用户名: 密码: 验证码:
路堤荷载下碎石桩复合地基沉降计算方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碎石桩复合地基因其取材方便、施工简便、造价低廉在工程中得到了广泛应用,是一种适合我国国情的地基处理方式。但理论研究却相对滞后,尤其是沉降计算的水平还远远落后于工程实践的需要。
    目前有关碎石桩复合地基沉降量的计算方法主要有数值解法和解析解法两大类,数值计算法有着一定的优越性,但对测试技术及工程人员素质均要求较高,不便广大工程技术人员掌握应用,这就在客观上要求建立简便适用的解析方法以方便指导工程实践。
    现有的解析方法多数是基于刚性基础下桩土等应变的假定,并且不考虑桩体的径向变形,这对于路堤荷载下的碎石桩复合地基是不适用的。路堤荷载接近于柔性荷载,加固区桩间土的压缩量大于桩体的压缩量,桩将产生上下刺入现象,桩土变形不再协调;另外,碎石材料本身几乎没有粘聚力,在竖向荷载作用下,将有不可忽略的径向变形发生。
    本文在假设的竖向及径向位移模式下,考虑桩土相互作用,通过力学推导,得到了路堤荷载下复合地基加固区桩体正应力、桩间土正应力、桩侧摩阻力、桩及桩间土压缩量的解析表达式。并对下卧层上附加应力的取值给出合理化建议。
    在Terzaghi 固结理论的基础上,应用Carrillo 定理建立了路堤荷载下碎石桩复合地基的径向、竖向及整体固结微分方程,并得出其解析解。该方程具备理论合理性,且简单适用,便于工程技术人员掌握应用。经过工程实例验证,能满足工程精度要求。
    通过解析计算,对路堤荷载下碎石桩复合地基进行分析,包括加固区桩体、土体的应力应变在竖向及径向上的分布规律、桩侧摩阻力分布规律及沉降影响因素的分析。分析表明,桩侧摩阻力沿桩长线性变化,并且侧摩阻力随置换率的增加而减小。桩体正应力值在中性点以上随深度递增,中性点以下随深度递减,并且桩体正应力值随置换率的增加而减小。桩周土中正应力随距桩体的径向距离的增大而逐渐减小;竖直方向上,在中性点以上随深度递减,中性点以下则随深度递增。典型单元体中桩的压缩量小于土的压缩量,而且随着径向距离的增大,这种差异就越大;另外,复合地基的置换率越小,即n = b/a的值越大,这种差异也越明显,当复合地基有较高置换率时,复合地基顶面处桩、土体的沉降差异很小。随着n值的增大,桩、土体的差异沉降相应增大。加固区的沉降量随桩长的增加是线性增加的;下卧层的沉降量则随桩长的增加而线性减小。但地基的总体沉降量仍然随桩长增加而线性减小。
With convenient material, simple making and low cost, the gravel pile composite foundation has been widely used in construction projects. This kind of foundation treatment is suitable for China. However, relevant theory has not been advanced. Especially the settlement computation method for this kind of foundation treatment has fallen far behind the engineering practice.
    At present, there are two types of settlement computation methods for the stone column composite foundation. One is the numerical analysis method and the other is the analytic method. The numerical analysis method is of some advantages. But it is not convenient to apply in engineering practice since its application requires strict test technique and high quality of staff. As a result, a convenient analytic method is needed.
    Existing analytic methods are mostly aimed at the composite foundation under rigid base, in which the column and the soil has the same strain. Moreover, the radial deformation of the pile has not been taken into consideration. These methods are not applicable to the gravel pile composite foundation under embankment load. Since the embankment weight is a kind of flexible load, the compressive deformation of soil is more than that of piles in the stabilized layer. The pile would stab up and down, so the deformation of piles and soil would not be compatible. Under vertical load, the radial deformation of piles should not be neglected because the crushed stone is loose.
    With the suggested vertical and radial displacement model, this dissertation takes the interaction of soil and column into consideration and derives some analytical-functions for the stabilized layer of the composite foundation under embankment load, including the normal stress in pile and in soil in the foundation, the frictional resistance between pile and soil, the compressive deformation of pile and soil. Furthermore, a reasonable method for estimating the extra stress in sub-layer is proposed.
    Based on the Terzaghi consolidation theory and the Carrillo theorem, the differential equations for vertical, radial and total consolidation of gravel pile composite foundation under embankment are derived, as well as their analytic solutions. The equations are reasonable in theory and easy for engineers to apply. Engineering cases have verified their accuracy.
