用户名: 密码: 验证码:
北方主要退耕还林还草区植被演替态势研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北方地区生态环境日益恶化,植被物种多样性锐减,土壤退化、沙化现象严重,直接影响农业生产的正常进行,退耕还林还草工程应运而生,但随着时间的增长,退耕地涌现了不少问题,其中主要是人工造林模式与天然林配置模式差异性问题。若要使此工程取得良好的生态效益,在人工生态恢复过程中,须根据不同地区植被适应性特点,采取近自然方式设计退耕还林还草地配置和管理技术。根据地带性和退耕模式的不同,本文选择具有比较完整退耕序列的内蒙鄂尔多斯、青海大通、山西吕梁地区,它们依次代表了黄土高原向沙漠(地)过渡带、黄土高原向青藏高原过渡带、黄土高原丘陵沟壑带。将北方主要退耕还林还草区植被演替过程和态势进行更深层地探讨,为人工退耕还林还草的生态恢复技术模式改进提供科学参考。
     本文选取内蒙鄂尔多斯、青海大通、山西吕梁的退耕还林还草地作为研究对象,通过对这些地区植被的大量群落学调查,综合TWINSPAN、DCA、CCA、典型相关分析、主成分分析等多元统计分析方法,结合主要造林树种林木需水量和水环境容量,围绕环境梯度的变化与植被数量特征的响应和相互关系,进行了植被分类、群落分布与环境因子的关系、种群生态位、群落多样性、种群空间格局、群落稳定性和植物蒸腾特性等植物群落演替过程的研究,得出以下主要结论:
     (1)黄土高原向沙漠(地)过渡带退耕还草地植被演替态势:半流动沙地(退耕5y)缓慢正向演替阶段(沙柳群落+沙打旺群落+沙竹巴锡藜群落随机或均匀分布)→半固定沙地(退耕5~10y)快速正向演替阶段(蓝刺头狗尾草群落+牛心朴子乳浆大戟群落集群分布)→固定沙地(退耕15~25y)趋于逆向植被演替(油蒿羊柴群落和柠条滨藜群落强集群分布)。
     植被演替的方向和植被群落组织结构水平的变化规律主要有以下4点:
     ①整个群落水平随着退耕年限的增长、退化程度的降低,在半流动沙地到固定沙地演化过程中,退耕还草地的群落生态特性发展不稳定,退耕还草区的群落结构和组成还未达到顶级群落水平,群落生态特性波动较大。②油蒿种群在固定沙地(退耕25y)阶段已出现优于羊柴种群的生态特征,即羊柴种群开始出现萎蔫和枯死现象,密度下降,种群衰败,种群竞争性减弱。这预示下一个演替阶段油蒿种群将取代羊柴种群。③半固定沙地(退耕15y~20y)阶段是群落变化的敏感期,但退耕地整体群落植被是从沙生植物到多年生植物的变化过程证明了退耕还草地整体朝正向演替发展的态势。④以沙柳、油蒿、小叶锦鸡儿、羊柴为代表的主要造林树种的蒸腾耗水特性研究反映出,就目前黄土高原向沙漠(地)过渡区退耕还草地水分条件而言,无法实现所选造林树种的最低保证需水量,这导致该地带的退耕还草地种群生长受到水分条件胁迫,群落植被变化易趋于逆向演替。
     (2)黄土高原向青藏高原过渡地带退耕还林地植被演替态势:垂穗披碱草群系呈集群型(退耕0~18y)快速正向演替→银露梅群落和匍匐栒子群落呈强集群型(退耕18y~27y)缓慢逆向演替→华北落叶松群落、中国沙棘灌木群落和青海云杉+白桦林群系呈均匀型或集群型(退耕27y~55y)平稳正向演替。以青海云杉群落及其与白桦、沙棘混交林群落为优势种群。退耕0~27y阶段,群落物种的数量和种数有较大波动,退耕45年后群落稳定。目前黄土高原向青藏高原过渡区退耕还林地的水环境容量可以满足主要造林树种的耗水需求量,即该地区植被生长不受水环境条件制约,植被演替朝正向发展。
     (3)黄土高原丘陵沟壑地带退耕还林地植被演替态势:退耕5y缓慢正向演替阶段→退耕10y快速正向演替(伴有逆向演替特征)。演替特征在不同坡向变化明显:阳坡地由刺槐群落→油松丁香群落,半阳坡地由沙棘群落和虎榛子连翘群落→三裂绣线菊群落和黄刺玫群落,半阴坡地由黄刺玫群落和沙棘群落→黄刺玫群落和油松丁香群落,阴坡地由黄刺玫群落和油松丁香群落→虎榛子连翘群落。以油松刺槐群落、黄刺玫群落和铁杆蒿羊胡子群落为优势种群,且各种群均以集群方式分布。其中,阳坡多样性变化最剧烈,半阳坡、半阴坡和阴坡生物多样性变化规律相近。演替发生最明显的坡位是坡度15°~30°的地段。
     黄土高原丘陵沟壑地带退耕还林地植被群落生态特征不稳定,不同坡向的退耕林地中的群落分布集中,优势种群间生态位重叠度大,致使种间竞争加大,灌木和草本层对资源利用率高使人工林树种油松和刺槐大面积枯死衰败,造成群落稳定性差。同时封山育林的造林成分过于单一,物种多样性较低。
     黄土高原丘陵沟壑地带退耕还林地林木生长条件受到水分亏缺的制约,减缓了植被生长速度,降低了植被群落正向演替的速度。
     (4)从黄土高原向沙漠(地)过渡带、黄土高原向青藏高原过渡地带、黄土高原丘陵沟壑地带的退耕还林还草地的植被演替过程看,北方主要退耕地植被演替态势有共性亦有异性,但总体发展趋势是正向演替与逆向演替交错进行。
     相同点有两点,一是退耕初期即从物种有无到有的过程里,植被生态特征均称规模态势发展、物种多样性增长幅度大,也就是发生了正向演替。二是水环境容量不满足造林树种的林木需水量时,退耕地植被演替初期植被进行正向演替的速度慢、时间长。
     不同点有两点:①演替中期。退耕地植被演替发展过程并不都是延续前期发展态势,如黄土高原向青藏高原过渡地带和黄土高原丘陵沟壑地带。由于种间密度过大、土壤养分和水分竞争剧烈,导致种群衰退,造成了植被群落的暂时性逆向演替。②水环境容量与林木需水量适应性影响未来植被演替整体态势。黄土高原向青藏高原过渡地带呈稳定正向发展,而另外两个地带的植被趋向逆向演替。根据3个地带主要退耕还林还草树种的耗水特性和当地水环境容量适应性分析发现,黄土高原向青藏高原过渡地带水环境容量与优势种需水量匹配,另外两个地带呈现不足状态。由此可知,当种群密度达到一定程度,种问水资源竞争加剧,导致蒸腾耗水量大、耐寒性相对弱的物种枯死,形成暂时性地表裸露,造成演替序列逆向进行,该现象是水资源量与人工选择的造林树种或密度不匹配造成的。
