用户名: 密码: 验证码:
范德华力和静电力下的细颗粒离散动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细颗粒相关的现象广泛存在于自然界和工业生产过程之中。范德华粘附力和静电力是影响细颗粒相关过程的主要因素和控制手段。基于软球模型的离散元动力学方法,已经成为研究大颗粒运动的主要手段之一,但在范德华力和静电力下的细颗粒流研究方面仍存在较大挑战。本文以细颗粒在范德华力和静电力作用下的离散动力学为研究主题,发展了颗粒间粘附与静电相互作用的理论模型、计算方法和实验验证,以细颗粒的单纤维沉积和在交变电场中的输运为对象,研究了细颗粒在多场(流场、静电场等)下的沉积、清除和输运等过程。
     本工作首先深化了对细颗粒粘附接触模型适用范围的研究,进一步基于适用于细颗粒准静态接触的JKR模型,考虑了首次接触能量耗散以及分别对应于接触区引力和斥力分量的阻尼耗散,建立了完备的粘附性碰撞模型。发展了适用于细颗粒离散元方法(DEM)的电场求解方法,发现了传统边界元方法(BEM)在细颗粒流问题中面临的特殊问题,利用静电学镜像理论的思想和边界元局部精细化,有效地提高了BEM的计算精度和速度。以多极展开方法作为大量颗粒间静电相互作用的加速计算方法,并将其与前述边界元方法耦合,将现有离散元模拟平台发展到了可以准确高效模拟存在复杂静电相互作用问题的阶段。
     基于建立的离散动力学方法研究了大量颗粒在行波和驻波电场中的输运规律和运动模式,得出了粘附力、静电力等颗粒间作用及电场频率等因素对前述问题的影响规律。发现颗粒在驻波电帘上具有三种驻留模式和两种传输模式,分析得到了颗粒运动模式的无量纲控制参数及定量判据,阐释了驻波电帘有效清除颗粒的动力学机理;对颗粒在电帘上的运动进行了实验研究,验证了驻波电帘颗粒输运和清除的机理模式;观测了颗粒在驻波和行波电场中的特征性运动模式,并通过动力学模拟的比较分析获得了颗粒运动的控制因素及影响规律。
     最后,以细颗粒在单纤维上的沉积这一与实际应用密切相关的经典科学问题为对象,开展了离散元动力学研究,并获得结论:(1)两种尺寸细颗粒在单纤维上存在协同沉积;(2)颗粒的预极化显著增强其在单纤维上的沉积;(3)荷电颗粒虽然对单纤维的初始沉积有一定增强效应,但是最终沉积速率会低于中性颗粒,并得到了实验观测的初步验证。本工作还从详细动力学角度揭示了粘附力和静电力对沉积过程与沉积结构的影响规律,从而形成了颗粒沉积过程的微观理论基础。
Fundamental of fine particles plays an important role in either basic naturalphenomena or various industrial processes. Both van der Waals (vdW) adhesion forceand electrostatic force are the main factors affecting those processes as well as thecountermeasures to control fine particles from becoming hazards. Soft-sphere discreteelement method (DEM), considering inter-particle interactions as its basis and beingable to reveal the details of multi-particle dynamics, has been recognized one of themost powerful methods for fine particulate system. However, in contrast to its mature infield of granular solids, the development and application of DEM into fine adhesiveparticles encounters a broad array of challenges. In this work, we firstly develop andbuild the mathematical models, computational methods and experimental validation ofsoft-sphere DEM in the presence of van der Waals and electrostatic forces, and thenapply it to solve problems of two prototypical particulate systems: the transport andremoval of fine particle in an oscillating electric field, and the deposition of fineparticles on a single fiber.
     The applicability of different adhesion models for fine particle contact is firstlydiscussed and the corresponding quantitative adhesion map is presented. Based on theJKR model that is valid for static/quasi-static contact of fine particles, the energydissipation mechanisms including the first-contact energy loss and dissipative energyloss corresponding to the attractive and repulsive force components in the contact areaare developed to establish a complete dynamic model for impact process. Compared toprevious work, the current model provides a clearer physical basis. Next, boundaryelement method (BEM) is incorporated into current DEM platform to solve for theelectric field of macroscopic bodies (like fiber or sphere collectors) in presence ofsuspension of fine particles. The additional challenges due to the small scale of fineparticles are found for the traditional BEM. By utilizing the image theory ofelectrostatics and local subdivision of boundary elements, the solution precision andcomputational speed for this fine particulate system have been greatly improved. Then amultipole expansion method is particularly incorporated and combined with BEM toenable high-efficiency calculation of the electrostatic interactions between a large number of particles. On basis of these achievements, a general DEM platform has beenfinally constructed to accurately and effectively predict the fine particle flow systemswith both vdW and electrostatic forces.
