用户名: 密码: 验证码:
砂石覆盖对土壤入渗及蒸发的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在干旱半干旱地区,利用砂石覆盖土壤,不但可以减少土壤蒸发,同时也能使土壤表面免受雨滴的溅蚀,从而防止水土流失,是解决该区干旱缺水和水土流失问题的重要途径之一。本文通过室内试验研究了不同粒径和厚度砂石对土壤入渗和蒸发的影响,确定比较适宜的砂石厚度和粒径配比范围,为农业生产提供理论和技术依据。主要研究结论如下:
     (1)一定入渗历时的累积入渗量与砂石粒径的关系比较复杂。不论覆盖厚度大小,中粒径砂石覆盖的累积入渗量最小,大粒径和小粒径砂石覆盖的相对较大。在8cm厚度处理中,小粒径砂石覆盖的累积入渗量比大粒径砂石的大;而在14cm厚度处理中,小粒径砂石覆盖的累积入渗量比大粒径砂石的小。
     (2)不同粒径配比的砂石累积入渗量存在一定差异,但差异较小,特别是粗砂石和细砂石之间的差异比较小。不论砂石粒径多大,砂石厚度越大,累积入渗量越大。另外,砂石粒径越大,不同覆盖厚度处理之间的差异越大。与均匀土壤一样,有砂石覆盖的土壤的湿润锋深度随时间的关系遵从幂函数规律。砂石粒径和覆盖厚度对湿润锋的影响效果与累积入渗量基本一致。
     (3)蒸发试验研究结果表明,砂石覆盖能有效地抑制土壤蒸发,在土壤含水量较高的阶段,这种抑制作用更加明显。砂石覆盖对土壤蒸发的抑制作用与粒径和覆盖厚度密切相关,在2.5~40mm粒径范围内,随着砂石粒径的增大,砂石覆盖对蒸发的抑制作用降低,对蒸发过程的影响减弱,覆盖厚度越大,蒸发量越小。有效的砂石配比应选择细砂石处理,不宜过粗。
     (4)在40天的连续蒸发过程中,砂石覆盖条件下的蒸发速率基本恒定在0.50mm/d-1.01mm/d,其累积蒸发量与时间呈显著的线性关系,而对照处理的呈对数关系。不同粒径砂石的配比试验显示,细砂石和中砂石抑制蒸发的效果明显优于粗砂石。试验结束后测得覆盖土壤的各个深度土壤含水量均较对照高,且各个深度土壤含水量基本接近,无覆盖土壤3-12cm深度范围内土壤含水量随土壤深度增加而增加,12cm以下的土壤含水量基本一致。
In arid/semi-arid regions, gravel mulch can not only reduce soil evaporation, but also can prevent soil from eroding by water. It is important way to solve the drinking water problem and soil and water loss in some area of the deficiency of water resources. This paper presents the results of the laboratory simulating experiment conducted to evaluate the effect of two parameters of the mulch–grain size and thickness–on soil moisture evaporation and infiltration, define suitable thickness and grain size distributions of gravel mulch. All of that are the theory and technology values for agricultural production. The results obtained are described as follows:
     (1) The relation between cumulative infiltration and grain size is very complex within certain infiltration duration. Whatever gravel mulch thickness is, the fine and the coarse gravel tend to be higher compared to the medium gravel in terms of cumulative infiltration. In addition, the fine gravel tend to be higher compared to the coarse gravel in terms of cumulative infiltration in 8 cm thickness treatment, while the fine gravel tend to be lower compared to the coarse gravel.
     (2) There existed small differences among different mixing distribution gravel, cumulative infiltration of coarse gravel is biggest. Whatever grain size of gravel is, cumulative infiltration increases with the increase of gravel mulch thickness. In addition, the differences of cumulative infiltration among different thickness treatment increase with gravel size of gravel. Just as control, the relationship between cumulative infiltration from mulched soil surface and time can be described by the power function under gravel mulch. The effect of gravel thickness and grain size on wetting front is consistent with cumulative infiltration.
     (3) The results of evaporation experiment indicated gravel mulch can efficiently suppress soil moisture evaporation, especially at the high level of soil water content. Inhibitory effects of gravel mulch on the evaporation are negatively correlated with grain size and positively correlated with thickness within 2.5~40mm grain size. Fine gravel mulch is effective mixing gravel mulch.
