用户名: 密码: 验证码:
绿洲农田表层掺砂、覆砂对土壤水盐运移的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]
     针对西北干旱区绿洲农田拉砂改土这一改良特点,本研究通过室内模拟试验研究了不同的掺砂量和覆砂厚度下土壤水分常数、土壤入渗、入渗后的蒸发、毛管水运动、潜水蒸发、次生盐渍化形成及其蒸发后盐分迁移特征,分析了掺砂量和覆砂厚度对土壤水盐运移的影响和机制,旨在为干旱区绿洲农田表层掺砂和覆砂的层状土水盐运移提供提供理论依据和实践指导。
     [方法]
     1.室内测定土壤掺砂后的水分常数。
     2.通过室内土柱模拟试验,研究掺砂量、覆砂厚度对土壤入渗特性的影响,并对掺砂和覆砂作对比分析。
     3.通过室内土柱模拟试验,研究掺砂量、覆砂厚度对微咸水入渗后的蒸发特性和盐分迁移的影响,并对掺砂和覆砂作对比分析。
     4.通过室内土柱模拟试验,研究掺砂量、覆砂厚度对潜水蒸发特性和盐分迁移的影响,并对掺砂和覆砂作对比分析。
     [结果]
     1.土壤的饱和导水率随着掺砂量的增加而增加,两者之间符合指数函数;土壤饱和含水量、毛管持水量、田间持水量均随着掺砂量的增加而减小,均符合线性关系;非毛管孔隙度在掺砂0%~75%递减线性关系,掺砂量超过75%时,变化不大;出水率随掺砂量呈“U”字形规律。
     2.土壤表层掺砂、覆砂对土壤入渗性能相反,掺砂(除100%)可以促进土壤入渗能力,随着掺砂量的增加,入渗能力增强,且提高了掺砂层下含水量;而覆砂相反,起抑制作用,随覆砂厚度的增加,抑制力减弱。本研究条件下Philip与Kostiakov入渗模型均有很好的拟合精度,相比之下,Kostiakov入渗模型更好。
     3.掺砂、覆砂对土壤的蒸发能力均有抑制作用,随着掺砂量的增加和覆砂厚度的增加,抑制能力加强,且覆砂比掺砂的抑制效率更高。在蒸发历时20天内,均质土和掺砂处理的累积蒸发量与时间的关系可用Rose公式描述;而覆砂处理均可用线性方程描述。
     4.掺砂显著地抑制了土壤毛管水上升速度和地下水补给量,随着掺砂量的增加,抑制加强,掺砂层的毛管水上升高度与时间符合幂函数关系。
     5.掺砂、覆砂对土壤的潜水蒸发能力均有抑制作用,随着掺砂量的增加和覆砂厚度的增加,抑制能力加强,且同一用砂量的覆砂比掺砂的抑制效率更高。通过对累积蒸发量和蒸发时间之间的关系拟合,0%(对照,0cm)~50%掺砂处理均可二项式公式描述;覆砂处理和75%与100%掺砂均均可用线性方程描述。
     6.在次生盐渍化形成过程中,无地下水时,微咸水灌溉带入盐分,蒸发后盐分呈现出“C”字型,表层积累显著;有地下水时,蒸发后十壤剖面盐分分布呈“Г”字型,表层强烈积累,表层盐分(0~1 cm)随着累积蒸发量的增加而增加。
     7.无论有无地下水位的影响,土壤表层掺砂、覆砂对土壤表层的盐分积累具有较强的抑制作用。随着掺砂量和覆砂厚度的增加抑制力加强,且覆砂抑盐效果显著高于掺砂的抑盐作用。入渗后的蒸发盐分分布呈“C”字型,而潜水蒸发中均质土和掺砂处理的盐分分布潜水蒸发盐分分布呈“Г”字型,砂层的存在使盐分在砂土界面附近有较高的含量。无论有无地下水的影响,土壤表层掺砂、覆砂及其相应的累积蒸发量与表层电导率之间的关系均可用相应的拟合方程描述。[结论]
     1.土壤掺砂对水分常数有显著地影响。
     2.土壤表层掺砂能促进入渗,而覆砂则抑制入渗。
     3.无论有无地下水位,土壤表层掺砂、覆砂均能抑制士壤蒸发和盐分表聚,覆砂的效果要好于掺砂。
[Object] Soil texture improvemtne by sand addition is tranditional way and one of widely used strategy in soil amendment, and always being pay attention to in the past years in Northwest arid region. However little is knowen about the effects of sand addition on soil water movement and soil salt distribution. In present research, simulating experiments were conducted to study the effects of sand mixed and sand mulch on soil water infiltration, evaporation after infiltration, capillary water movement, process of soil second salinization, phreatic evaporation and water and the characteristics of salt movement after evaporation. Meanwhile, severl soil moisture constants (Soil saturated conductivity, soil saturated moisture, soil capicillty moisture and field water) were also investigated, the impact and mechanisum of sand mixing rate and sand mulching thickness on soil water and salt movemtment were analysied. This study is aim to find a practical and efficient way in increasing water utility efficiency and preventing from soil secondary satilization in layered soil, morever it also provide an profound knowledge about sand mixing rate and sand mulching thickness on soil salt and water movement sand in arid area.