The over human interrupting causes the degeneration of natural vegetation communities and loss of biodiversity,which happened more seriously in the northern area of China.The different extents of damages in soil quality and water resource have close relationship with producing quantity of agricultural industry,which depended on environmental elements.Hence,the project of converting lands to forest and pasture appeared accordingly.However,during several decades,a series of problems has emerged in large numbers;especially the differences between article forestation configure pattern and natural forestry pattern.We have to take the closest program to manage the converting lands according to basic environment during human ecological recovery.As the variable regions and converting lands pattern,this paper chose the comparably intact time order of converting lands to forest and pasture in 3 regions,which are Ordos in Inner Mongolia representing altiplano-to-desert transition region,Datong in Qinghai representing Qinghai-Tibetan Plateau region and Luliang in Shanxi representing hilly-gully regions of the loess plateau.As a result,it is very significant for the availability of converting the land for forestry and pasture with reasonable establishment and management in northern areas.Therefore,we will achieve more reasonable pattern of converting the land for forest and pasture to arrive comfortable environment.
     Selecting Ordos in Inner Mongolia,Datong in Qinghai and Luliang in Shanxi as researching objects,revolving around the mutual responds and relationships between the environmental gradient and vegetation characteristics,this paper focuses on the research of the vegetation classification,the connection between community distribution and environmental factors,population niche,community diversity,community spatial pattern,community stability and transpiration effects by investigating a large number of vegetation communities in these three regions and combining multivariate statistics such as TWINSPAN,DCA,CCA,canonical correlation analysis,principal component analysis and the analysis of transpiration and water environmental capacity.The main conclusions this paper comes to are as follows:
     (1) The vegetation succession situation of altiplano-to-desert transition region:semi-moving dune (converting land for 5y) with slowly positive succession(Phyllotrstachys propinqua+Bassia dasyphylla, Astragalus adsurgens+Inula salsoloides,Salix psammophila with random or equal distribution)→semi-fixed dune(converting land for 5~10y) with fast positive succession(Echinops gmelini+Setaria viridis,Cynanchum komarovii+Euphorbia esula with centralized distribution)→fixed dune (converting land for 5~10y) tending to negative succession(poplar and elm plus Artemisia ordosica+ Hedysarum leave with intensively centralized distribution).