     Secondly, by adopting the above DEM, the particle transport on traveling-waveand standing-wave electric curtains is studied. The effects of various factors, includingthe adhesion force and electrostatic forces between particles, as well as the ACfrequency, have been investigated. The transport mechanisms of particles onstanding-wave electric curtain are also investigated. Three different modes of trappedmotion and two modes for effective transport are found, and the correspondingnondimensional criteria are proposed. From the aspect of detailed DEM simulations,this work has clearly revealed the mechanism of effective particle transportation withstanding-wave electric curtain, which was believed to be, at least theoretically,impossible. Experimental studies, on the other hand, are also conducted and differentcharacteristic modes of particle motion are observed. Comparative studies on the basisof particle dynamics are carried out and the mechanisms behind above phenomena arerevealed.
     Finally, we originally apply DEM to investigate the effects of adhesion force andelectrostatic interactions on the deposition of fine particles on a single fiber that is aclassic prototypical system for particle filtration. A microscopic view on the depositionof neutral, polarized or charged particles is built, in which some comprehensiveconclusions are drawn as:(1) the deposition of small and big micron particles with a bigsize ratio exhibits synergistic deposition;(2) the pre-polarization of fine particlesenhances the deposition by nearly an order of magnitude;(3) the charging of particlesslightly increases the deposition at the early period, but finally inhibits the depositionbecause of the repulsion between incident particles with deposited particles.
引文
曹红杏,阮萍,李婷,等.光学系统的月尘防护方法综述.科学技术与工程,2007,7:5310-5315.
    黄斌,姚强,宋蔷,等.静电对纤维滤料过滤飞灰颗粒的影响.中国电机工程学报,2006,26:106-110.
    黄斌.静电对滤料过滤可吸入颗粒物的影响研究[博士学位论文].北京:清华大学热能工程系,2006.
    龙正伟.复合式电袋除尘器数值模拟研究[博士学位论文].北京:清华大学热能工程系,2010.
    徐海卫.布袋除尘器清灰过程及荷电对清灰力影响的研究[博士学位论文].北京:清华大学热能工程系,2010.
    徐晓光.生物质燃烧过程积灰形成机理的实验研究[博士学位论文].北京:清华大学热能工程系,2009.
    岳勇.固定燃烧源可吸入颗粒物及痕量元素富集特性的研究[博士学位论文].北京:清华大学热能工程系,2007.
    赵海波.颗粒群平衡模拟的随机模型与燃煤可吸入颗粒物高效脱除的研究[博士学位论文].武汉:华中科技大学,2007.
    卓建坤.煤粉燃烧过程中亚微米颗粒形成机理的实验研究[博士学位论文].北京:清华大学热能工程系,2008.
    张文斌.流态化颗粒的碰撞规律及团聚机理的研究[博士学位论文].北京:清华大学热能工程系,2002.
    Abrahamson J, Marshall J. Permanent electric dipoles on gas-suspended particles and the productionof filamentary aggregates. Journal of Electrostatics,2002,55:43-63.
    Adamczyk Z. Particle adsorption and deposition: role of electrostatic interactions. Advances inColloid and Interface Science,2003,100-102:267-347.
    Adamiak K. Viscous flow model for charged particle trajectories around a single square fiber in anelectric field. IEEE Transactions of Industry Applications,1999,35:352-358.
    Adamiak K. Interaction of two dielectric or conducting droplets aligned in the uniform electric field.Journal of Electrostatics,2001,51:578-584.
    Andres R P. Inelastic energy transfer in particle/surface collision. Aerosol Science and Technology,1995,23:40–50.
    Alonso M, Alguacil F J, Santos J P, et al. Deposition of ultrafine aerosol particles on wire screens bysimultaneous diffusion and image force. Journal of Aerosol Science,2007,38:1230-1239.
    Aoyama M, Oda T, Ogihara M, et al. Electrodynamical control of bubbles in dielectric liquid using anon-uniform traveling field. Journal of Electrostatics,1993,30:247-257.
    Atten P, Pang H L, Reboud J L. Study of dust removal by standing wave electric curtain forapplication to solar cells on Mars. IEEE Transactions on Industry Applications,2009,45:75-86.
    Ayaz F, Pedley T J. Flow through and particle interception by an infinite array of closely-spacedcircular cylinders. European Journal of Mechanics B/Fluids,1999,18:173-196.
    Barnes J, Hut P. A hierarchical O(NlogN) force-calculation algorithm. Nature,1986,324:446-449.
    Barthel E. On the description of the adhesive contact of spheres with arbitrary interaction potentials.Journal of Colloid and Interface Science,1998,200:7–18.
    Binnig G, Quate C F, Gerber Ch. Atomic force microscope. Physical Review Letters,1986,56:930-934.
    Boskovic L, Altman I S, Agranovski I E, et al. Influence of particle shape on filtration processes.Aerosol Science and Technology,2005,39:1184-1190.
    Brach R M, Dunn P F. Macrodynamics of microparticles. Aerosol Science and Technology,1995,23:51-71.
    Brady J F, Bossis G. Stokesian dynamics. Annual Review of Fluid Mechanics,1988,20:111-157.
    Brown, R C. Air filtration: an integrated approach to the theory and applications of fibrous filters.Oxford: Pergamon Press,1993.