    According to analytic computation, the stone column composite foundation under embankment is studied to find the vertical and radical distribution of stress and strain in column and in soil of the stabilized layer and the distribution of frictional resistance along column side. Analysis shows that the frictional resistance on the column side is linear along the column and decreases gradually with replacement rate. The normal stress in column increases gradually with depth above the neutral depth z m and decreases gradually with depth below the neutral depth z m, also decreases with replacement rate. The normal stress in the soil around column
    decreases gradually with radial distance. In the vertical direction, the normal stress in soil decreases with depth above the neutral depth z m and increases below the neutral depth z m. In a typical element, the compressive deformation of column is less than that of soil. The deformation difference increases with radial distance and decreases with replacement rate. When the replacement rate is high enough, the difference of column and soil settlements on the top of the composite foundation becomes quite small. If the replacement rate is reduced, the settlement difference will increase. Settlement of the stabilized layer increases with the length of column, and settlement of the sub-layer decreases with the length of column. Total settlement of composite foundation still decreases with the length of column.
引文
[1] Alamgir M,Miura N,Madhav M R. Analysis of granular column reinforced ground: Estimation of interaction shear stresses. Reports Faculty of Sci. & Engng, Saga University,Saga,Japan,1993,vol. 22,pp.111-118.
    [2] Alamgir M, Miura N,Poorooshasb H B. Deformation analysis of soft ground reinforced by columnar inclusions. Computers and Geotechnics, 1996,18(4):267-290.
    [3] Balaam N P , Booker S R. Analysis of rigid rafts supported by granular piles. Intl.J.Numer.Anal.Methods Geomech.Can.Geotech.J. 1981,5:379-403.
    [4] Balaam N P,Poulos H G,Brown P T. Settlement analysis of soft clays reinforced with granular piles. Proc. Of the 5th Asian Regional Conf. Bangkok 1977,Vol 1:81-92.
    [5] Balaam N P,Booker J R. Effect of stone column yield on settlement of rigid foundations in stabilized clay. Int. J. Numer. Anal. Methods Geomech. 1985,9:331-351.
    [6] Barksdale R D,Bachus R C. Design and construction of stone columns. Vol. 1. Report NO FHWA/RD-83/026,National Technical Information Service,Springfield,VA. 1983.
    [7] Baumann V,Bauer G E A. The performance of foundation on various soils stabilized by vibrocompaction method. Can.Geotech.J. 1974,11:509-530.
    [8] Bergado D T,Haut S H,Kalvade S. Improvement of soft Bangkok clay using granular piles in subsiding environment. Proc.5th Int. Geotech. Seminar Case Histories in Soft Clay ,Singapore,1987,pp.219-226
    [9] Canetta G,Nova R A. Anumerical method for the analysis of ground improved by columnar inclusions. Computers Geotech. 1989,7:99-114.
    [10] Christian J T,J W Boehmer. Plane strain consolidation by finite element. Proc. ASCE, 1970,96(4)
    [11] Ekstrom J C,Berntsson J A,Sallfors G B. Test fills of clays stabilized with cement columns. Proc. XIII ICSMFE New Delhi 1994,3:1183-1186.
    [12] F. Zhou,W Wittke. Three-dimensional consolidation analysis of elasto-plastic cohesive soils. ICSMFE, 1997, New Delhi:757-760
    [13] Geddes J. D..Stresses in Foundation Soils Due to Vertical Subsurface Load, Geotechnique, 1966, 16(3).
    [14] Giroud J P,Bonapart R,Beech J F,Gross B A. Load carrying capacity of a soil layer supported by a geosynthetic overlying a void. Proc.Int. Geotech. Symposium: Theory and Practice of Earty Reinforcement. Balkema,Amsterdam,1988,pp.185-190.
    [15] Goughnour R R,Bayuk A A. A field study of long-term settlement of loads supported by stone columns in soft ground. Proc.Int.Conf.Soil Reinfor:Reinfor. Earth & Other Techniques,Paris,1979,Vol. 1:279-286.
    [16] Goughnour R R. Settlement of vertical load stone columns in soft ground. Proc. Specialty Session-8th European Conf.on SMFE,Helsinki,1994, 2:167-176.
    [17] Greenwood D A. Mechanical improvement of soils below ground surface. Proc. Ground Engineering Conf.,Institution of Civil Engineers,11-12 June 1970:9-20.
