mateu, J M O'Callaghan. Nonlinear simulation and characterization of deviceswith HTS transmission lines using harmonic balance algorithms[J]. Applied Superconductivity,IEEE Transactions on,2001,11(1):1396-1399
    [6] P Lahl, R Wordenweber. Fundamental microwave-power-limiting mechanism of epitaxialhigh-temperature superconducting thin-film devices[J]. Journal of Applied Physics,2005,97(11):113911-113911-11
    [7] B Abdo, E Arbel-Segev, O Shtempluck, et al. Observation of bifurcations and hysteresis innonlinear NbN superconducting microwave resonators[J]. Applied Superconductivity, IEEETransactions on,2006,16(4):1976-1987
    [8]沈致远,盛克敏,王素玉.高温超导微波电路[M].北京:国防工业出版社,2000:24-60
    [9] G C Liang, D Zhang, C F Shih, et al. High-power HTS microstrip filters for wirelesscommunication. Microwave Theory and Techniques[J]. IEEE Transactions on,1995,43(12):3020-3029
    [10] S Pal, M J Lancaster, R D Norrod. HTS bandstop filter for radio astronomy[J]. Microwave andWireless Components Letters, IEEE,2012,22(5):236-238
    [11]曾成,罗正祥,羊恺.高温超导微波延迟线研究进展[J].低温与超导,2006,34(001):56-58
    [12] G P Srivastava, M V Jacob, M Jayakumar, et al. Analysis of superconducting microstripresonator at various microwave power levels[J]. AIP,1997,81(9):6272-6276
    [13] J M Pond, C M Krowne, W L Carter. On the application of complex resistive boundaryconditions to model transmission lines consisting of very thin superconductors[J]. MicrowaveTheory and Techniques, IEEE Transactions on,1989,37(1):181-190
    [14] O Baiocchi, K-S Kong, H Ling, et al. Effects of superconducting losses in pulse propagation onmicrostrip lines[J]. Microwave and Guided Wave Letters, IEEE,1991,1(1):2-4
    [15] A Lavrinovich, E Khramota, N T Cherpak. Investigation of the superconducting microwavetransmission line in strong electromagnetic fields[J]. Telecommunications and RadioEngineering,2009,68(19):1741-1750
    [16] O G Vendik, I B VendikT B Samoilova. Nonlinearity of superconducting transmission line andmicrostrip resonator[J]. IEEE,1997:173-178
    [17] H Xin, D E Oates, A Anderson, et al. Comparison of power dependence of microwave surfaceresistance of unpatterned and patterned YBCO thin film[J]. Microwave Theory and Techniques,IEEE Transactions on,2000,48(7):1221-1226
    [18] Q Du. Global existence and uniqueness of solutions of the time-dependent GL model forsuperconductivity[J]. Applicable Analysis,1994,53:1-17
    [19] M W Coffey and J R Clem. Magnetic field dependence of RF surface impedance[J]. Magnetics,IEEE Transactions on,1991,27(2):2136-2139
    [20] E Gaganidze and J Halbritter. Intrinsic and extrinsic surface impedance of HTS: T-andH-dependencies[J]. Applied Superconductivity, IEEE Transactions on,2003,13(2):344-347
    [21] J H Oates, R T Shin, D E Oates, et al. A nonlinear transmission line model for superconductingstripline resonators[J]. Applied Superconductivity, IEEE Transactions on,1993,3(1):17-22
    [22] C Collado, J Mateu, J Parron, et al. Harmonic balance algorithms for the nonlinear simulationof HTS devices[J]. Journal of Superconductivity,2001,14(1):57-64
    [23] H Ghamlouche, M Benkraouda, M Hussein, et al. Microwave characterization of high-Tcsuperconducting microstrip line using FDTD technique[C]. Microwave Conference, APMC2006, Asia-Pacific,2006:1268-1271
    [24] V Van, S K Chaudhuri. Finite-difference analysis of nonlinear HTS microwave structures usingthe London equations[C]. Microwave Symposium Digest,1999IEEE MTT-S International,1385-1388