    Burghard M, Philipp G, Roth S, et al. Bridging of lateral nanoelectrodes with a metal particle chain.Applied Physics A,1998,67:591-593.
    Burnham N A, Colton R J. Measuring the nanomechanical properties and surface forces of materialsusing an atomic force microscope. Journal of Vacuum Science&Technology,1989,7:2906-2913.
    Butt H J, Cappella B, Kappl M. Force measurements with the atomic force microscope: technique,interpretation and applications. Surface Science Reports,2005,59:1-152.
    Calle C I, Buhler C R, McFall J L, et al. Particle removal by electrostatic and dielectrophoreticforces for dust control during lunar exploration missions. Journal of Electrostatics,2009,67:89-92.
    Calle C I, Mazumder M K, Immer C D, et al. Controlled particle removal from surfaces byelectrodynamic methods for terrestrial, lunar and Martian environmental conditions. Journal ofPhysics: Conference Series142,2008,012073.
    Carpick R W, Ogletree D F, Salmeron M. A general equation for fitting contact area and friction vsload measurements. Journal of Colloid and Interface Science,1999,211:395-400.
    Chen S, Cheung C S, Chan C K, et al. Numerical simulation of aerosol collection in filters withstaggered parallel rectangular fibres. Computational Mechanics,2002,28:152-161.
    Chen Y L, Helm C A, Israelachvili J N. Molecular mechanisms associated with adhesion and contactangle hysteresis of monolayer surfaces. Journal of Physical Chemistry,1991,95:10736-10747.
    Cheng W, Brach R M, Dunn P F. Three-dimensional modeling of microsphere contact/impact withsmooth, flat surfaces. Aerosol Science and Technology,2002,36:1045-1060.
    Chesnutt J K W, Marshall J S. Blood cell transport and aggregation using discrete ellipsoidalparticles. Computers&Fluids,2009,38:1782-1794.
    Choi B S, Fletcher C A J. Computation of particle transport in an electrostatic precipitator. Journalof Electrostatics,1997,40-41:413-418.
    Chokshi A, Tielens A G G M, Hollenbach D. Dust coagulation. The Astrophysical Journal,1993,407:806-819.
    Clarke N R, Tutty O R. Construction and validation of a discrete vortex method for thetwo-dimensional incompressible Navier-Stokes equations. Computers&Fluids,1994,23:751-783.
    Clarke N R, Tutty O R. Two-dimensional Navier-Stokes fow simulation on MIMD processor arrays//Valero M, Onate E, Jane M, et al. Parallel Computing and Transputer Applications.Barcelona: IOS Press,1992:1323-1332.
    Colwell J E, Robertson S R, Horányi M, et al. Lunar dust levitation. Journal of AerospaceEngineering,2009,22:2-9.
    Cordelair J, Greil P. Discrete element modeling of solid formation during electrophoretic deposition.Journal of Materials Science,2004,39:1017-1021.
    Cottaar E J E, Rietema K. A theoretical study on the influence of gas adsorption on interface forcesin powders. Journal of Colloid and Interface Science,1986,109:249-260.
    Crowe C T, Sommerfeld M, Tsuji Y. Multiphase flows with droplets and particles. Boca Raton:CRC Press,1998.
    Crowe C T, Troutt T R, Chung J N. Numerical models for two-phase turbulent flows. AnnualReview of Fluid Mechanics,1996,28:11-43.
    Cundall P A, Strack O D L. Discrete numerical model for granular assemblies. Geotechnique,1979,29:47-65.
    Dahneke B. The capture of aerosol particles by surfaces. Journal of Colloid and Interface Science,1971,37:342-353.
    Dahneke B. The influence of flattening on the adhesion of particles. Journal of Colloid and InterfaceScience,1972,40:1-13.
    Dahneke B. Measurements of the bouncing of small latex spheres. Journal of Colloid and InterfaceScience,1973,45:584–590.
    Dahneke B. Further measurements of the bouncing of small latex spheres. Journal of Colloid andInterface Science,1975,51:58–65.
    Dahneke B. Particle bounce or capture–search for an adequate theory: I. conservation-of-energymodel for a simple collision process. Aerosol Science and Technology,1995,23:25-39.
    Derjaguin B V, Muller V M, Toporov Y P. Effect of contact deformations on the adhesion ofparticles. Journal of Colloid and Interface Science,1975,53:314-326.
    Desai A, Lee S W, Tai Y C. A MEMS electrostatic particle transportation system. Sensors andActuators,1999,73:37-44.
    Di Felice R. The voidage function for fluid-particle interaction systems. International Journal ofMultiphase Flow,1994,20:153–159.
    Dominik C, Nübold H. Magnetic aggregation: dynamics and numerical modeling. Icarus,2002,157:173-186.
    Dominik C, Tielens A G G M. Resistance to rolling in the adhesive contact of two elastic spheres.Philosophical Magazine A,1995,92:783-803.
    Dominik C, Tielens A G G M. The physics of dust coagulation and the structure of dust aggregatesin space. The Astrophysical Journal,1997,480:647-673.