     [Method]
     1. Soil moisture constants was determinded in labarotary condition.
     2. The impacts of mixing rate of sand and sand mulching thickness on soil infiltration characteristics were evaluated by soil cylinder simulating experiment in labarotary condition.
     3. The influence of sand mixing rate and sand mulching thickness on characteristics of soil evaporation after infiltration and salt distribution in different soil lays were meatured by means of soil cylinder simulating methds in labarotary condition.
     4. The effects of mixing rate of sand and sand mulching thickness on characteristics of soil phreatic evaporation and salt accumulation in soil profile as well were also analysised by means of soil cylinder simulating methds in labarotary condition.
     [Results]
     1.The saturated hydraulic conductivity increased with the increasing sand mixing rate, the relationship between them fitting with exponential function. Soil field capacity, capillary water capacity and saturated water capacity decreased with the increasing sand mixing rate, and the relationship between them fitting with linear function. The non-capillary pororisty decreased with the increasing sand mixing rate varied from 0% to 75%, however, the trend became gradually placid when sand mixing rate beyond 75%. "U" shape figure could be well characterization between drainage rate and sand mixing rate.
     2. Sand mixed with surface soil has a significant effect on increasing water infiltration capacity, the more mixing rate of sand (except 100%), the greater infiltration capacity obtained, and the higher soil water moistrue under the layer of sand observed. Compared with the method of sand mixed, sand mulching exerted a negative impact on soil water infiltration capacity. Through fitting parameters of Philip infiltration model and Kostiakov infiltration model, it is observed that both infiltration modeles could be used to exhibition the relationship between cumulative infiltration and time, in contrast with Philip model, Kostiakov model showed considerably fitting effect.
     3. Sand mixed and sand mulch could efficiently inhibit soil evaporation collectively, the more mixing rate of sand and sand mulching thickness, the stronger inhibition effect were founded, and the inhibition capacity is more obvious than sand mixed. The relationship between cumulative soil water evaporation of sand mixed and homogeneous soil and time could be described by the Rose experience function, but the relationship between cumulative soil water evaporation of sand mulch and time could be depicted by the linear function during the continuous evaporation experiment conducted days (20 d).
     4. Sand mixed had detrimental impact on upper soil capillary water and groundwater supply quantity, which decreased with increasing sand mixing rate, and the relationship between capillary water height and time could be described by the power function.
     5. The phreatic evaporation was constrained by sand mixed and sand mulch, which decreased with increasing sand mixing rate sand and sand mulching thickness, furthermore the inhibition capacity was weaker under sand mixed treatment than sand mulch. The relationship between cumulative soil water evaporation and time could be described by the linear function under the treatment of sand mulch and mixing rates of 75%,100%. However, the relationship between cumulative soil water evaporation of mixing rates of 0%(check and 0 cm)~50% could be described by the binomial function.
     6. No matter there has groundwater or not, soil salt strongly accumulated in the top-surface soil(0~1 cm) during the process of second salinization. "C" shape could be exhibit soil salt distribution in soil profile layers under evaporation after infiltration with the treatment of slight brackish water supply. Moreover, "г"figure could be employed to describe the charactistic of soil salt distribution in soil profile with groundwater supply, and the soil EC(0~1cm) increased with increased cumulative phreatic evaporation.