     There are 4 points explaining the changing pattern in the direction and organization of vegetation succession.
     ①It is in fluctuating situation for the whole communities in different succession phrases from semi-moving dune to fixed dune.The vegetation diversity,composing ingredients and organization are all in great changing situation.Hence,present vegetation communities has not arrived the stable top-level state.②The species of Artemisia ordosica has appeared the ecological phenomenon of replacing the species of Hedysarum leave,which acts as wilting and exsiccation in the species of Hedysarum leave.It indicates that Artemisia ordosica will take over Hedysarum leave and become dominant species in next vegetation succession.③Semi-fixed dune(converting land for 5~10y) is the sensitive phrase,but whole converting land for pasture communities situation to positive succession.④The paper chose Salix psammophila,Artemisia ordosica,Caragana arborescens,Hedysarum leave as main forestation tree species to test their transpiration characteristic.Combining with the analysis water resource situation,the result shows that tree water requirement is unmatchable with water environmental capacity in altiplano-to-desert transition region.Therefore,the vegetation growing will be intimidated by less water,and the vegetation succession tend to negative situation.
     (2) The vegetation succession situation of Qinghai-Tibetan Plateau region:Elymus nutans community with centralized distribution in fast positive succession(converting land for 0~18y)→Potentilla glabra community and Contoneaster adpressus community with intensively centralized distribution in slowly negative succession(converting land for 18~27y)→Picea crassifolia+Betwla platyphylla community and Hippophae rhamnoides community with equal or centralized distribution in stable positive succession.The sensitive phrase is in the process of converting land for 0~27y,when vegetation community has strong fluctuation in species numbers and individual numbers.This fluctuation will decline after converting land for 45y.At present,the water capacity can satisfy the main forestation tree water requirement in Qinghai-Tibetan Plateau region,which means the vegetation natural growing is not restricted by water quantity.As a result,the vegetation succession normally tends to be positive direction.
     (3) The vegetation succession situation of hilly-gully regions of the loess plateau:converting land for 5y with slow positive succession→converting 10y with fast positive succession(coming along characteristics of negative succession).All ecological characteristics of succession in four different slope gradients are obvious:sunny slope is Robinia pseudoacacis community→P.tabulaeformis+Syzygium aromaticum Merr.EtPerry community,semi-sunny slope is hippophae and Ostryopsis davidiana+Forsythia suspensa Vahl community→Spiraea trilobata Linn.+Artemisia spp and R.xanthina community,semi-negative slope is R.xanthina community and hippophae→R.xanthina community and P.tabulaeformis+Syzygium aromaticum Merr.EtPerry community,negative slope is R.xanthina community and P.tabulaeformis+Syzygium aromaticum Merr.EtPerry community→Ostryopsis davidiana+Forsythia suspensa Vahl.The dominant species includes P.tabulaeformis,Robinia pseudoacacis,R.xanthina,A.sacrorum,Carex rigescens with centralized distribution.Distinctive diversity changes happened in sunny slope instead of similar changes in other three slopes.The most obvious gradient affecting species communities diversity locates between 15°and 30°.
     The converting land for forest in hilly-gully regions of the loess plateau has unstable community diversity characteristics and intensive distribution between different communities,so that species competition comes into a severe state.Shrubbery and herbaceous layer take up a large number of resources,which results in overarea fading of P.tabulaeformis and Robinia pseudoacacis.Therefore,the whole community is in unstable situation because of over pure forestation tree species.
     Due to water deficient,the normal plant growing is restricted in hilly-gully regions of the loess plateau.As a result,the processing rate of positive succession comes down gradually.
     (4) Concluding above three regions vegetation succession process and situation,the total situation in northern main converting land to forest and pasture tend to intersecting pattern between positive and negative succession.There are both common and differentia in the succession process.
     There are two common points in different converting lands.One is the prophase of succession belonging to positive process with most of community characteristics increasing fast.The other is the slow type of succession in the prophase all because of the dissatisfaction between tree water requirements and water environmental capacity.
     The differences also have two parts.The prime one is the medium phrase.Some of the regions have reversal direction of vegetation succession,such as Qinghai-Tibetan Plateau region and hilly-gully regions of the loess plateau.This phenomenon is raised by over species density,competition for soil nutritious ingredient.As a result,most of them declined and the whole vegetation communities' succession temporarily come into negative succession.The other is the different future situation of vegetation succession depending on variable regions.Qinghai-Tibetan Plateau region has been come into a kind of stable succession phrase rather than the others.The reason according to this phenomenon is based on the competition of different vegetation communities for less regional water resource.The deficient water environmental capacity induces fluctuating vegetation succession process.