    Donovan R P. Fabric filtration for combustion sources: fundamentals and basic technology. NewYork: Marcel Dekker,1985.
    Dudzicz Z. The path of oscillation of dust particles in the field of the electric curtain of the planetype supplied with AC voltage. Journal of Electrostatics,1989,23:207-214.
    Dudzicz Z. Electrodynamics of charged dust particles and repulsion force within plane-type electriccurtain. Journal of Electrostatics,2001,51-52:111-116.
    Dudzicz Z. Recording of dust particle oscillation path inside electric curtain by laser diode apparatus.Optica Applications,2005, XXXV:907-912.
    Dunn P F, Brach R M, Caylor M J. Experiments on the low-velocity impact of microspheres withplanar surfaces. Aerosol Science and Technology,1995,23:80-95.
    Dunnett S J, Clement C F. A numerical study of the effects of loading from diffusive deposition onthe efficiency of fibrous filters. Journal of Aerosol Science,2006,37:1116-1139.
    Duran J. Sands, powders and grains: an introduction to the physics of granular materials. New York:Springer-Verlag,2000.
    Dwari R K, Hanumantha Rao K, Somasundaran P. Characterisation of particle tribo-charging andelectron transfer with reference to electrostatic dry coal cleaning. International Journal ofMineral Processing,2009,91:100-110.
    Elimelech M, Gregory J, Jia X, et al. Particle deposition and aggregation: measurement, modellingand simulation. Oxford: Butterworth-Heinemann,1995.
    Fardi B, Liu B Y H. Flow field and pressure drop of filters with rectangular fibers. Aerosol Scienceand Technology,1992a,17:36-44.
    Fardi B, Liu B Y H. Efficiency of fibrous filters with rectangular fibers. Aerosol Science andTechnology,1992b,17:45-58.
    Farrell B. Is lunar dust really a problem? LESWG7th General Meeting, May17,2007.(http://ssedso.gsfc.nasa.gov/initiatives/lunar/LESWG/pubs_presentations/7thGM/lunar_dust_051607.ppt).
    Feng J Q, Hays D A. Relative importance of electrostatic forces on powder particles. PowderTechnology,2003,135:65-75.
    Fjeld R A, Owens T M. The effect of particle charge on penetration in an electret filter. IEEETransactions on Industry Applications,1988,24:725-731.
    Gady B, Reifenberger R, Rimai D S, et al. Contact electrification and the interaction force between amicrometer-size polystyrene sphere and a graphite surface. Langmuir,1997,13:2533-2537.
    Gady B, Schleef D, Reifenberger R, et al. Identification of electrostatic and van der Waalsinteraction forces between a micrometer-size sphere and a flat substrate. Physical Review B,1996,53:8065-8070.
    Gartstein Y N, Shaw J G. Many-particle effects in travelling eletrostatic wave transport. Journal ofPhysics D: Applied Physics,1999,32:2176-2180.
    Gascoyne P R C, Vykoukal J. Particle separation by dielectrophoresis. Electrophoresis,2002,23:1973-1983.
    Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions. NewYork: Academic Press,1994.
    Greengard L, Rokhlin V. A fast algorithm for particle simulations. Journal of Computational Physics,1987,73:325-348.
    Greenwood J A. Adhesion of elastic spheres. Proceedings of the Royal Society of London A,1997,453:1277-1297.
    Hemstreet J M. Velocity distribution on the Masuda panel. Journal of Electrostatics,1985,17:245-254.
    Hemstreet J M. Three-phase velocity distribution of Lycopodium particles on the Masuda panel.Journal of Electrostatics,1992,27:237-247.
    Hess J L, Smith A M O. Calculation of potential flow about arbitrary bodies. Progress in AerospaceSciences,1967,8:1-138.
    Hoffmann R. DEM simulations of toner particles with an O (NlogN) hierarchical tree code algorithm.Granular Matter,2006,8:151-157.
    Hogue M D, Calle C I, Weitzman P S, et al. Calculating the trajectories of triboelectrically chargedparticles using discrete element modeling (DEM). Journal of Electrostatics,2008,66:32-38.
    Hong C W. New concept for simulating particle packing in colloidal forming processes. Journal ofthe American Ceramic Society,1997,80:2517-2524.
    Hooton J C, German C S, Davies M C, et al. A comparison of morphology and surface energycharacteristics of sulfathiazole polymorphs based upon single particle studies. European Journalof Pharmaceutical Science,2006,28:315-324.
    Huang B, Yao Q, Li S Q, et al. Experimental investigation on the particle capture by a single fiberusing microscopic image technique. Powder Technology,2006,163:125-133.
    Hughes P C. Spacecraft attitude dynamics. New York: John Wiley&Sons,1986.
    Hunt K H, Crossley F R E. Coefficient of restitution interpreted as damping in vibroimpact. ASMEJournal of Applied Mechanics,1975,97:440-445.
    Intra P, Tippayawong N. Progress in unipolar corona discharger designs for airborne particlecharging: a literature review. Journal of Electrostatics,2009,67:605-615.