    [25]杨时红,胡来平,丁小杰等.100ns高温超导延迟线[J].低温与超导,2009,37(006):22-25
    [26] Q Du, M D Gunzburger, J S Peterson. Solving the GL equations by finite-element methods[J].Physical Review B,1992,46(14):9027
    [27] J C Booth, D A Rudman, R H Ono. A self-attenuating superconducting transmission line for useas a microwave power limiter[J]. Applied Superconductivity, IEEE Transactions on,2003,13(2):305-310
    [28] V Keis, A Kozyrev, T Samoilova, et al. High speed microwave filter-limiter based on high-Tcsuperconducting films[J]. Electronics Letters,1993,29(6):546-547
    [29] O Vendik, M Gaidukov, S Kolesov, et al. Microwave signal limiters and commutators based onsuperconducting films[C]. Microwave Conference,21st European,1991:72-92
    [30] J C Booth, K Leong, S A Schima. A superconducting microwave power limiter forhigh-performance receiver protection[C]. Microwave Symposium Digest, IEEE MTT-SInternational,2004:139-142
    [31] O G Vendik, I B Vendik, T B Samoilova. Nonlinearity of superconducting transmission line andmicrostrip resonator[J]. IEEE,1997:173-178
    [32] M A F Megahed. Analysis and modeling of linear and nonlinear microwave superconductingdevices[D]. Arizona State University,1995:30-80
    [33] M Nisenoff, D U Gubser, S A Wolf, et al. High-temperature superconductivity spaceexperiment[C]. Proc Int-DL Tentative,1992:2-7
    [34] J Ritter, M Nisenoff, G Price, et al. High temperature superconductivity space experiment(HTSSE)[J]. Magnetics, IEEE Transactions on,1991,27(2):2533-2536
    [35] G W Mitschang. Space applications and implications of high temperature superconductivity[J].Applied Superconductivity, IEEE Transactions on,1995,5(2):69-73
    [36] M Nisenoff, W J Meyers. On-orbit status of the high temperature superconductivity spaceexperiment[J]. Applied Superconductivity, IEEE Transactions on,2001,11(1):799-805
    [37] Klein, N., et al., Properties and applications of HTS-shielded dielectric resonators: astate-of-the-art report. Microwave Theory and Techniques[J]. IEEE Transactions on,1996.44(7):1369-1373
    [38] R R Mansour, S Ye, V Dokas, et al. Design considerations of superconductive inputmultiplexers for satellite applications[J]. Microwave Theory and Techniques, IEEETransactions on,1996,44(7):1213-1228
    [39] K Raihan, R Alvarez, J Costa, et al. Highly selective HTS band pass filter with multipleresonator cross-couplings[C]. Microwave Symposium Digest. IEEE MTT-S International,2000:661-664
    [40] G Tsuzuki, M Suzuki, N Sakakibara. Superconducting filter for IMT-2000band[J]. MicrowaveTheory and Techniques, IEEE Transactions on,2000,48(12):2519-2525
    [41] R Mansour, V Dokas, G Thomson, et al. A C-band superconductive input multiplexer forcommunication satellites[J]. Microwave Theory and Techniques, IEEE Transactions on,1994,42(12):2472-2479
    [42] W G Lyons, D R Arsenault, A C Anderson, et al. High temperature superconductive widebandcompressive receivers[J]. Microwave Theory and Techniques, IEEE Transactions on,1996,44(7):1258-1278
    [43] Q Du. Finite element methods for the time-dependent GL model of superconductivity[J].Computers&Mathematics with Applications,1994,27(12):119-133
    [44] Q Tang, S Wang. Time dependent GL equations of superconductivity[J]. Physica D: NonlinearPhenomena,1995,88(3):139-166
    [45] M Machida, H Kaburaki. Direct simulation of the time-dependent GL equation for type-IIsuperconducting thin film: Vortex dynamics and VI characteristics[J]. Physical Review letters,1993,71(19):3206-3209