     (4) The relationship between cumulative evaporation from mulched soil surface and time can be described by the linear function under gravel and sand mulching, but logarithm function under bare surface during the successive evaporation of 40 days. The mulched soils, irrespective of layer thickness and grain size, presented a constant evaporation rate about 0.50mm/d-1.01mm/d throughout the experiment. The fine and the medium gravel tend to be more effective compared to coarse in 11cm thick layer. Water content at all depths of the covered soils was higher than in the uncovered soils at the end of the experiment. In the former, water distribution in the profile was markedly uniform, whereas in the latter a increase in water content was seen from 3 cm to a depth of 12 cm, then remained somewhat uniform in water content below 12 cm.
引文
[1] Rockstr?m J, Barron J, Fox P. Rainwater management for increased productivity among small-holder farmers in drought prone environments[J]. Physics and Chemistry of the Earth,2002,27:949-959.
    [2] Johan R, Jennie B, Patrick F. Rainwater management for increased productivity among small-holder farmers in drought prone environments[J].Physics and Chemistry of the Earth, 2002, 27:949-959.
    [3] Ogindo H O, Walker S. Comparison of measured changes in seasonal soil water content by rainfed maize-bean intercrop and component cropping systems in a semi-arid region of southern Africa[J]. Physics and Chemistry of the Earth, 2005, 30:799-808.
    [4] Rockstr?m J. Water resources management in smallholder farms in eastern and southern Africa: an overview[J]. Physics and Chemistry of the Earth, 2000, 25(3):275-283.
    [5]张琼华,赵景波.黄土高原地区农业可持续发展的用水模式探讨[J].中国沙漠, 2006,26(2):317-321.
    [6]段喜明,刘晋联,冯浩,等.黄土高原地区雨水集蓄利用[J].中国水土保持, 2005,11:41-43.
    [7]舒若杰,高建恩,赵建民,等.黄土高原生态分区探讨[J].干旱地区农业研究, 2006,24(3):143-148.
    [8]熊立兵,杨恕,鲁地.亚洲中部干旱区水环境变迁及其生态环境效应[J].甘肃科技,2005,21(6):1-5.
    [9] Lootfoot D R, Eddy F W. The agricultural utility of lithic-mulch gardens:past and present[J].Geo Journal ,1994,34(4):425-437.
    [10] Miller F T, Guthrie R L. Classification and distribution of soils containing rock fragments in the United States[J]. Soil Sci.SocAm.Spec.Publ,1984,13:1-6.
    [11] Valentin C, Casenave A. Infiltration into sealed soils as influenced by gravel cover[J]. Soil science society of Amercia Journal,1992,56:1667-1673.
    [12] Corey A T, Kemper W D. Conservation of soil water by gravel mulches[D]. Fort Collins, Colorado: Colorado State University. Hydrology Papers No.1968, 30:1-23.
    [13] Nachtergaele J, Posen J, Wesemael B. Gravel mulching in vineyards of south Switzerland[J]. Soil Till Res,1998,33:229-250.
    [14]吴大康,冯锡鸿编著.砂田西瓜甜瓜栽培技术知识问答[M].银川:宁夏人民出版社,2006,1-2.
    [15]党金虎.压砂保墒种植法[J].中国林业,2000,(3):44.
    [16]党金虎.压砂保墒造林技术[J].宁夏农林科技,2000,(6):21.
    [17]杨敬青.铺压砂田是干旱山区脱贫致富的有效途径[J].甘肃农业,2004,221(12):62.
    [18]李风岐,张波.陇中砂田之探讨[J].中国农史,1982, (1):33-39.
    [19]高炳生.甘肃的砂田[J].中国水土保持,1984, (1):8-10.
    [20]宋维峰.甘肃砂田[J].甘肃水利水电技术,1994, (6):56-58.
    [21]杨来胜,席正英,李玲,等.砂田的发展及其应用研究(综述) [J].甘肃农业,2005 (7):72.
    [22]范永泰,焦瑞祖,王莉.黄土高原干旱地区铺压砂田及其对农机化的需求[J].干旱地区农业研究,1984,1:49-56.
    [23]贾登云,曾希琳,张永洋,等.耔用西瓜旱砂田覆膜栽培技术试验[J].中国西瓜甜瓜,1998,(1):20-21.
    [24]天媛,李晓玲,李凤民,等.砂田集雨补灌对西瓜产量和土壤水分的影响[J].中国沙漠, 2003,23:459-463.
    [25]杨国强,杨敬青,张明玺.砂田在干旱地区农业持续发展中的作用与效益[J].中国水土保持,1995,5:31-33.
    [26]李凤岐,等.陇中砂田之探讨[J].农业考古,1984, (2):130.
    [27]辛秀先.论甘肃砂田的形成及其起源[J].甘肃农业科技,1993(5):5-7.