    Israelachvili J N. Intermolecular and surface forces (2nd ed.). London: Academic Press,1992.
    Jackson J D. Classical Electrodynamics. New York: John Wiley&Sons1962,108-110.
    Jaworek A, Krupa A, Czech T. Modern electrostatic devices and methods for exhaust gas cleaning: abrief review. Journal of Electrostatics,2007,65:133-155.
    Jayasinghe S N, Edirisinghe M J, Wang D Z. Controlled deposition of nanoparticle clusters byelectrohydrodynamic atomization. Nanotechnology,2004,15:1519-1523.
    John W. Particle-surface interactions: charge transfer, energy loss, resuspension, anddeagglomeration. Aerosol Science and Technology,1995,23:2-24.
    Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids. Proceedingsof the Royal Society of London A,1971,324:301-313.
    Johnson K L. Contact mechanics. Cambridge: Cambridge University Press,1985.
    Johnson K L, Pollock H M. The role of adhesion in the impact of elastic spheres. Journal ofAdhesion Science and Technology,1994,8:1323-1332.
    Johnson K L, Greenwood J A. An adhesion map for the contact of elastic spheres. Journal of Colloidand Interface Science,1997,192:326-333.
    Johnson K L. Contact mechanics and adhesion of viscoelastic spheres.//Tsukruk V V, Wahl K J.Microstructure and Microtribology of Polymer Surfaces ACS Symposium Series741.Washington, D.C.: American Chemical Society,2000:24-41.
    Jones T B. Electromechanics of particles. Cambridge: Cambridge University Press,1995.
    Karadimos A, Ocone R. The effect of the flow field recalculation on fibrous filter loading. PowderTechnology,2003,137:109-119.
    Kawamoto H, Hasegawa N. Traveling wave transport of particles and particle size classification.Journal of Imaging Science and Technology,2004,48:404-411.
    Kawamoto H, Seki K, Kuromiya N. Mechanism of traveling-wave transport of particles. Journal ofPhysics D: Applied Physics,2006,39:1249-1256.
    Kawamoto H. Some techniques on electrostatic separation of particle size utilizing electrostatictraveling-wave field. Journal of Electrostatics,2008,66:220-228.
    Kendall K, Stainton C. Adhesion and aggregation of fine particles. Powder Technology,2001,121:223-229.
    Kim O V, Dunn P F. A microsphere-surface impact model for implementation in computational fluiddynamics. Journal of Aerosol Science,2007,38:532-549.
    Kirsh V A. The effect of van der Waals’ forces on aerosol filtration with fibrous filters. ColloidJournal,2000,62:714-720.
    Kirsh V A. Inertial deposition of heavy aerosol particles in fibrous filters. Theoretical Foundations ofChemical Engineering,2005,39:47-52.
    Kogut L, Etsion I. Adhesion in elastic-plastic spherical microcontact. Journal of Colloid andInterface Science,2003,261:372-378.
    Koizumi Y, Kawamura M, Tochikubo F, et al. Estimation of the agglomeration coefficient ofbipolar-charged aerosol particles. Journal of Electrostatics,2000,48:93-101.
    Konstandopoulos A G. Deposit growth dynamics: particle sticking and scattering phenomena.Powder Technology,2000,109:262-277.
    Kostoglou M, Konstandopoulos A G. Particulate deposit shape evolution on cylinders in cross-flowat high Stokes numbers. Journal of Aerosol Science,2000,31:427-436.
    Lai Y G. Unstructured grid arbitrarily shaped element method for fluid flow simulation. AIAAJournal,2000,38:2246-2252.
    Lamb G E R, Costanza P A, O’Meara D J. Electrical stimulation of fabric filtration. Part II:mechanism of particle capture and trials with a laboratory baghouse. Textile Research Journal,1978,48:566-573.
    Lee K W, Liu B Y H. Theoretical study of aerosol filtration by fibrous filters. Aerosol Science andTechnology,1982,1:147-161.
    Li J F, Chen C S, Yu B Y, et al. Simulation of colloidal particle packing for photonic bandgapcrystals. Journal of the American Ceramic Society,2006,89:1257-1265.
    Li S Q, Marshall J S. Discrete element simulation of micro-particle deposition on a cylindrical fiberin an array. Journal of Aerosol Science,2007,38:1031-1046.
    Li S Q, Marshall J S, Liu G Q, et al. Adhesive particulate flow: the discrete-element method and itsapplication in energy and environmental engineering. Progress in Energy and CombustionScience,2011(in press).
    Li X, Dunn P F, Brach R M. Experimental and numerical studies of microsphere oblique impactwith planar surfaces. Journal of Aerosol Science,2000,31:583-594.
    Li X, Dunn P F, Brach R M. Experimental and numerical studies on the normal impact ofmicrospheres with surfaces. Journal of Aerosol Science,1999,30:439-449.
    Liu G Q, Marshall J S, Li S Q, et al. Discrete-element method for particle capture by a body in anelectrostatic field. International Journal for Numerical Methods in Engineering,2010,84:1589-1612.