    [46] P Sánchez-LoteroJ Palacios. Solutions of the Ginzburg–Landau functional with a currentconstraint[J]. Physica C: Superconductivity,2004,404(1):326-329
    [47] E Abrahams, T Tsuneto. Time variation of the GL order parameter[J]. Physical Review,1966,152(1):416
    [48] N Galbreath, W Gropp, D Gunter, et al. Parallel solution of the three-dimensionaltime-dependent GL equation[J]. Argonne National Lab., IL (United States),1996:30-34
    [49] B Fjordb ge, P Lindelof. Analog computer simulation of the time-dependent GL equations usedto describe dynamic properties of superconducting microbridges[J]. Journal of LowTemperature Physics,1978,31(1):83-92
    [50] P Bauman, H Jadallah, D Phillips. Classical solutions to the time-dependent Ginzburg–Landauequations for a bounded superconducting body in a vacuum[J]. Journal of MathematicalPhysics,2005,46:095104
    [51] L Gorkov, G Eliashberg. Generalization of the GL equations for non-stationary problems in thecase of alloys with paramagnetic impurities[J]. SOV PHYS JETP,1968,27(2):328-334
    [52] T Samoilova. Non-linear microwave effects in thin superconducting films[J]. SuperconductorScience and Technology,1999,8(5):259
    [53]王华兵,许伟伟,程其恒.高温超导体Josephson结90GHz谐波混频[J].科学通报,1993,38(7):687-689
    [54]林坤,许伟伟,杨健等.高温超导混频器变频效率的特性分析[J].低温物理学报,2008,30(4):326-329
    [55] I Siddiqi, R Vijay, F Pierre, et al. RF-driven Josephson bifurcation amplifier for quantummeasurement[J]. Physical Review Letters,2004,93(20):1-4
    [56]刘淑芳,官伯然.高温超导薄膜非线性特性研究[C].全国微波毫米波会议论文集,2003:1145-1147
    [57] R L Higdon. Absorbing boundary conditions for difference approximations to themulti-dimensional wave equation[J]. Mathematics of Computation,1986.437-459
    [58] Du, Q, M Gunzburger, and J Peterson, Finite element approximation of a periodic GL model fortype-II superconductors[J]. Numerische Mathematik,1993.64(1): p.85-114.
    [59] Y Huang, W Xue. Convergence of finite element approximations and multilevel linearization forGinzburg–Landau model of d-wave superconductors[J]. Advances in Computational Mathematics,2002,17(4):309-330
    [60] W K Chan. Analysis and approximation of a two-band GL model of superconductivity[M].ProQuest,2007:80-120
    [61] K Binder. Time-dependent GL theory of nonequilibrium relaxation[J]. Physical Review B,1973,8(7):3423
    [62]补世荣.高温超导薄膜微波强非线性理论及应用研究[D].成都:电子科技大学,2009:24-50
    [63] R R Mansour, B Jolley, S Ye, et al. On the power handling capability of high temperaturesuperconductive filters[J]. Microwave Theory and Techniques, IEEE Transactions on,1996,44(7):1322-1338
    [64] R R Mansour, B Jolley, S Ye, et al. On the power handling capability of high temperaturesuperconductive filters[J]. Microwave Theory and Techniques, IEEE Transactions on,1996,44(7):1322-1338
    [65] G L Matthaei, B A Willemsen, E M Prophet, et al. Zig–Zag-Array Superconducting Resonatorsfor Relatively High-Power Applications[J]. Microwave Theory and Techniques, IEEETransactions on,2008,56(4):901-912
    [66] S M El-Ghazaly, R B Hammond, T Itoh. Analysis of superconducting microwave structures:Application to microstrip lines[J]. Microwave Theory and Techniques, IEEE Transactions on,1992,40(3):499-508
    [67] A C Anderson, H Wu, Z Ma, et al. Transmit filters for wireless basestations[J]. AppliedSuperconductivity, IEEE Transactions on,1999,9(2):4006-4009