引文
[1]安树青,王峥峰,朱学雷,等.土壤因子对次生森林群落物种多样性的影响[J].武汉植物学研究,1997,15(2):143-150.
    [2]奥小平,郝向春等著.山西森林植被恢复与重建技术[M].中国林业出版社,2007.
    [3]白永飞,陈佐忠.锡林河地区羊草草原植物种群和功能群的长期变异性及其对群落稳定性的影响[J].植物生态学报,2000,24(6):641-647.
    [4]包维楷,刘照光,刘庆.生态恢复重建研究与发展现状及存在的主要问题[J].世界科技研究与发展,2001,23(1):44-48.
    [5]蔡晓明.生态系统生态学.北京:科学出版社[M],2000.
    [6]常国梁,青海大通退耕还林工程区的林木耗水特性[J].中国水土保持科学,2005,3(1):58-65
    [7]陈发祖.蒸发测定方法[J].地理研究,1988,7(3):78-88.
    [8]陈光升,钟章成.重庆缙云山常绿阔叶林群落物种多样性与土壤因子的关系[J].应用与环境生物学报,2004,10(1):12-17.
    [9]陈海滨,党坤良,安锋等.黄土高原沟壑区林地土壤水分特征的研究(Ⅱ)土壤水分有效性及其亏缺状况的分析[J].西北林学院学报,2004,19(1):5-8.
    [10]陈海滨,孙长忠,安锋,等.黄土高原沟壑区林地土壤水分特征的研究[J].西北林学院学报,2003,18(4):13-16.
    [11]陈洪松,邵明安.中子仪的标定及其在坡地土壤水分测量中的应用[J].干旱地区农业研究,2003,21(2):68-72.
    [12]陈继海.纽约州历史上的退耕还林[J].云南林业,2001,22(1):8-15.
    [13]陈灵芝,陈伟烈主编.中国退化生态系统研究[M].北京:中国科学技术出版社.1995
    [14]陈灵芝.中国的生物多样性现状及其保护对策[M].北京:科学出版社,1993.75-90.
    [15]陈隆勋,朱文琴,王文等.中国近45年来气候变化的研究[J].气象学报,1998,56(3):257-271.
    [16]陈善福,舒庆尧.植物耐干早胁迫的生物学机理及其基因工程研究进展[J].植物学通报,1999,16(5):555-580.
    [17]陈尚谟.旱区农田水分利用效率探讨[J].干旱地区农业研究,1995,1:14-19.
    [18]陈廷贵,张金屯.山西官帝山神尾沟植物群落物种多样性与环境关系的研究[J].应用与环境生物学报,2000,6(5):406-411.
    [19]陈永金,陈亚宁,薛燕.干旱区植物耗水量的研究与进展[J].干旱区资源与环境,2004,18(6):152-158.
    [20]程积民,万惠娥.中国黄土高原植被建设与水土保持[M].中国林业出版社著,2002.
    [21]崔国发,刑韶华,赵勃著.北京山地植物和植被保护[M].中国林业出版社,2008.
    [22]党承林,王崇云,王宝荣,李彦玲,黄其明.植物群落的演替与稳定性.生态学杂志,2002,21(2):30-35
    [23]丁一汇,等.中国西北地区气候与生态环境概论[M].北京:气象出版社,2001.
    [24]方精云.探索中国山地植物多样性的分布规律[J].生物多样性.2004,12(1):1-4
    [25]冯富堂,王世新,红心,等.呼伦贝尔典型草原区沙地植被恢复中间试验.中国草地,1993,(4)t38-40
    [26]甘枝茂,桑广书.关于黄土高原退耕还林(草)问题[J],干旱区资源与环境,2002,16(1):62-65.
    [27]关文彬,陈铁,董亚杰,等.东北地区植被多样性的研究Ⅰ:寒温带针叶林区域垂直植被多样性分析[J].应用生态学报,1997,8(5):465-470.
    [28]郭惠清,田有亮.杨幼树水分生理指标和光合强度与土壤含水量关系的研究[J].干旱区资源与环境,1998,12(2):101-106.
    [29]郭连生,刘亮.9种阔叶幼树的蒸腾速率、叶水势和环境因子关系的研究[J].生态学报,1992,12(1):47-52.
    [30]郭庆荣,李玉山.黄土高原南部土壤水分有效性研究[J].土壤学报,1994,31(3):236-243.
    [31]国家林业局编.全国林业生态建设与治理模式[M].中国林业出版社,2003.
    [32]何友均著.三江源自然保护区森林植物多样性及其保护研究[M].中国林业出版社,2008.
    [33]贺金生,陈伟烈.陆地植物群落物种多样性的梯度变化特征[J].生态学报,1997,17(1):91-99.