    [28]火高炎,等.兰州市农业志[M].兰州:兰州大学出版社,2000.
    [29]甘肃省农科院情报研究所,等.甘肃的砂田,油印本,1984.
    [30]吕忠恕,陈邦瑜.甘肃砂田的研究[J].农业学报,1955,6(3):299-312.
    [31]雒焕炘.白银地区砂田的防旱作用及其耕作[J].干旱地区农业研究,1991,1:37-45.
    [32]李学曾.兰州西宁间砂田调查报告[J].西北农业科学,1958(2):98-101.
    [33]王天送,苏贺昌,杨世维.兰州地区砂田土壤的水分特征[J].干旱地区农业研究, 1991,1:66-69.
    [34] Xiaoyan L. Gravel-sand mulch for soil and water conservation in the semiarid loess region of northwest China[J]. Catena, 2003, 52:105-127.
    [35] Xiaoyan L, Jiadong G, Xinghu W, In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China[J]. Journal of Arid Environments, 2000,46:371-382.
    [36] Xiaoyan L, Jiadong G, Qianzhao G, et al. Rainfall interception loss by pebble mulch in the semi-arid region of China[J]. Journal of Hydrology, 2000,228:165-173.
    [37] Xiaoyan L, Peijun S, Lianyou L, et al. Influence of pebble size and cover on rainfall interception by pebble mulch[J]. Journal of Hydrology, 2005,312:70-78.
    [38]刘谦和,李志强.砂田土壤的水蒸发特征和温度变化[J].甘肃农业科技,1993(8):27-28.
    [39]陈士辉,谢忠奎,王亚军,等.砂田西瓜不同粒径砂砾石覆盖的水分效应研究[J].中国沙漠,2005,25:433-436.
    [40]王亚军,谢忠奎,张志山,等.甘肃砂田西瓜覆膜补灌效应研究[J].中国沙漠,2003,23(3):300-305.
    [41]谢忠奎,王亚军,陈士辉,等.黄土高原西北部砂田西瓜集雨补灌效应研究[J].生态学报, 2003,23(10):2033-2039.
    [42] Yajun W, Zhongkui X, Fengmin L, et al. Effect of supplemental irrigation on watermelon (Citrullus lanatus) production in gravel and sand mulched fields in the Loess Plateau of northwest China[J]. Agricultural Water Management, 2004,69:29-41.
    [43] Zhongkui X, Yajun W, Wenlan J, et al. Evaporation and evapotranspiration in a watermenlon field mulched with gravel of different sizes in northwest China[J]. Agricultural Water Management, 2006,81:173-184.
    [44] Wesemael B V, Poesen J, Kosmas C S, et al. Evaporation from cultivated soils containing rock fragments[J]. Journal of Hydrology, 1996, 182:65-82.
    [45] Mellouli H J, Wesemael B V, Poesen J, et al. Evaporation losses from bare soils as influenced by cultivation techniques in semi-arid regions[J]. Agricultural Water Management, 2000, 4:355-369.
    [46] Steven D.Optimal gardening strategies: maximizing the input and retention of water in prehistoric gridded fields in north central New Mexico[J]. World Archaeology, 2002,34(1): 400-403.
    [47] Adams J E. Influence of mulches on runoff, erosion, and soil moisture depletion[J].Soil Sci.Soc.Amer.Proc., 1966, 30:110-114.
    [48] Agassi M, Levy G J. Stone cover and rain intensity - Effects on infiltration, erosion and water splash[J]. Australian Journal of Soil Research, 1991,29(4) 565– 575.
    [49] Frank W E, Dale R L. The construction and configuration of Anasazi pebble-mulch gardens in the Northern Rio Grande[J]. American Antiquity, 1995,60(3):150-159.
    [50] Dale L.The cultural ecology of p pebble-mulch gardens[J]. Human Ecology, 1993,21(2): 115-143.
    [51] Suhua, F. Effect of soil containing rock fragment on infiltration[J]. Journal of Soiland Water Conservation, 2005,19(1):171-175.
    [52] Jr J L, Chapman J E. Effect of surface stones on erosion, evaporation, soil temperature and soil moisture[J]. Journal of the American Society of Agronomy, 1943,(1):567-578.
    [53] Logie M. Influence of roughness elements and soil moisture on the resistance of sand to wind erosion[J].Catena.suppl,1982,1:161-173.
    [54] Tromble J M, Renard K G, Thatcher A P. Infiltration for 3 rangeland soil-vegetation complexes[J]. J. Range Manage, 1974,39:505-509.