    [68] I Vendik, V Kondratiev, D Kholodniak, et al. High-temperature superconductor filters:modeling and experimental investigations[J]. Applied Superconductivity, IEEE Transactions on,1999,9(2):3577-3580
    [69] I Vendik, V Kondratiev, D Kholodniak, et al. High-temperature superconductor filters:modeling and experimental investigations[J]. Applied Superconductivity, IEEE Transactions on,1999,9(2):3577-3580
    [70] Z Xiongfei, B Shirong, L Zhengxiang, et al. The power-dependent test of high temperaturesuperconductor CPW transmission line[C]. Electronic Measurement&Instruments (ICEMI),201110th International Conference on,188-191
    [71] J Mateu, C Collado, J M O'Callaghan. Nonlinear model of coupled superconducting lines[J].Applied Superconductivity, IEEE Transactions on,2005,15(2):976-979
    [72] Q Du, M D GunzburgerJ S Peterson. Solving the GL equations by finite-element methods[J].Physical Review B,1992,46(14):9027
    [73] J Wosik, L-M Xie, J Miller Jr, et al. Thermally-induced nonlinearities in the surface impedanceof superconducting YBCO thin films[J]. Applied Superconductivity, IEEE Transactions on,1997,7(2):1470-1473
    [74] E Rocas, C Collado, J Mateu, et al. Modeling of self-heating mechanism in the design ofsuperconducting limiters[J]. Applied Superconductivity, IEEE Transactions on,2011,21(3):547-550
    [75] M A Megahed, S El-Ghazaly. Full-wave nonlinear analysis of microwave superconductordevices: application to filters[C]. Microwave Symposium Digest,1995., IEEE MTT-SInternational,1265-1268
    [76]廖红印.基于含时GL模型的超导涡旋动力学研究[D].上海:上海大学,2004:22-30
    [77] S AttallahK Abed-Meraim. A fast adaptive algorithm for the generalized symmetric eigenvalueproblem[J]. Signal Processing Letters, IEEE,2008,15:797-800
    [78] T Laudadio, N Mastronardi, M Van Barel. Computing a lower bound of the smallest Eigenvalueof a symmetric positive-definite toeplitz matrix[J]. Information Theory, IEEE Transactions on,2008,54(10):4726-4731
    [79] J Shawe-Taylor, C K Williams, N Cristianini, et al. On the eigenspectrum of the Gram matrixand the generalization error of kernel-PCA[J]. Information Theory, IEEE Transactions on,2005,51(7):2510-2522
    [80] D Q Wang, M Zhang. A new approach to multiple class pattern classification with randommatrices[J]. Advances in Decision Sciences,2005(3):165-175
    [81] M R Bastian, J H GuntherT K Moon. A simplified natural gradient learning algorithm[J].Advances in Artificial Neural Systems,2011:1-9
    [82] T H Le. Applying artificial neural networks for face recognition[J]. Advances in ArtificialNeural Systems,2011:1-15
    [83] J A Svigelj, R Mittra. The dispersive boundary condition applied to nonuniform orthogonalmeshes. Microwave Theory and Techniques[J], IEEE Transactions on,1999,47(3):257-264
    [84] Z Bi, K Wu, C Wu, et al. A dispersive boundary condition for microstrip component analysisusing the FD-TD method[J]. Microwave Theory and Techniques, IEEE Transactions on,1992,40(4):774-777
    [85] J S Hong. Microstrip filters for RF microwave applications[M]. New York: Wiley,2001:78-79
    [86]甘体国.毫米波工程[M].成都:电子科技大学出版社,2006:25-27
    [87]阮成礼,悬置共面波导的基本参数[J].电子科学学刊,2000,22(4):632-638
    [88]阮成礼,悬置共面波导的特性阻抗[J].电子科技大学学报,1999,28(1):32-36
    [89] F Alessandri. Theoretical and experimental characterization of nonsymmetrically shieldedcoplanar waveguides for millimeter-wave circuits[J]. Microwave Theory and Techniques, IEEETransactions on,1989.37(12):2020-2027.