     7. Both Sand mixing and sand mulching could substantially inhibit top-surface soil salt accumulation. The inhibition capacity increased with the increment of sand mixing rate and sand mulching thickness. Salt distribution showed "C"figure in soil profile under evaporation after infiltration. However, its showed"г"figure with groundwater supply under the treatment of sand mixed and control. Salt strongly accumulated in the top-surface soil layer under the treatment of sand mixed and control, and higher salt content were observed close to layer of sand. No matter there has groundwater or not, the relationship between sand mixing rate, sand mulching thickness and corresponding cumulative evaporation and EC(0~1 cm) could be described by corresponding function.
     [Conclusion]
     1.Soil mixed with sand exerted significant impact on soil moisture constant.
     2.Sand mixed had a positive effect on water infiltration, however, sand mulch had detrimental influence on infiltration.
     3.Sand mixed and sand mulched both play obvious role on decreasing soil evaporation and salt accumulation of soil surface, relatively, the treatment sand mulched exhibited much more effect than the treatment of sand mixed.
引文
鲍士旦,1999.土壤农化分析[M].中国农业出版社.183-199
    陈志雄,汪仁真,1979.中国几种主要土壤的持水性质[J].土壤学报,16(3):277-281.
    迟春明,王志春,2009.沙粒对碱土饱和导水率和盐分淋洗的影响[J].水土保持学报,23(1):99-102
    杜延珍,1993.砂田在干旱地区的水土保持作用[J].中国水土保持,4:36-39
    冯永军,陈为峰,张蕾娜,张红,2000.滨海盐渍土水盐运动室内实验研究及治理对策[J].农业工程学报,16(3):38-42
    关红杰,冯浩,吴普特,2008.土壤砂砾覆盖对入渗和蒸发的研究进展[J].中国农学通报,24(12):289-293.
    黄昌勇等,1999.土壤学[M].中国农业出版社.89-97,99-111
    纪永福,2000.地面覆盖对盐渍土盐分和水分影响的研究[D].甘肃农业大学硕士学位论文
    解文艳,樊贵盛,2004a.土壤结构对土壤入渗能力的影响[J].太原理工大学学报,35(4):381-384
    解文艳,樊贵盛,2004b.土壤质地对士壤入渗能力的影响[J].太原理工大学学报,35(5):537-540
    赖先齐,2005.中国绿洲农业学[M].中国农业出版社.5-9
    雷志栋,杨诗秀等著,1988.土壤水动力学[M].北京:清华大学出版社.86-92,190-270
    黎立群,1986.盐渍土基础知识[M].科学出版社.3-19
    李雪转,樊贵盛,2006.土壤有机质含量对土壤入渗能力及参数影响的实验研究[J].农业工程学报,22(3):188-190
    李韵珠,1985.蒸发条件下粘土层与士壤水盐运移[C].国际盐渍土改良学术讨论会论文集
    李韵珠,胡克林,2004.蒸发条件下粘土层对土壤水和溶质运移影响的模拟[J].土壤学报,41(8):493-502
    李卓,冯浩,吴普特,赵西宁,郭珍,2009b.砂粒含量对土壤水分蓄持能力影响模拟试验研究[J].水土保持学报,23(3):204-208
    李卓,吴普特,冯浩,赵西宁,黄俊,2009a.不同粘粒含量土壤水分入渗能力模拟试验研究[J].干旱地区农业研究,27(3):71-77
    李卓,吴普特,冯浩,赵西宁,黄俊,庄文化,2009c.容重对土壤水分入渗能力影响模拟试验[J].农业工程学报,25(6):40-45
    梁建林,张梦宇,2008.不同入渗条件下土壤脱盐效果的试验研究[J].灌溉排水学报,27(3):116-117
    蔺海明,1999.干早半干早地区盐渍土的形成与改良[J].世界农业研究,8:23-25
    刘福汉,王遵亲,1993.潜水蒸发条件下不同质地剖面的土壤水盐运动[J].土壤学报,30(2):173-180
    刘广明,杨劲松,2002.土壤蒸发量与地下水作用条件的关系[J].土壤,3:141-144
    刘广明,杨劲松,李冬顺,2001.地下水作用条件下粉砂壤土盐分动态研究[J].土壤学报,38(3):355-372
    刘继龙,张振华,谢恒星等,2007.烟台棕壤土饱和导水率的初步研究[J].农业工程学报,23(11): 129-132
    刘思义,魏由庆,1988.马颊河流域影响土壤盐渍化的几个因素的研究[J].土壤学报,25(2):110-118