    [34]贺康宁.黄土高原半干旱区集水造林水分生产潜力研究[J].北京林业大学博士论文,2000,1(1):14-57.
    [35]侯扶江,肖金玉,南志标.黄土高原退耕地的生态恢复.应用生态学报,2002,13(8):923-9
    [36]胡隐月,孟庆繁,王庆贵,等.集合环境梯度对森林生物多样性的影响[J].东北林业大学学报,1996,24(4):74-79.
    [37]胡志斌,何兴元,江晓波,等.岷江上游典型时期景观格局变化及驱动力初步分析[J].应用生态学报,2004,15(10):1797-1802.
    [38]黄建辉,韩兴国.生物多样性何生态系统稳定性[J].生物多样性,1995,3(1):31-37.
    [39]黄培祜.干旱区生态恢复与生物多样性的相关研究[A].李文华,王如松.生态安全与生态建设.北京:气象出版社。2002.80-84.
    [40]黄晓霞,江源,刘全儒,等.小五台山亚高山草甸生物多样性的空间格局[J].地理学报,2003,58(2):186-192.
    [41]姜凤歧,曹成有,曾德慧著.科尔沁沙地生态系统退化与恢复[M].中国林业出版社, 2003.
    [42]蒋德明等著.科尔沁沙地荒漠化过程与生态恢复[M].中国环境科学出版社,2002.
    [43]蒋有绪.区域生物多样性保护的基本构想.刘世荣等主编.中国暖温带森林生物多样性研究[M].北京:中国林业出版社,1998,37-42.
    [44]康绍忠,刘晓明,熊运章等.土壤—植物—大气连续体水分传输理论及其应用[M].北京:水利电力出版社,1994:12-78,122-147.
    [45]柯晓新,杨兴国,张旭东.农田蒸散测算的微气象学方法[J].干旱地区农业研究,1995,13(1):31-35.
    [46]冷石林,韩仕峰.中国北方早地作物节水增产理论与技术[M].北京:中国农业科技出版社,1996:78-86.
    [47]李博.植物群落的调查与分析[M].(见:姜恕主编《草地生态研究法》)北京:农业出版社,45-79.
    [48]李毳.山西庞泉沟针叶林群落植物多样性研究[J].水土保持学报,2001,15(5):95-107.
    [49]李军玲,张金屯,郭逍宇,等.关帝山亚高山灌丛草甸群落优势种群的生态位研究[J].西北植物学报,2003,23(12):2081-2088.
    [50]李勉,姚文艺,李占斌.黄土丘陵区坡向差异及其在生态环境建设中的意义.,2004,11(1):37-39
    [51]李清河,杨立文,崔丽娟.北京九龙山退耕植被群落变化的研究.林业科学研究,2002,15(3):323-331
    [52]李清河,杨立文,周金星.北京九龙山植物群落物种多样性特征对比分析.应用生态学报,2002,13(9):1065-1068
    [53]李荣生,许煌灿,尹光天等.植物水分利用效率的研究进展[J].林业科学研究,2003,16(3):366-371.
    [54]李世东.干热干旱河谷区和黄土丘陵沟壑区退耕还林还草模式初步研究[J].北京林业大学学报,2002,24(3):35-38.
    [55]李新荣,张景先等.我国干旱沙漠地区人工植被与环境演变过程中植物多样性研究[J].植物生态学报,2000,24(3):257-261.
    [56]李永强,许志信.典型草原区撂荒地植物群落演替过程中物种多样性变化.内蒙古农业大学学报,2002,23(4):26-31
    [57]李玉霖,崔建垣,张铜会.参考作物蒸散量计算方法的比较研究[J].中国沙漠,2002,22(4):327-376.
    [58]李镇清.中国东北样带(NECT)植物群落复杂性与多样性研究[J].植物学报,2000,42(9):971-978.
    [59]林鹏.植物群落学[M].北京:高等教育出版社,1986.
    [60]林业部科技司编.植被生态学的目的和方法[M].北京:科学出版社,1994:10-58.
    [61]刘建军,崔宏安,王得祥等.延安市张梁试区退耕地植被自然恢复与多样性变化[J].西北林学院学报,2002,17(3):8-11.
    [62]刘庆,吴彦,何海.中国西南亚高山针叶林的生态学问题[J].世界科技研究与发展.2000,23(2):63-59
    [63]刘世梁,马克明,傅伯杰,等.北京东灵山地区地形土壤因子与植物群落关系研究[J].植物生态学报,2003,23(4):496-502.
    [64]刘世荣,蒋有绪.中国暖温带森林生物多样性研究[M].北京:中国科学技术出版社,1998:90-144.