    [90] A Taflove, S C Hagness. Computational Electrodynamics[M]. Boston\London: Artech house,2000:67-174
    [91]曾光.椭圆型方程的数值解法与稳定性分析[D].成都:电子科技大学,2011:53-71
    [92] X Zou, Y Tang, S Bu, et al. Neural-network-based approach for extracting eigenvectors andeigenvalues of real normal matrices and some extension to real matrices[J]. Journal of AppliedMathematics,2013:1-13
    [93] K Veselic. On a class of Jacobi-like procedures for diagonalising arbitrary real matrices [J].Numer. Math.1979,33:157-172
    [94] T Kako, Y Ohi. Numerical method for wave propagation problem by FDTD method with PML.Domain Decomposition Methods in Science and Engineering XVII,2008:551-558
    [95]杜道鹏,高卫东李乐.基于FDTD的DGS微带线特性分析[J].雷达科学与技术,2008,6(5):391-395
    [96]尹家贤,谭怀英. FDTD中的微带线激励源分析[J].国防科技大学学报,2000,22(5):60-63
    [97] M Celuch-Marcysiak, A Kozak, W Gwarek. A new efficient excitation scheme for the FDTDmethod based on the field and impedance template[C]. Antennas and Propagation SocietyInternational Symposium,1996. AP-S. Digest,1296-1299
    [98] A Van der Sluis. Perturbations of eigenvalues of non-normal matrices[J]. Communications of theACM,1975,18(1):30-36
    [99] A Taflove, K Umashankar. The finite-difference time-domain (FD-TD) method forelectromagnetic scattering and interaction problems[J]. Journal of Electromagnetic Waves andApplications,1987,1(3):243-267
    [100] M Okoniewski, E Okoniewska, M A Stuchly. Three-dimensional subgridding algorithm forFDTD[C]. Antennas and Propagation, IEEE Transactions on,1997,45(3):422-429
    [101] S Xiao, R Vahldieck, H Jin. Full-wave analysis of guided wave structures using a novel2-DFDTD[J]. Microwave and Guided Wave Letters, IEEE,1992,2(5):165-167
    [102] R M Joseph, A Taflove. FDTD Maxwell's equations models for nonlinear electrodynamics andoptics[J]. Antennas and Propagation, IEEE Transactions on,1997,45(3):364-374
    [103] V Van, S K Chaudhuri. A hybrid implicit-explicit FDTD scheme for nonlinear opticalwaveguide modeling[J]. Microwave Theory and Techniques, IEEE Transactions on,1999,47(5):540-545
    [104] A P Zhao, A V RaisanenS R Cvetkovic. A fast and efficient FDTD algorithm for the analysis ofplanar microstrip discontinuities by using a simple source excitation scheme[J]. Microwave andGuided Wave Letters, IEEE,1995,5(10):341-343
    [105] T ArimaT Uno. Modification of FDTD method for highly accurate analysis of microstrip linesusing quasi-static approximation[C]. Antennas and Propagation Society InternationalSymposium, IEEE,2006:2771-2774
    [106] A N Mahmoud, A Mitkees, H Elmikati. FDTD analysis of open-end microstrip transmissionline fabricated on a nonreciprocal ferrite substrate[C]. Radio Science Conference,2001. NRSC,Proceedings of the Eighteenth National,2001:45-53
    [107] Z Liu, A S MohanT Aubrey. EM ccattering using nonuniform mesh FDTD, PML and Mur'sABC[J]. Electromagnetics,1996,16(4):341-358
    [108] A Zhao. Efficient FDTD algorithm for the analysis of structures with symmetrical planes usingnonuniform orthogonal mesh and Mur's second‐o rder ABC[J]. Microwave and OpticalTechnology Letters,1999,23(6):381-383
    [109] B R Armenta, C D Sarris. A general method for introducing nonuniform grids into high-orderFDTD methods: formulation and microwave applications [J]. Microwave Symposium Digest,IEEE,2008:1365-1368
    [110] T Manteuffel, A WHITEJ W B. The numerical solution of second-order boundary valueproblems on nonuniform meshes[J]. Mathematics of Computation,1986,47(176):511-535
    [111] R B Armenta, C D Sarris. A general method for introducing nonuniform grids into high-orderFDTD methods: Formulation and microwave applications[C]. Microwave Symposium Digest,2008IEEE MTT-S International,1365-1368
    [112] Y WATANABE, T UCHIDA, C MIYAZAKI, et al. Calculation of Shielding Effectivenessusing Non-Uniform Mesh FDTD Method[J]. IEICE,2009(23):513-516