    [55] Abraham A D, Parsons A J. Relation between infiltration and stone cover on a semiarid hillslope, southern Arizona[J]. Journal of Hydrology, 1991,122:49-59.
    [56] Cerda A. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion[J]. European Journal of Soil Science, 2001,52:59-68.
    [57] Poesen J, Ingelmo-Sanchez F, Mucher H. The hydrological response of soil surface to rainfall as affected by cover and position of rock fragments in the top layer[J].Earth Surf. Processes Land forms, 1990,15:653-671.
    [58] Poesen J, Lavee H. Rock fragments in top soils: significance and processes[J]. Catena, 1994,23:1-28.
    [59] Figueiredo T, Poesen J. Effects of surface rock fragment characteristics on interrill runoff and erosion of a silty loam soil[J]. Soil & Tillage Research, 1998, 46:81-95.
    [60] Wilox B P, Wood M K, Tromble T M. Factors influencing infiltrability of semiarid mountain slopes[J]. Journal of Range Management,1988,41(3):197-206.
    [61] Valentin C. Surface sealing as affected by various rock fragment covers in west Africa[J].Catena,1994,23:87-97.
    [62] Valentin C, Casenave A. Infiltration into sealed soils as influenced by gravel cover[J]. Soil science society of Amercia Journal,1992,56:1667-1673.
    [63] Koon J L, Hendrick J G, Hermanson R E. Some effects of surface cover geometry on infiltration rate[J]. Water Resources Reaearch,1970,6(1):246-253.
    [64] Poesen J, Lavee H. Effects of size and incorporation of synthetic mulch on runoff and sediment yield from interrills in a laboratory study with simulated rainfall[J]. Soil and Tillage Research,1991,21:209-223.
    [65] Poesen J W, Torri D, Bunte K. Effects of rock fragments on soil erosion by water at differentspatial scales :a review[J]. Catena, 1994,23:141-166.
    [66] Poesen J W, Luna E L, Franca A, et al. Concentrated flow erosion rates as affected by rock fragment cover and initial soil moisture content[J]. Catena, 1999,36:315-329.
    [67] Brakensiek D L, Rawls W J. Soil containing rock fragments: effects on infiltration[J]. Catena, 1994,(23):99-110.
    [68] Hanks R J, Woodruff N P. Influences of wind on water vapor transfer through soil, gravel and straw mulches[J]. Soil Science .1958, 86: 160-164.
    [69] Benoit G T, Kirkham D. The effect of soil surface condition on evaporation of soil water[J]. Soil Science Society Proceedings.1963,495-498.
    [70] Unger P W. Soil profile gravel layer[J]s:Ⅰ.effect on water storage, distribution, and evaporation[J]. Soil Sci.Soc.Amer.Proc.1971,35:631-634.
    [71] Groenevelt P H, Van S P, Rasiah V, et al. Modifications in evaporation parameters by rock mulches[J]. Soil Technorol.1989,(2): 279-285.
    [72] Fairbourn M L. Effect of gravel mulch on crop yields[J]. Agronogy Journal, 1973,65(6):925-928.
    [73] Modaihsh A S, Horton R, Kirkham D. Soil water evaporation suppression by sand mulches[J]. Soil Science, 1985, 139(4):357-361.
    [74] Kemper W D, Nicks A D, Corey A T. Accumulation of water in soils under gravel and sand mulches. Soil Sci.Soc.Am.J, 1994,58:56-63.
    [75] Yamanaka T, Inoue M, Kaihotsu I. Effects of gravel mulch on water vapor transfer above and below the soil surface[J]. Agricultural Water Management, 2004, 67:145-155.
    [76] Diaz F, Jimenez C C, Tejedor M. Influence of the thickness and grain size of tephra mulch on soil water evaporation[J]. Agric Water Manage, 2005, 74:47-55.
    [77] Jimenez C C, Tejedor M, Diaz F,et al. Effectiveness of sand mulch in soil and water conservation in an arid region,Lanzarote,Canary Islands,Spain[J]. Journal of soil and water conservation, 2005,60(1):63-67.
    [78]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报,1993,38(20):1896-1899.
    [79]郁可,郑中山.粉体粒度分布的分形研究[J].材料科学与工程,1995,13(3):30-35.
    [80] Black T A, Gardner W R, Thurtell G W. The prediction of evaporation, drainage and soil water storage for a bare soil[J]. Soi Sci.Soc.Am.Proc, 1969,33:655-660.
    [81] Lemon E R. Potentialities for decreasing soil moisture evaporation loss[J]. Soil.Sci.Am.Proc,1956,20:120-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700