    [65]刘文耀,刘伦辉,盛才余.生物生态工程的环境适宜性与应用前景.山地学报,1999,17(4):358-362
    [66]刘文耀,刘伦辉,邱学忠,等.云南南润干热退化山地水分词蓄与植被恢复途径的试验研究.自然资源学报,1995tlo(1)t35-41
    [67]刘小阳,吴开亚.天童森林植被的群落稳定性与物种多样性关系的研究[J].生物学杂志,1999,16(5):17-18.
    [68]刘兴汉,等.气候变暖对内蒙古生态环境的影响[J].内蒙古气象,2003,2:22-24.
    [69]刘增文,李雅素.生态系统稳定性研究的历史与现状[J].生态学杂志,1997,16(2):58-61.
    [70]柳新伟,周厚诚,李萍.生态系统稳定性定义剖析[J].生态学报,2004,24(11):2635-2541.
    [71]卢桂宾.环境条件对黄土丘陵区旱坡地枣树水分蒸腾的影响[J].东北林业大学学报,2001,29(4):131-133.
    [72]卢纹岱主编.SPSS for Windows统计分析(第2版)[M].电子工业出版社,2002.
    [73]吕荣主编.鄂尔多斯林业可持续发展战略研究[M].中国农业科学技术出版社,2006.
    [74]罗文杰,李建军.从五丈原林场的地类变化看封山育林效果[J].陕西林业科技,1999(3):23-25.
    [75]马长明,袁玉欣.国内外退耕地植被恢复研究现状.世界林业研究,,2004,17(4):24-27
    [76]马建敏,严国安,任南等.东湖围隔(栏)中水生植被恢复及结构优化研究.应用生态学报,1997,8(5)t535-540
    [77]马姜明,李昆.森林生态系统稳定性研究的现状与趋势[J].世界林业研究,2004,17(1):15-19.
    [78]马克平,黄建辉,于顺利,等.北京东灵山地区植物群落多样性的研究Ⅱ:丰富度、均匀度和物种多样性指数[J].生态学报,1995,15(3):268-277.
    [79]马克平,钱迎倩,王晨.生物多样性研究的现状与发展趋势[M].北京:中国科学技术出版社,1994.
    [80]马克平.生物群落多样的测度方法[c]。生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994.
    [81]毛文永著.生态环境影响评价概论修订版[M].中国环境科学出版社,2007.
    [82]苗莉云,王孝安,王志高.太白红杉群落物种多样性与环境因子的关系[J].西北植物学报,2004,24(10):1888-1893.
    [83]倪健,陈仲新,董鸣,等.中国生物多样性的生态地理区划[J].植物学报,1998,40(4):370-382.
    [84]牛建明.2000.内蒙古主要植被类型与气候因子关系的研究.应用生态学报,11(1):47-52
    [85]彭珂珊.黄土高原水土流失区退耕还林草的基本思路[J].水土保持研究,2000,7(2):164-171.
    [86]彭少麟,方炜.广州白云山次生常绿阔叶林的群落组成结构动态.植物学通报,1995,12:49-54
    [87]彭少麟,方炜.鼎湖山植被演替过程优势种群动态研究Ⅲ.黄果厚壳桂和厚壳桂种群.热带亚热带植物学报,1884,2(4):79-87
    [88]彭少麟.森林群落稳定性与动态测度[J].广西植物,1987,7(1):67-72.
    [89]彭少麝.南亚热带退化生态系统恢复和重建的生态学理论和应用.热带亚热带植物学报,1996,4(3)t36-44
    [90]钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1995,13-36.
    [9l]丘君,陈利顶,高启晨.施工干扰下的生态系统稳定性评价—以西气东输管道工程沿线新疆干旱荒漠区为例[J].干旱区地理,2003,26(3):316-322.
    [92]曲红.晋西黄土高原的集水措施对林地位生态环境的影响[J].北京林业大学硕士论文,1998,1(1):15-45.
    [93]任海,蔡锡安,饶兴权,张倩媚,刘世忠.植物群落的演替理论.生态科学,2001,20(4):59-67
    [94]任洪玉,温仲明,扬勤科.黄土沟壑区植被恢复及其物种多样性的变化.干旱地区农业研究,2003,21(2):154-158
    [95]邵明安,杨文治.黄土区土壤水分有效性研究[J].水利学报,1987,(8):38-44.
    [96]申登峰,周晓雷,闫月娥等.绿洲防护林体系主要造林树种蒸腾特征研究[J].甘肃林业科技,2003,28(1):1-6.
    [97]申双和.国外森林蒸散的测定、计算与模拟[J].中国农业气象,1991,12(1):51-55.