    [18] Hansbo S. Foundation Engineering. Elsevier Amsterdam, 1994.
    [19] Haung C C,Tatsuoka F. Prediction of bearing capacity in level sandy ground reinforced wity strip reinforcement. Proc.Int. Geotech. Symp: Theory and Practice of Earth Reinforcement. Balkema,Amsterdam:1988,191-197.
    [20] Hughes J M O,Withers N J. Reinforcing soft cohesive soil with stone columns. Ground Engng 1974,7:42-49.
    [21] J C Small,J R Booker. An investigation of the stability of numerical solution of Biot's equation of consolidation. lnt. J. Solids Structures, 1975,11:907-917
    [22] Leung C F,Tan T S. Load distribution of soft clay reinforced by sand columns. Proc.Int.Conf. on Soft Soil Engng: Recent Advances in Soft Soil Engng .11-16 November Guangzhou China:1993,779-784.
    [23] Madhav M R,Vitkar R P. Strip footing on weak clay stabilized with granular trench or piles. Can.Geotech.J. 1978,15:605-609.
    [24] Mattes N S,Poulos H G. Settlement of single compressible pile. J. Soil. Mech. Found,ASCE 1995:189-207.
    [25] Meyerhof G G. Ultimate bearing capacity of sand layer overlying clay. Proc. Of Can Geotech. J. 1974,3:223-229.
    [26] P K Banerjee,P R Show. Development in Boundary element method. 1982,1
    [27] Poorooshasb H B, Alamgir M, Miura N. Negative skin friction on rigid and deformable piles. Computers and Geotechnics, 1996,18(2):109-126.
    [28] Poorooshasb H B,Miura N,Koumoto. Analysis of and bearing gravel piles. Proc. 9th Asian Regional Conf. on SMFE,Bangkok,1991,1:275-278.
    [29] Poorooshasb H B. Analysis of geosynthetic reinforced soil using a simple transform function. Computers Geotech. 1989,8:289-309.
    [30] Poulos H G,Davis E H. The settlement behaviour of single axially loaded incomepressible piles and piers. Geotechnique. 1968,18:351-371.
    [31] Prededeanu M. Boundary intergral method for porous media. Proceedings of the 3`d International Seminar of Boundary Element Method, 1981:325
    [32] Priebe H. Estimating settlements in a gravel column consolidated soil. Die Bautechnik 1976, 53:160-162.
    [33] Randolph M F, Worth C P. Analysis of deformation of vertically loaded piles. Journal of the geotechnical engineering division, ASCE,1978,104(12):1465-1488.
    [34] Sandhu R S E,E L Wilson. Finite element analysis of seepage in elastic media. Proc. ASCE,1969,95(3)
    [35] Schwriger H F,Pande G N. Numerical analysis of stone column supported foundations. Computers Geotech. 1986,2:347-372.
    [36] S. Nishizaki,L Saito, A. Ohiro. Some finite element for consolidation analysis. Computer methods and advances in Geomechanics, 1982:69-78
    [37] Van Impe W F,Madhav M R. Analysis and settlement of dilating stone column reinforced soil. Osterreichische Ing. Arch-Zschr. 1992,1371:114-121.
    [38] W. L. Wilson. Structural analysis of axi-symmetric solids. Journal of American Institute of Aeronautic and Astronautics,1965(3):2269-2274.
    [39] Zhang Jingde , Ai Zhiyong , Zhao Huming. Analytic Solutions of Two-Dimensional and Three-Dimensional Problem by Using the Method of Weighted Residuals, Second International Conference On Soft Soil Engineering, Nanjing, May 27-30, 1996:376-384
    [40] Zhao W B, Qian J H. Semi-analytical method for Vacuum preloading of a foundation with sand drain, Science in China (Series A), 1989,32(3):374-384
    [41] 曹志远等. 建筑用夹芯构件热应力分析的有限层法,建筑结构学报,1990, 11 (6)
    [42] 陈景扬,徐泽中,吴钰. 沪宁高速公路路基固结沉降规律分析研究. 水利水电科技进展, 1998,18(2):13-16.
    [43] 陈肖华. 碎石桩复合地基承载力计算方法探讨. 土工基础, 2003,17(3):58-61.