    [113] M Falconer, V Tripathi. Second order nonuniform grid spacing in the FDTD technique[C].Microwave Symposium Digest, IEEE MTT-S International,1997:1539-1542
    [114] P Monk, E Süli. A convergence analysis of Yee's scheme on nonuniform grids[J]. SIAMjournal on numerical analysis,1994,31(2):393-412
    [115] R B Armenta, C D Sarris. Introducing nonuniform grids into the FDTD solution of thetransmission-line equations by renormalizing the per-unit-length parameters[J].Electromagnetic Compatibility, IEEE Transactions on,2009,51(3):818-824
    [116] U O uz, L Gürel. Interpolation techniques to improve the accuracy of the plane waveexcitations in the finite difference time domain method[J]. Radio Science,1997,32(6):2189-2199
    [117] G Marrocco, M SabbadiniF Bardati. A dielectric linear interpolation for FDTD solutions[C].Antennas and Propagation Society International Symposium, IEEE,1997Digest:376-379
    [118] I W Sudiarta, D W Geldart. Solving the Schr dinger equation using the finite difference timedomain method[J]. Journal of Physics A: Mathematical and Theoretical,2007,40(8):1885
    [119] B Engquist, A Majda. Absorbing boundary conditions for numerical simulation of waves[J].Proceedings of the National Academy of Sciences,1977,74(5):1765-1766
    [120] Z Bi, K Wu, C Wu, et al. A dispersive boundary condition for microstrip component analysisusing the FD-TD method[J]. Microwave Theory and Techniques, IEEE Transactions on,1992,40(4):774-777
    [121] X Gao, K E Khamlichi, D Fontaine. Comparison of absorbing boundary conditions formicro-strip circuit using FDTD method[C]. Electromagnetic Compatibility,2003. EMC'03.2003IEEE International Symposium on,802-805
    [122] R L Higdon. Numerical absorbing boundary conditions for the wave equation[J]. Math. Comp,1987,49(179):65-90
    [123] L N Trefethen, L Halpern. Well-posedness of one-way wave equations and absorbing boundaryconditions[J]. Mathematics of Computation,1986,47(176):421-435
    [124] G Mur. Absorbing boundary conditions for the finite-difference approximation of thetime-domain electromagnetic-field equations. Electromagnetic Compatibility[J], IEEETransactions on,1981(4):377-382
    [125] V Betz, R Mittra. Comparison and evaluation of boundary conditions for the absorption ofguided waves in an FDTD simulation[J]. Microwave and Guided Wave Letters, IEEE,1992,2(12):499-501
    [126] J T Fessler. Analysis of planar microstrip structures using the finite-difference time-domainmethod[J], spring,1996
    [127] G Sinmazcelik. Dispersive and Mur boundary conditions for microstrip component analysisusing3D-fdtd method[C]. Computational Electromagnetics and Its Applications,1999.Proceedings.(ICCEA'99) International Conference on,1999:74-77
    [128]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2002:45-97
    [129] C Peng, F Shao-jun. A novel mixed FDTD absorbing boundary condition based on mur andPML[C]. Antennas Propagation and EM Theory (ISAPE),9th International Symposium on,2010:791-793
    [130] X Dong, W-Y YinY-B Gan. Perfectly matched layer implementation using bilinear transformfor microwave device applications[J]. Microwave Theory and Techniques, IEEE Transactionson,2005,53(10):3098-3105
    [131] L Bernard, R R TorradoL Pichon. Efficient implementation of the UPML in the generalizedfinite-difference time-domain method[J]. Magnetics, IEEE Transactions on,2010,46(8):3492-3495
    [132] H Jiang, K Tsunekawa. Proposal of non-uniform mesh FDTD with uniaxial PML (UPML)[C].Wireless Communication Technology. IEEE Topical Conference on,2003:412-415
    [133] X Zou, Y Tang, S Bu, et al. Neural-network-based approach for extracting eigenvectors andeigenvalues of real normal matrices and some extension to real matrices[J]. Journal of AppliedMathematics,2013:1-13
    [134] Y Xia. An extended projection neural network for constrained optimization[J]. NeuralComputation,2004,16(4):863-883
    [135] Y Xia, J Wang. A recurrent neural network for solving nonlinear convex programs subject tolinear constraints[J]. Neural Networks, IEEE Transactions on,2005,16(2):379-386