    Liu L F, Zhang Z P, Yu A B. Dynamic simulation of the centripetal packing of mono-sized spheres.Physica A,1999,268:433-453.
    Liu Z G, Wang. Pressure drop and interception efficiency of multifiber filters. Aerosol Science andTechnology,1997,26:313-325.
    Lu H L, Gidaspow, D. Hydrodynamics of binary fuidization in a riser: CFD simulation using twogranular temperatures. Chemical Engineering Science,2003,58:3777-3792.
    Lu L S, Hsiau S S. Mixing in vibrated granular beds with the effect of electrostatic force. PowderTechnology,2005,160:170-179.
    Machowski W, Balachandran W. Electrodynamic control and separation of charged particles usingtraveling wave field technique. Journal of Electrostatics,1997,40-41:325-330.
    Maisels A, Kruis F E, Fissan H. Mixing selectivity in bicomponent, bipolar aggregation. Journal ofAerosol Science,2002,33:35-49.
    Markarian J A P, Markarian N, Yeksel M, et al. Particle motions and segregation in dielectrophoreticmicrofluidics. Journal of Applied Physics,2003,15:4160-4169.
    Marshall J S, Grant J R, Gossler A A, et al. Vorticity transport on a Larangian tetrahedral mesh.Journal of Computational Physics,2000,161:85-113.
    Marshall J S. Inviscid incompressible flow. New York: John Wiley&Sons,2001.
    Marshall J S. Particle aggregation and capture by walls in a particulate aerosol channel flow. Journalof Aerosol Science,2007,38:333-351.
    Marshall J S. Discrete-element modeling of particulate aerosol flows. Journal of ComputationalPhysics,2009,228:1541-1561.
    Martin C L, Bordia R K. Influence of adhesion and friction on the geometry of packings of sphericalparticles. Physical Review E,2008,77:031307.
    Masuda S, Fujibayashi K, Ishida K, et al. Confinement and transportation of charged aerosol cloudsvia electric curtain. Electrical Engineering in Japan,1972,92:43-52.
    Masuda S, Kamimura T. Approximate methods for calculating a non-uniform traveling field. Journalof Electrostatics,1975,1:351-370.
    Masuda S, Washizu M, Iwadare M. Separation of small particles suspended in liquid by non-uniformtraveling field. IEEE Transactions on Industry Applications,1987, IAA-23:478-480.
    Masuda S, Washizu M, Kawabata I. Movement of blood cells in liquid by non-uniform travelingfield. IEEE Transactions in Industry Applications,1988,24:217-222.
    Maugis D. Adhesion of spheres: the JKR-DMT transition using a Dugdale model. Journal of Colloidand Interface Science,1992,150:243-269.
    Maugis D. Contact, adhesion and rupture of elastic solids. New York: Springer,2000.
    Mazumder M K, Calle C I, Pruessner K, et al. Research Needs in Electrostatics for Lunar and Mars.Industry Applications Conference,2005,1:327-333.
    Medved A, Dorman F, Kaufman S L, et al. A new corona-based charger for aerosol particles.Journal of Aerosol Science,2000,31:S616-S617.
    Mei R. An approximate expression for the shear lift force on spherical particles at finite particleReynolds number. International Journal of Multiphase Flow,1992,18:145-147.
    Melcher J R, Warren E P, Kotwal R H. Theory for pure traveling-wave boundary-guided transport oftribo-electrified particles. Particulate Science and Technology,1989a,7:1-21.
    Melcher J R, Warren E P, Kotwal R H. Theory for finite-phase traveling-wave boundary-guidedtransport of triboelectrified particles. IEEE Transactions on Industry Applications,1989b,25:949-955.
    Melcher J R, Warren E P, Kotwal R H. Travelling wave delivery of single component developer.IEEE Transactions on Industry Applications,1989c,25:956-961.
    Michaelides E E. Particles, bubbles and drops: their motion, heat and mass transfer. Singapore:World Scientific,2006.
    Millikan R A. The general law of fall of small spherical body through a gas, and its bearing upon thenature of molecular reflection from surfaces. Physical Review,1923,22:1-23.
    Moreno R, Ghadiri M, Antony S J. Effect of the impact angle on the breakage of agglomerates: anumerical study using DEM. Powder Technology,2003,130:132-137.
    Morgan H, Hughes M P, Green N G. Separation of submicron bioparticles by dielectrophoresis.Biophysical Journal,1999,77:516-525.
    Muller V M, Yushchenko V S, Derjaguin B V. On the influence of molecular forces on thedeformation of elastic spheres and its sticking to a rigid plane. Journal of Colloid and InterfaceScience,1980,77:91-101.
    Mullins B J, Agranovski I E, Braddock R D. Particle bounce during filtration of particles on wet anddry filters. Aerosol Science and Technology,2003,37:587-600.
    Nielsen K A. Collection of inertialess particles on circular cylinders with electrical forces andgravitation. Journal of Colloid and Interface Science,1978,64:131-142.