    [44] 陈希哲. 土力学地基基础.北京:清华大学出版社. 1994
    [45] 陈旭东,邓小华. 广深高速公路软土地基路基固结沉降量探讨, 1994,34(1):21-28
    [46] 《地基处理手册》编写委员会. 地基处理手册(第二版).北京:中国建筑工业出版社. 2000
    [47] 丁继辉,张庆宏. 大型油罐碎石桩复合地基沉降量的数值计算与分析. 勘察科学技术,1999,(6):32-35.
    [48] 邓修甫,王祥秋. 干振碎石桩复合地基沉降计算方法探讨. 水文地质工程地质, 2003,(3):92-94.
    [49] 邓修甫,刘新华,张琳. 碎石桩复合地基沉降计算方法. 湘潭矿业学院学报, 2003,18(4):55-57。.
    [50] 段继伟. 柔性桩复合地基的数值分析.浙江大学博士学位论文. 1993
    [51] 董万林. 有限层法在迭层板弯曲问题中的应用,华南工学院学报,1982,1
    [52] 方永凯. 碎石桩复合地基承载承载力现场测试.复合地基学术讨论会论文集. 1990
    [53] 范馁之. 高层建筑的有限元有限层半解析. 工程力学,1984,1 (1)
    [54] 冯瑞玲,谢永利,方磊. 柔性基础下复合地基的数值分析. 东南大学学报, 2003,16(1):40-42.
    [55] 高大钊. 岩土工程的回顾与前瞻.北京:人民交通出版社. 2001
    [56] 龚晓南. 土工计算机分析.北京:中国建筑工业出版社. 2000
    [57] 龚晓南. 复合地基. 杭州:浙江大学出版社. 1992.
    [58] 龚晓南. 复合地基理论及工程应用.北京:中国建筑工业出版社. 2002
    [59] 龚晓南,陈明中. 关于复合地基沉降计算的一点看法. 地基处理,1998,9(2):10-18.
    [60] 龚晓南. 复合地基引论(一)(二). 地基处理,1990,1(1,2)
    [61] 龚晓南. 油罐软粘土地基性状. 浙江大学博士论文,1984
    [62] 龚晓南. 复合地基设计和施工指南.北京:人民交通出版社. 2003
    [63] 龚晓南,褚航. 基础刚度对复合地基性状的影响. 工程力学, 2003,20(4):67-83.
    [64] 郭书泰. 振冲碎石桩复合地基承载力及变形计算. 工程勘察, 1996,(6):13-16.
    [65] 郭尉东,钱鸿缙. 振冲碎石桩地基承载力计算的若干途径. 地基处理. 1990,1(1).
    [66] 韩杰,叶书麟. 国外碎石桩加固技术发展的新认识. 地基处理,1991,2(2):15-24.
    [67] 韩杰,叶书麟. 碎石桩复合地基有限元分析. 岩土工程学报,1992,14(增):13-19.
    [68] 何广讷. 振冲碎石桩复合地基.北京:人民交通出版社. 2001
    [69] 贺光耀. 振冲碎石桩施工中常遇到的问题及其处理方法. 勘察科学技术, 1994,(6):39-41.
    [70] 洪毓康. 土质学与土力学.北京:人民交通出版社. 2000
    [71] 胡中雄. 土力学与环境土工学(第一版).上海:同济大学出版社. 1997
    [72] 黄传志,肖原. 二维固结问题的解析解. 岩土工程学报.1996,18(3):47-54.
    [73] 黄绍铭. 减少沉降量桩基的设计与初步实践,第六届土力学及基础工程学术会议论文集. 同济大学出版社, 1991.
    [74] 蒋忠信,黄俊,陈国芳. 南昆线七甸泥炭土路基加固的沉降控制. 铁道工程学报, 1998,60(4):79-89.
    [75] 贾丽华. 振冲碎石桩加固软弱地基的承载力与沉降计算探讨. 科技情报开发与经济, 1999,(4):63-64.
    [76] JTJ051-93. 公路土工试验规程
    [77] 林丰,陈环. 真空和堆载作用下砂井地基固结的边界元分析. 岩土工程学报,1987,9 (4):13-22
    [78] 刘飞,高全臣,赵延林. 碎石桩、灰土桩复合地基桩土应力与变形模量关系试验研究. 建井技术,2004,25(5):39-43.
    [79] 刘利民,杨春林. 柔性桩复合地基沉降计算. 港口工程,1977,1:31-35.