    [136] T Voegtlin. Recursive principal components analysis[J]. Neural Networks,2005,18(8):1051-1063
    [137] J Qiu, H Wang, J Lu, et al. Neural Network Implementations for PCA and Its Extensions[J].ISRN Artificial Intelligence,2012:1-19
    [138] H Liu, J Wang. Integrating independent component analysis and principal component analysiswith neural network to predict Chinese stock market[J]. Mathematical Problems in Engineering,2011:1-15
    [139] F L Luo, R Unbehauen A Cichocki. A minor component analysis algorithm[J]. NeuralNetworks,1997,10(2):291-297
    [140] G H Golub, C F Van Loan. Matrix computations[M]. Baltimore: JHUP,2012:40-60
    [141] C C V P Roychowdhury. Self-organizing and adaptive algorithms for generalizedeigen-decomposition[C]. Advances in Neural Information Processing Systems9: Proceedingsof the1996Conference on Neural Information Held in Denver,1996:1518-1530
    [142] H KakeyaT Kindo. Eigenspace separation of autocorrelation memory matrices for capacityexpansion[J]. Neural Networks,1997,10(5):833-843
    [143] Y Liu, Z YouL Cao. A functional neural network for computing the largest moduluseigenvalues and their corresponding eigenvectors of an anti-symmetric matrix[J].Neurocomputing,2005,67:384-397
    [144] Y Liu, Z YouL Cao. A recurrent neural network computing the largest imaginary or real part ofeigenvalues of real matrices[J]. Computers&Mathematics with Applications,2007,53(1):41-53
    [145] Y Liu, Z You, L Cao. A recurrent neural network computing the largest imaginary or real partof eigenvalues of real matrices[J]. Computers&Mathematics with Applications,2007,53(1):41-53
    [146] E Oja. Principal components, minor components, and linear neural networks[J]. NeuralNetworks,1992,5(6):927-935
    [147] R Perfetti, E Massarelli. Training spatially homogeneous fully recurrent neural networks ineigenvalue space[J]. Neural Networks,1997,10(1):125-137
    [148] L Xu, E Oja, C Y Suen. Modified Hebbian learning for curve and surface fitting[J]. NeuralNetworks,1992,5(3):441-457
    [149] Q Zhang, Y W Leung. A class of learning algorithms for principal component analysis andminor component analysis[J]. Neural Networks, IEEE Transactions on,2000,11(2):529-533
    [150] Z Yi, Y Fu, H J Tang. Neural networks based approach for computing eigenvectors andeigenvalues of symmetric matrix[J]. Computers&Mathematics with Applications,2004,47(8):1155-1164
    [151] L Mirsky. On the minimization of matrix norms[J]. Amer. Math. Monthly,1958,65(2):106-107
    [152] C Huang, R Gregory. A norm-reducing Jacobi-like algorithm for the eigenvalues of non-normalmatrices[C]. Numerical Methods, Colloq. Math. Soc. Janos Bolyai, Keszthely, Hungary,1977:1-3
    [153] I Kiessling, A Paulik. A norm-reducing Jacobi-like algorithm for the eigenvalues ofnon-normal matrices[J]. Journal of Computational and Applied Mathematics,1982,8(3):203-207
    [154]张裕恒.超导物理[M].合肥:中国科学技术大学出版社,2009:110-134
    [155]陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社,2004:16-140
    [156] Z Xiongfei, B Shirong, L Zhengxiang, et al. FDTD calculation of the current distribution ofmicrostrip transmission line circuits[C]. Computational Problem-Solving (ICCP),2012International Conference on,245-247
    [157] R Pregla. Analysis of electromagnetic fields and waves: the method of lines[M]. West Sussex:Wiley,2008:460-476
    [158] G Ghione, C U Naldi. Coplanar waveguides for MMIC applications: Effect of upper shielding,conductor backing, finite-extent ground planes, and line-to-line coupling. Microwave Theoryand Techniques, IEEE Transactions on,1987,35(3):260-267
    [159]林成森.数值计算方法[M].北京:科学出版社,2004:90-120
    [160] J H Mathews, K D Fink,陈渝.数值方法: MATLAB版[M].北京:电子工业出版社,2002:35-60
    [161]曾成,罗正祥,张其劭等.镜像法高温超导薄膜表面电阻测试装置的改进[J].电子科技大学学报,2009,38(2):214-217

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700