    [98]沈渭寿.雅鲁藏布江中部地区沙地植被的分类和排序[J].中国沙漠,1997:17(3):269-273
    [99]盛炜彤,杨承栋.关于杉木林下植被对改良土壤性质效用的研究[J].生态学报,1997, 17(4):377-385.
    [100]时永杰,杨志强.中国北方半干旱地区生态环境的退化及其防治[J].我国西部荒漠化生态环境及其治理论文集,2003,1(1):103-109.
    [101]史作民,程瑞梅,刘世荣.宝天曼落叶阔叶林种群生态位特征[J].应用生态学报,1999,10(3):265-269.
    [102]苏培玺,赵爱芬,张立新,等.荒漠植物梭梭和沙拐枣光合作用、蒸腾作用及水分利用效率特征[J].西北植物学报,2003,23(1):11-17.
    [103]孙长忠,黄宝龙,陈海滨等.黄土高原人工植被与其水分环境相互作用关系研究[J].北京林业大学学报,1998,20(3):7-14.
    [104]孙海群,周禾,王培.草地退化演替研究进展.中国草地,1999,(1)151-56
    [105]唐志尧,方精云.植物物种多样性的垂直分布格局[J].生物多样性,2004,12(1):20-28.
    [106]唐志尧,柯金虎.秦岭牛背梁植物物种多样性垂直分布格局[J].生物多样性,2004,12(1):108-114.
    [107]王百田,王斌瑞,张府娥等.集水技术与林木生长的土壤水环境研究[J].水土保持通报,1997,17(6):7-13.
    [108]王百田.干旱半干旱地区集流造林工程设计[J].水土保持学报,1993,74(6):60-66.
    [109]王伯荪,彭少鳞.植被生态学[M].北京:中国环境科学出版社.1997.
    [110]王翠红,张金屯.中国部分自然保护区物种多与环境因子的关系[J].西北植物学报,2004,24(8):1468-1471.
    [111]王改玲,郝明德,李仲谨.不同覆盖物和蒸发抑制剂对土壤蒸发影响的研究初报[J].水土保持研究,2003,10(1):133-136.
    [112]王刚,赵松岭,张鹏云,等.关于生态位定义的探讨及生态位重叠计测公式改进的研究[J].生态学报,1984,4(2):119-127.
    [113]王国宏,任继周,张自和.物种多样性与植物系统发育[J].草业学报,2003,12(1):41-46.
    [114]王国宏.再论生物多样性与生态系统的稳定性[J].生物多样性,2002,10(1):126-134.
    [115]王国梁,刘国彬,侯喜禄.黄土高原丘陵沟壑区植被恢复重建后的物种多样性研究.山地学报,2002,20(2):182-187
    [116]王国梁,刘国彬,刘芳,侯喜禄,周生路.黄土沟壑区植被恢复过程中植物群落组成及结构变化.生态学报,2003,23(12):2550-2557
    [117]王垄,吕进英.退耕地的自然演替与人工恢复.中国农业资源与区划,2000,21(4)151-55
    [118]王孟本,柴宝峰,李洪建等.黄土区人工林的土壤持水力与有效水状况[J].林业科学,1999,35(2):6-14.
    [119]王孟本,李洪建,柴宝峰等.树种蒸腾作用、光合作用和蒸腾效率的比较研究[J].植物生态学报,1999,23(5):401-410.
    [120]王孟本,李洪建著.黄土高原人工林水分生态研究[M].中国林业出版社,2001.
    [121]王顺忠,陈桂琛,柏玉平,等.青海湖鸟岛地区植物群落物种多样性与土壤环境因子的关系[J].应用生态学报,2005,16(1):186-188.
    [122]王炜,梁存柱,刘钟龄,郝敦元.内蒙古草原退化群落恢复演替的研究:Ⅱ恢复演替过程中植物种群动态的分析.干旱区资源与环境,1999,13(4):44-55
    [123]王正文,王德利.大兴安岭森林草原过渡带白桦及主要草本植物生态位关系的研究[J].应用生态学报,2001,12(5):677-681.
    [124]王治国等.林业生态工程学:林草植被建设的理论与实践.北京:中国林业出版社,2000,3,313-357
    [125]魏文超,何友均,邹大林,等.澜沧江上游森林珍稀草本植物生态位研究[J].北京林业大学学报,2004,26(4):7-12.
    [126]吴力立,董家文.林内蒸发量的研究[J].南京林业大学学报.1999,23(3):55-59.
    [127]吴明作,刘玉萃,姜志林.栓皮栎种群生殖生态与稳定性机制研究[J].生态学报,2001,21(2):225-230.
    [128]吴明作,刘玉萃,杨玉珍,等.河南省栓皮栎林主要种群的生态位研究[J].西北植物学报,1999,19(3):511-518.