    [80] 刘利民. 桩基工程的理论进展与工程实践.北京:中国建材工业出版社. 2002
    [81] 刘杰. 振动砂石桩处治液化地基技术. 山西交通科技, 1999,126(4) .14-15
    [82] 刘杰,张可能. 复合地基中垫层作用机理. 中南工业大学学报,2001,32(6):568-572.
    [83] 刘杰,张可能. 碎石桩复合地基应力应变分析. 东南大学学报, 2002,33(5):457-461.
    [84] 刘杰,张可能. 碎石桩复合地基若干问题的理论分析. 铁道工程学报, 2003,78(2):27-32.
    [85] 刘松玉. 公路地基处理. 南京:东南大学出版社. 2001
    [86] 刘义怀,朱志铎,刘松玉. 路堤荷载下复合地基的有限元分析. 公路交通科技,2002,19(5):11-13.
    [87] 刘义怀,朱志铎,刘松玉. 碎石桩材料变形特征的试验研究. 公路交通科技,2002,20(5):31-33.
    [88] 马学宁,杨有海,刘永红,马成武. 碎石桩复合地基有限元分析. 兰州铁道学院学报, 2002,21(1):60-63.
    [89] 毛成,邱延峻. 超宽路堤软土地基加固的固结沉降数值分析. 东北公路, 2002,25(3):31-33.
    [90] 梅国雄. 固结有限层理论及其应用.河海大学博士学位论文. 2002
    [91] 孟广训,沈定贤. 模型碎石桩应力的测定及其分析. 南京水利科学研究院研究报告,1985.
    [92] 钱家欢,殷宗泽. 土工原理与计算.北京:中国水利水电出版社. 1996
    [93] 沈珠江. 用有限层法计算软土地基的固结变形. 水利水运科技情报,1977,2 (2)
    [94] 沈珠江. 理论土力学.北京:中国水利水电出版社. 2000
    [95] 盛崇文. 碎石桩复合地基的沉降计算. 土木工程学报,1986,(2):56-60.
    [96] 孙海军,刘松玉. 沉管碎石桩挤密粉土加固范围理论浅析. 西部探矿工程, 2002,75(2):38-40.
    [97] 谭振宇,刘洪波. 碎石垫层在振冲碎石桩复合地基中的应用. 广东土木与建筑, 2003,(3):46-47.
    [98] 屠毓敏,郑坚. 考虑土体侧胀性的路堤沉降分析. 中国公路学报, 2002,15(1):26-28.
    [99] 王复明,林皋. 粘弹性层状地基动力柔度系数的半解析解. 地震工程与工程振动,1988, 8 (2)
    [100] 王吉望.复合地基综述报告. 岩土工程师. 1990
    [101] 王家远,黄杰台.碎石桩复合地基承载力和沉降若干问题. 土工基础, 1996,10(1):1-7.
    [102] 王勖成. 有限单元法基本原理和数值方法.北京:清华大学出版社. 1997
    [103] 王启铜. 柔性桩的沉降特性和荷载传递规律.浙江大学博士学位论文. 1991
    [104] 王瑞春,谢康和,唐晓武. 未打穿散体材料桩复合地基固结解析研究. 公路交通科技.2004,21(6):12-16.
    [105] 魏辉,李玉国,李广泉. 砂石桩法复合地基的应用. 基础工程, 2001,4(3):40-41.
    [106] 吴慧明,龚晓南. 刚性基础与柔性基础下复合地基模型试验对比研究. 东南大学学报,3 2001,4(5):81-84.
    [107] 吴廷杰,杨志红. 干振碎石桩的特性和设计计算研究. 岩土工程学报, 1996,18(1):29-38.
    [108] 吴永红. 碎石桩复合地基弹塑性有限元分析. 岩土力学与工程的理论与实践. 首届全国岩土力学与工程青年学术讨论论文集,浙江大学出版社1992:514-517.
    [109] 谢康和,周健. 岩土工程有限元分析理论与应用.北京:科学出版社. 2002
    [110] 谢康和. 砂井地基固结理论、数值分析和优化设计. 浙江大学博士论文,1987
    [111] 熊载波,郑假余,刘兆宁. 挤密碎石桩复合地基固结沉降初探. 电力勘测,2002,33(1):41-44.
    [112] 徐秉业. 应用弹塑性力学. 北京:清华大学出版社. 1995
    [113] 徐泽中,何良德,澲伯泉. 沪宁高速公路软基路堤沉降动态控制方法研究. 水利水电科技进展, 1998,18(2):31-35.