    Oak M J, Saville D A, Lamb G E R. Particle capture on fibers in strong electric fields. I. Experimentstudies of the effects of fiber charge, fiber configuration and dendrite structure. Journal ofColloid and Interface Science,1985a,106:490-501.
    Oak M J, Saville D A. Particle capture on fibers in strong electric fields. II. An experimental test of atheory for the capture of uncharged particles on charged fibers. Journal of Colloid and InterfaceScience,1985b,106:502-512.
    Oh Y W, Jeon K J, Jung A I, et al. A simulation study on the collection of submicron particles in aunipolar charged fiber. Aerosol Science and Technology,2002,36:573-582.
    Onozuka M, Ueda Y, Oda Y, et al. Development of dust removal system using static electricity forfusion experimental reactors. Journal of Nuclear Science and Technology,1997,34:1031-1038.
    Park H S, Park Y O. Simulation of particle deposition on filter fiber in an external electric field.Korean Journal of Chemical Engineering,2005,22:303-314.
    Perry J L, Kandlikar S G. Fouling and its mitigation in silicon microchannels used for IC chipcooling. Microfluid Nanofluid,2008,5:357-371.
    Przekop R, Moskal A, Gradon L. Lattice-Boltzmann approach for description of the structure ofdeposited particulate matter in fibrous filters. Journal of Aerosol Science,2003,34:133-147.
    Ren H. Simulation of toner flow using the discrete element method [PhD thesis]. Moscow (USA):University of Idaho,2007.
    Ristow G H. Pattern formation in granular materials. London: Springer,2000.
    Rogers L N, Reed J. The adhesion of particles undergoing an elastic-plastic impact with a surface.Journal of Physics D: Applied Physics,1984,17:677-689.
    Romay F J, Liu B Y H, Chae S J. Experimental study of electrostatic capture mechanisms incommercial electret filters. Aerosol Science and Technology,1998,28:224-234.
    Russel W B, Saville D A, Schowalter W R. Colloidal Dispersions. Cambridge: CambridgeUniversity Press,1989.
    Saffman P G. Corrigendum to ‘The lift force on a small sphere in a slow shear flow’. Journal ofFluid Mechanics,1968,31:624.
    Saffman P G. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics,1965,22:385-400.
    Salmon J K, Warren M S. Skeletons from the treecode closet. Journal of Computational Physics,1994,111:136-155.
    Schaefer D M, Carpenter M, Gady B, et al. Surface roughness and its influence on particle adhesionusing atomic force techniques. Journal of Adhesion Science and Technology,1995,9:1049-1062.
    Scharstein R W. Capacitance of a tube. Journal of Electrostatics,2007,65:21-29.
    Schlichting H. Boundary-layer theory (seventh ed.). New York: McGraw-Hill,1979.
    Schmidlin F W. A new nonlevitated mode of traveling wave toner transport. IEEE Transactions onIndustrial Applications,1991,27:480-487.
    Schmidlin F W. Modes of traveling wave particle transport and their applications. Journal ofElectrostatics,1995,34:225-244.
    Serayssol J M, Davis R H. The influence of surface interactions on the elastohydrodynamic collisionof two spheres. Journal of Colloid and Interface Science,1986,114:54-66.
    Severens I E M, van de Ven AAF, Wolf D E, et al. Discrete element method simulations of tonerbehavior in the development nip of the Océ direct imaging print process. Granular Matter,2006,8:137-150.
    Seville J P K, Tüzün U, Clift R. Processing of particulate solids. London: Chapman and Hall,1997.
    Seville J P K, Willett C D, Knight P C. Interparticle forces in fluidisation: a review. PowderTechnology,2000,113:261-268.
    Sharma R, Clark D W, Srirama P K, Mazumder M K. Tribocharging characteristics of the mars dustsimulant (JSC Mars-1). IEEE Transactions on Industry Applications,2008,44:32-39.
    Sims R A, Biris A S, Wilson J D, et al. Development of a transparent self-cleaning dust shield forsolar panels//Proceedings of the ESA-IEEE Joint Meeting on Electrostatics2003. Morgan Hill:Laplacian Press,2003:814-821.
    Singh J P, Holt C, Totsuka T, et al. Load balancing and data locality in adaptive hierarchical N-bodymethods: Barnes-Hut, fast multipole, and radiosity. Journal of Parallel and DistributedComputing,1995,27:118-141.
    Sometani T. Image method for a dielectric plate and a point charge. European Journal of Physics,2000,21:549-554.
    Stevens A B, Hrenya C M. Comparison of soft-sphere models to measurements of collisionproperties during normal impacts. Powder Technology,2005,154:99-109.
    Sun S, Walz J Y. A model for calculating electrostatic interactions between colloidal particles ofarbitrary surface topology. Journal of Colloid and Interface Science,2001,234:90-105.
    Suresh L, Walz J Y. Effect of surface roughness on the interaction energy between a colloidal sphereand a flat plate. Journal of Colloid and Interface Science,1996,183:199-213.