    刘新平,韩桐魁,2003.新疆绿洲士地资源可持续利用的生态经济学分析[J].干旱区资源与环境,17:55-59
    鲁如坤,2000.土壤农业化学分析方法[M].中国农业科技出版社.278-284
    罗焕炎,1965.层状土中毛管水上升的实验研究[J].土壤学报,13(3):312-324
    罗家雄,1985.新疆垦区盐碱地改良[M].北京:水利水电出版社,335-337
    罗朋,张富仓,李晓军等,2008.入渗水头对盐碱土水盐运移的试验研究[J].节水灌溉,6:4-11
    马东豪,2005.土壤水盐运移特征研究[D].西安理工大学硕士学位论文.2005
    潘保原,2006.土壤改良物质对盐渍化土壤改良的作用[D].东北林业大学硕士学位论文
    彭达,张爱红,杨家志,2006.广东省林地土壤非毛管孔隙度分布规律初探[J].广东林业科技,22(1):56-59
    蒲金涌,冯建英,姚晓红,2008.甘肃黄土高原土壤农业水分常数分布特征[J].干旱地区农业研究,26(3):205-209
    乔海龙,刘小京,李伟强,黄玮,李存桢,李志刚,2006.秸秆深层覆盖对土壤水盐运移及小麦生长的影响[J].土壤通报,37(5):885-889
    秦耀东,2002.土壤物理学[M].高等教育出版社.19-27,98-124
    邵明安,王全九,黄明斌,2006.土壤物理学[M].北京:高等教育出版社,127-129
    石元春,李韵珠,陆锦文著,1986.盐渍土水盐运动[M].北京:北京农业大学出版社.101-173
    石元春,辛德惠著,1983.黄淮海平原的水盐运动和旱涝碱的综合治理[M].石家庄:河北人民出版社.115-120
    史文娟,2005.蒸发条件下夹砂层土壤水盐运移实验研究[D].西安理工大学博士学位论文
    史文娟,沈冰,汪志荣,王文焰,2006a.高地下水位条件下盐渍土区潜水蒸发特性及计算方法[J].农业工程学报,22(5):32-35
    史文娟,沈冰,汪志荣,王文焰,2006b.层状土壤中砂层层位对潜水蒸发的影响[J].干旱区地理,29(2):282-286
    史文娟,沈冰,汪志荣,王文焰,2007a.层状土壤毛管水最大上升高度分析[J].干旱地区农业研究,25(1):94-97
    史文娟,沈冰,汪志荣,王文焰,2007b.夹砂层状土壤潜水蒸发特性及计算模型[J].农业工程学报,23(2):17-20
    史晓楠,王全九,苏莹,2005.微咸水水质对土壤水盐运移特征的影响[J].干旱区地理,28(4):416-520.
    宋桂龙,韩烈宝,李德颖,2008.不同沙土配比根系层导水特性研究[J].北京林业大学学报,30(4):89-94
    田长彦,周宏飞,刘国庆,2000.21世纪新疆土壤盐渍化调控与农业持续发展研究建议[J].干旱区地理,2(23):177-181
    田盯正誉,1931.士壤と水との关系特に毛管现象及ひ渗透に就いて(其の一其の三)[J].农业土木研究,3(1):1-29
    王全九,邵明安,郑纪勇,2007.土壤中水分运动与溶质迁移[M].中国水利水电出版社.1-3,37-45
    王文焰,王全九,沈冰等,1998.甘肃秦王川地区双层土壤结构的入渗特性[J].土壤侵蚀与水土保持学报,4(2):35-40
    王文焰,张建丰,1992.窑洞民居防渗减灾对策研究[J].灾害学,7(2):64-66
    王遵亲,1993.中国盐渍土[M].北京:科学出版社.250-311
    杨来胜,席正英,李玲,张显,2005.砂田的发展及其应用研究[J].甘肃农业,7:72
    杨柳青,1993.绿洲土壤次生盐渍化的发生与防治[J].土壤肥料,5:5-7
    杨明金,张勃,王海军,2009.聚丙烯酰胺和磷石膏对土壤导水性能的影响研究[JJ.土壤通报,40(4):747-750
    杨艳,2006.土壤溶质运移特征实验研究[D].西安理工大学硕士学位论文.2006
    杨艳,王全九,2008.微咸水入渗条件下碱土和盐土水盐运移特征分析[J].水土保持学报,22(1):13-19
    尹娟,费良军,程东娟,2007.均质土壤毛管水上升特性室内试验研究[J].农业工程学报,23(6):91-94
    原翠萍,张心平,雷廷武,刘汗,李鑫,2008.砂石覆盖粒径对土壤蒸发的影响[J].农业工程学报,24(7):25-28
    袁剑舫,1964.土壤水分的蒸发及其影响因素[J].土壤学报,12(4):471-481
    袁剑舫,周月华,1980.粘土夹层对地下水上升运行的影响[J].土壤学报,17(1):94-99
    张凤荣,黄渤,张迪,2001.黄淮海平原粘土层在土系划分中的意义,分类指标和土系初建[J].土壤通报,32(5):197-200
    张红,章光新,杨建锋,杨帆,2008.人工控制潜水位下苏打盐渍土水盐动态分析[J].干旱区资源与环境,22(5):149-154
    张建丰,王文焰,2008.砂层在黄土中发生指流条件的试验研究[J].农业工程学报,24(3):82-86
    张建丰,王文焰,汪志荣,2004.具有夹砂层土壤入渗计算[J].农业工程学报,20(3):27-30
    张力,格日乐,孙保平,2007.庆龙峡荒滩生态治理示范区林地土壤水分林地土壤水分特性的研究[J].水土保持研究,14(6):292-294
    赵锁志,刘丽萍,王喜宽,李世宝,朱锁,张青,王忠,2008.河套灌区地下水临界深度的确定及其意义探讨[J].岩矿测试,(02):108-112
    郑九华,冯永军,于开芹,王兆峰,袁秀杰,2002.7g/L咸水灌溉棉花试验研究[J].灌溉排水,21(3):615-620.
    中国科学院南京土壤研究所土壤物理研究所,1978.编写的土壤物理性质测定法[M].科学出版社.107-121
    邹平,杨劲松,福原辉幸,寺崎宽章,何超,2007.蒸发条件下土壤水盐热运移的实验研究[J].土壤,39(4):615-620.
    Abrahams A. D., Parsons A. J.,1991. Relations between infiltration and stone cover on a semiarid hillsope, southern Arizona[J]. Journal of Hydrology,122:49-59