    [114] 阎明礼. 地基处理技术.北京:中国环境科学出版社. 1996
    [115] 阎明礼,吴春林,杨军. 水泥粉煤灰碎石桩复合地基试验研究. 岩土工程学报,1996,18(2):55-62.
    [116] 杨敏,王树娟. 使用Geddes 应力系数公式求解单桩沉降. 同济大学学报,1997,24(4):379-385.
    [117] 杨涛. 复合地基沉降计算理论、位移反分析模型和二灰土桩软基加固实验研究.河海大学博士学位论文. 1997
    [118] 杨涛,殷宗泽. 复合地基沉降的复合本构有限元分析. 岩土力学,1998,19(2):19-25.
    [119] 杨涛. 路堤荷载下柔性悬桩复合地基的沉降分析. 岩土工程学报. 2000,22(6):741-743.
    [120] 杨涛. 柔性基础下复合地基下卧层沉降特性的数值分析. 岩土力学, 2003,24(1):53-56.
    [121] 姚笑青. 桩基沉降的实践与负摩擦阻力的理论分析. 同济大学博士学位论文. 1999
    [122] 叶观宝,胡斌. 碎石桩处理砂性土和粘性土的机理探讨. 岩土工程技术, 2002,(3):172-179.
    [123] 叶观宝,叶书麟. 地基处理新技术.西安:陕西科学技术出版社. 1999
    [124] 叶见曙. 桥头引道工后沉降控制标准的研究. 东南大学学报, 1997,27(3):12-17.
    [125] 殷宗泽,徐鸿江,朱泽民. 饱和粘土平面固结问题有限单元法. 华东水利学院,1978,1
    [126] 殷宗泽,朱泓,吴钰. 沪宁高速公路地基沉降有限元计算分析. 水利水电科技进展, 1998, 18(2):22-26.
    [127] 余志顽,赵维炳,顾吉. 粘弹-粘塑性软基排水预压的三维有限元分析. 河海大学学报,1995,23(5):1-7
    [128] 张爱军,谢定义. 复合地基三维数值分析.北京:科学出版社. 2004
    [129] 张定. 碎石桩复合地基的作用机理分析及沉降计算. 岩土力学,1999,20(2):81-86.
    [130] 张定. 散体材料复合地基中桩体变形模量的分析与计算. 岩土工程学报,1999,21(2):205-208.
    [131] 张季荣,朱向荣. 简明建筑基础计算与设计手册.北京:中国建筑工业出版社. 1997
    [132] 张忠坤. 高等级公路路堤减轻与复合地基加固的研究. 河海大学博士学位论文. 1998
    [133] 张忠坤,侯学渊,刘国彬. 路堤下复合地基沉降发展的计算方法探讨. 水利水电科技进展, 1998,(10):31-36.
    [134] 张中兴. 振冲碎石桩法在公路桥涵软弱地基加固工程中的应用. 山西交通科技, 1995,(3):11-16.
    [135] 赵明,赵明华,陈昌富. 确定碎石桩复合地基桩土应力比的一种新方法. 湖南大学学报, 2002,29(2):112-116.
    [136] 赵明华,姚琪阳,陈昌富,陈艳平. 碎石桩复合地基模型试验. 公路, 2003,(10):33-36.
    [137] 赵维炳,钱家欢. 设置砂井的软粘土地基动力固结. 港口工程,1985,3:1-7
    [138] 赵维炳,施建勇. 软土固结与流变,河海大学出版社,1996
    [139] 郑俊杰. 地基处理技术.武汉:中国环境科学出版社. 2004
    [140] 郑颖人. 岩土塑性力学原理.北京:中国建筑工业出版社. 2002
    [141] 中华人民共和国行业标准.建筑地基处理技术规范(JGJ 79-2002). 北京:中国建筑工业出版社. 2002
    [142] 朱伯芳. 有限元法原理与应用. 北京:水利水电出版社. 1979
    [143] 朱志铎. 碎石桩复合地基沉降分析. 东南大学硕士学位论文. 2001
    [144] 郑俊杰. 复合地基承载特性分析及设计该法法研究. 浙江大学博士学位论文. 1991
    [145] 朱小友. 用动力触探方法检测碎石桩.复合地基理论与实践. 杭州:浙江大学出版社,1996
    [146] 朱云升,胡幼常,丘作中,舒鄂南. 柔性基础复合地基力学性状的有限元分析. 岩土力学, 2003,24(3):395-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700