    Tabor D. Surface forces and surface interactions. Journal of Colloid and Interface Science,1977,58:2-13.
    Tachaumnat B, Takuma T. Calculation of the electric field for lined-up spherical dielectric particles.IEEE Transactions on Dilectrics and Electrical Insulation,2003,10:623-633.
    Takahashi K, Kajihara H, Urago M, et al. Voltage required to detach an adhered particle byCoulomb interaction for micromanipulation. Journal of Applied Physics,2001,90:432-437.
    Tatom F B, V. Srepel V, Johnson R D, et al. Lunar dust degradation effects and removal/preventionconcepts, NASA Technical Report No. TR-792-7-207A, pp.3–1,1967.
    Thornton C, Ning Z. A theoretical model for the stick/bounce behaviour of adhesive, elastic-plasticspheres. Powder Technology,1998,99:154-162.
    Thornton C, Yin K K. Impact of elastic spheres with and without adhesion. Powder Technology,1991,65:153-166.
    Tien C, Wang C S. Chainlike formation of particle deposits in fluid-particle separation. Science,1977,196:983-985.
    Tsai C J, Pui D Y H, Liu B Y H. Elastic flattening and particle adhesion. Aerosol Science andTechnology,1991,15:239–255.
    Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particlesin a horizontal pipe. Powder Technology,1992,71:239–250.
    Vengimalla R, Chase G G, Ramarao B V. Modeling of filler retention in compressible fibrous media.Separation and Purification Technology,1999,15:153-161.
    Vlad S, Iuga A, Dascalescu L. Numerical computation of conducting particle trajectories inplate-type electrostatic separators. IEEE Transactions on Industry Applications,2003,39:66-71.
    Wall S, John W, Wang H, et al. Measurements of kinetic energy loss for particles impacting surfaces.Aerosol Science and Technology,1990,12:926-946.
    Walsh D C, Stenhouse J I T. The effect of particle size, charge, and composition on the loadingcharacteristics of an electrically active fibrous filter material. Journal of Aerosol Science,1997,28:307-321.
    Walsh D C, Stenhouse J I T. Parameters affect the loading behavior and degradation of elctricallyactive filter materials. Aerosol Science and Technology,1998,29:419-432.
    Wang C S, Ho C P, Makino H, et al. Effect of electrostatic fields on accumulation of solid particleson single cylinders. AIChE Journal,1980,26:680-683.
    Wang C S. Electrostatic forces in fibrous filters—a review. Powder Technology,2001,118:166-170.
    Wang X, Kim K, Lee C, et al. Prediction of air filter efficiency and pressure drop in air filtrationmedia using a stochastic simulation. Fibers and Polymers,2008,9:34-38.
    Weiss L C, Thibodeaux D P. Separation of seed by-products by an AC electric field. Journal of theAmerican Oil Chemists’ Society,1984,61:886-890.
    Wilson L G, Cavanagh P. The capture of sub-micron aerosol particles by single fine fibres.Atmospheric Environment,1971,5:123-135.
    Wu C Y, Thornton C, Li L Y. Coefficients of restitution for elastoplastic oblique impacts. AdvancedPowder Technology,2003,14:435-448.
    Wu Z, Walters J K, Thomas D W P. The deposition of particles from an air flow on a fibercylinderical fiber in a uniform electrical field. Aerosol Science and Technology,1999,30:62-70.
    Xu M D, Willeke K. Right-angle impaction and rebound of particles. Journal of Aerosol Science,1993,24:19-30.
    Xu X G, Li S Q, Li G D, et al. Effect of co-firing straw with two coals on the ash depositionbehavior in a down-fired pulverized coal combustor. Energy&Fuels,2010,24:241-249.
    Yan W, Li S Q, Zhang Y Y, et al. Effects of dipole moment and temperature on the interactiondynamics of titania nanoparticles during agglomeration. Journal of Physical Chemistry C,2010,114:10755-10760.
    Yang R Y, Zou R P, Yu A B. Computer simulation of the packing of fine particles. Physical ReviewE,2000,62:3900-3908.
    Yen A C, Hendricks C D. A planar electric curtain used as a device for the control and removal ofparticulate materials. Journal of Electrostatics,1978,4:255-266.
    Yu C, Vykoukal J, Vykoukal D M, et al. A three-dimensional dielectrophoretic particle focusingchannel for microcytometry applications. Journal of Microelectromechanical Systems,2005,14:480-487.
    Zhao X L, Li S Q, Liu G Q, et al. DEM simulation of the particle dynamics in two-dimensionalspouted beds. Powder Technology,2008,184:206-213.
    Zhao Y, Marshall, J S. Spin coating of a colloidal suspension. Physics of Fluids,2008,20:043302-1–043302-15.
    Zhou H, Gotzinger M, Peukert W. The influence of particle charge and roughness onparticle-substrate adhesion. Powder Technology,2003,135-136:82-91.
    Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: theoreticaldevelopments. Chemical Engineering Science,2007,62:3378-3396.
    Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems: a review ofmajor applications and findings. Chemical Engineering Science,2008,63:5728-5770.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700