    Diaz F., Jimenez C. C., Tejedor M.,2005. Influence of the thickness and grain size of tephra mulch on soil water evaporation[J]. Agricultural Water Management,74:47-55
    Gardner W. R., Milton Fireman,1958. Laboratory studies of evaporation from soil columns in the presence of water table[J]. Soil Science,85:244-49
    Gill B.S., Jalota S.K.,1996. Evaporation from soil in relation to residue rate,mixing depth, soil texture and evaporativity[J]. Soil Technology,8,293-301
    Guo G., Araya K., Jia H., Zhang Z., Ohomiyal K., Matsuda J.,2006. Improvement of Salt-affected Soils, Part 1:Interception of Capillarity [J]. Biosystems Engineering,94 (1):139-150
    Guo G., Zhang H., Araya K., Jia H., Ohomiyal K., Matsudal J.,2007a. Improvement of Salt-affected Soils, Part 3:Specific Heat of Salt-affected Soils[J]. Biosystems Engineering.96 (3):413-418
    Guo G., Zhang H., Araya K., Jia H., Ohomiyal K., Matsudal J.,2007b. Improvement of Salt-affected Soils, Part 4:Heat Transfer Coefficient and Thermal Conductivity of Salt-affected Soils [J]. Biosystems Engineering.96 (4):593-603
    Hillel D.and Baker R.S.A.,1988. deseriptive theory off fingering during infiltration into layered soils[J].soil Science.146(1):51-55
    Hillel D.E., Parlnage J.Y.,1972. Wetting front instability in layered soils[J].science Society American proceeding,36(5):697-702
    Iiyas M., Qureshi R.H., Qadir M.A.,1997. Chemical changes in a saline-sodic soil after gypsum application and cropping[J]. Soil Technology,10:247-260
    Jia H., Zhang H., Araya K., Guo G., Zhang Z., Ohomiya K., Matsuda J.,2006. Improvement of Salt-affected Soils, Part 2:Interception of Capillarity by Soil Sintering[J]. Biosystems Engineering. 94 (2):263-273
    Li X. Y., Gong J. D., Gao, Q. Z., Wei X. H.,2000a. Rainfall interception loss by pebble mulch in the semiarid region of China[J]. Journal of Hydrology,228:165-173
    Li X. Y., Gong J. D., Gao, Q. Z., Wei X. H.,2000b. Rainfall interception loss by pebble mulch in the semiarid region of China[J]. Journal of Hydrology,228:165-173
    Li X. Y., Shi P. J., Liu L. Y., Gao S. Y., Wang X. S., Cheng L. S.,2005. Influnence of pebble size and cover on railfall interception by gravel mulch[J]. Journal of Hydrology,312:70-79
    Li X.Y.,2003. Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China[J]. Catena,52:105-127
    Mandal U.K., Rao K.W., Mishra P. K., Vittal K. P. R., Sharma K. L., Narsimlu B., Venkanna K.,2005. Soil infitration, and run off and sediment yield from a shallow soil with varied stone cover and intensity of rain[J]. European Journal of Soil Science,56:435-444.
    Mathur O. P., Mathur S. K. and Talati N. R.,1983. Effect of addition of sand and gypsum to fine-textured salt-affected soils on the yield of cotton and jower(sorghum) under Rajasthan Canal Command Area condition[J]. plant and soil,74:61-65
    Modaihsh A. S., Horton R., Kikham D.,1985. Soil water evaporation suppression by sand mulches[J]. Soil Science,139:357-361
    Niazi B. H., Ahmed M., Hussain N. et al.2001, Comparison of Sand, Gypsum and Sulphuric Acid to Reclaim a Dense Saline Sodic Soil[J]. international journal of aguiculture&biology,03(3):316-318
    Ozturk S. H., Ozkan I.,2004. Effects of evaporation and different flow regimes on solute disstribution in soil[J]. Transport in Porous Media,56:245-255
    Qadir M., Ghafoor A., and Murtaza G.,2000. Amelioration Strategies for Saline Soils[J]. Land Degradation and Development,11:501-521
    Rasiah V., Yamamoto T.,2002. Mulching, evaporation, and salinity interrelation in an arid/semi-arid environment[J].Rural Environmental Engineering.,42:36-43
    Rose E. J.,1966. Agricultural Physics[M]. Pergamon, Oxford
    Tejedor M., Jimenez C., Diaz F.,2003. Volcanic materials as mulches for water conservation[J]. Geoderma,117:283-295
    Valentin C.,1994. Surface sealing as affected by various rock fragment covers in west africa[J]. Catena,23: 87-97
    Willis W.O.,1960. Evaporation from layered soil in the presence of a water table[J]. soil Sci.Soc.Am., 24(4):239-242
    Wilox B. P., Wood M. K., Tromble T. M.,1988. Factors influencing infiltrability of semiarid mountain slopes[J]. Journal of Range Management,41(3):197-206
    Xiao Z.H., Prendergastnad B., Rengasmay P.,1992. Eeffect of irrigation water Quality on soil Hydraulic Conduetivity[J].PedosPhere,2(3):237-244
    Yamanaka T., Inoue M., Kaihotsu I.,2004. Effects of gravel mulch on water vapor transferabove and below the soil surface[J]. Agricultural Water Management.67,145-155
    Yamanaka T., Takeda A., Sugita F.,1997. A modified surface-resistance approach for representing bare-soil evaporation:Wind tunnel experiments under various atmospheric conditions. Water Resource Research.33,2117-2128.
    Yang M.D. and Emest K. Y.,2002. Water balnace during evapartion and Drinage in cover soils under dieffrent water table conditions[J]. Advances in Environmental Reseacrh,6:505-521
    Zartman R.E., and Gichuru M.,1984. Saline Irrigation Water:Effect on Soil Chemical and Physical Properties[J]. Soil Science,138(6):417-422
    Zayani K., Bousnina H., Mhiri A., Hartmann R., Cherif H.,1996. Evaporation in layered soils under different rates of clay amendment[J]. Agricultural Water Management,30:143-154

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700