    [129]吴宁.川西北窄叶鲜卑花灌丛的类型和生物量及其与环境因子的关系[J].植物学报,1998,18(5):83-93.
    [130]吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社,1998:15-23.
    [131]吴彦,刘庆,陈庆恒等.亚高山30a人工针叶林物种多样性的定量分析[J].应用与环境生物学报,2001,7(5):408-415.
    [132]吴彦,刘庆,何海.亚高山针叶林人工恢复过程中物种多样性变化[J].应用生态学报,2004,15(8):1301-1306.
    [133]吴征镒.中国植被[M].北京:科学出版社,1980.
    [134]夏江宝,刘信儒,王贵霞,等.土壤水分及环境因子对刺楸叶片气体交换的影响[J].水土保持学报,2005,19(2):179-183.
    [135]向悟生,李先琨,苏宗明,等.元宝山冷杉群落主要树木种群生态位的初步研究[J].武汉植物学研究,2002,20(2):105-112.
    [136]谢贤群,左大康,唐登银.农田蒸发—测定与计算[M].北京:气象出版社,1991:15-46.
    [137]徐炳成,山仑,李凤民.黄土丘陵半干旱区引种禾草柳枝稷的生物量与水分利用效率[J].生态学报.2005,25(9):2206-2213.
    [138]徐彩琳,李自珍.干旱荒漠区人工植物群落演替模式及其生态学机制研究.应用生态 学报,2003,14(9):1451-1456
    [139]徐军.贵州喀斯特峰丛洼地植被演替过程中种的生态位分析.贵州林业科技,2000,28(4):9-13
    [140]许志信,李永强,额尔德尼,李华.草原弃耕地植物群落特征和植被演替情况的调查研究.内蒙古草业,2002,12(3):10-13
    [141]闫文德,田大伦,项文化.樟树林冠层生态因子及其对蒸腾速率的影响[J].林业科学,2004,40(2):170-173.
    [142]阎桂琴,赵桂仿,胡正海.秦岭太白红杉群落特征及其物种多样性的研究[J].西北植物学报,2001,21(3):497-506.
    [143]颜廷芬,丛沛桐,刘兴华,等.环境因子对植物生态位宽度影响程度分析[J].东北林业大学学报,1999,27(1):35-38.
    [144]杨承栋.森林土壤研究几个方面的进展[J].世界林业研究,1994,7(4):14-19.
    [145]杨海军,封福记,赵亚楠,于智勇.受损河岸生态修复技术.东北水利水电,2004,22(6):51-60
    [146]杨利民,周广胜,王国宏,等.草地群落物种多样性维持机制的研究Ⅱ:物种现实生态位[J].植物生态学报,2001,25(5):634-638.
    [147]姚洪林,阎德仁主编.内蒙古沙漠化土地动态变化[M].远方出版社,2002.
    [148]冶民生,关文彬,吴斌,等.岷江干旱河谷主要灌木种群生态位研究[J].北京林业大学学报,2006,28(1):7-13.
    [149]于顺利,马克平,陈灵芝.东灵山地区退化生态系统的恢复与重建实验.植物生态学报,1998,22(3)t275-280
    [150]余新晓,陈丽华.黄土地区防护林生态系统水量平衡研究[J].生态学报,1996,16(3):238-245.
    [151]余新晓,张建军,朱金兆等.黄土地区防护林生态系统土壤水分条件的分析与评价[J].林业科学,1996,32(4):289-296.
    [152]余新晓.土壤水动力学及其应用[M].北京:中国林业出版社,1995:143-149.
    [153]喻方圆,徐锡增,Robert D G.水分和热胁迫处理对4种针叶树苗木气体交换和水分利用效率的影响[J].林业科学,2004,40(2):38-44.
    [154]原焕英,许喜明.黄土高原半干旱丘陵沟壑区人工林土壤水分动态研究[J].西北林学院学报,2004,19(2):5-8.
    [155]袁建英,张金屯,席跃翔.山西关帝山亚高山灌丛、草甸物种多样性的研究[J].草业学报,2004,13(3):34-39.
    [156]袁永慧,邓西平.西北干旱与复水对小麦光合和产量的影响[J].植物学报,2004,24(7):1250-1254.
    [157]岳天祥.生物多样性研究及其问题[J].生态学报,2001,2l(3):462-467.
    [158]曾小平,赵平,彭少麟.鹤山人工马占相思林水分生态研究[J].植物生态学报,2000,24(1):69-73.
    [159]翟志席,郭玉海,马永泽等.植物生态生理学[M].北京:中国林业出版社,1997:28-43.
    [160]詹志明,冯兆东,秦其明.陇西黄土高原陆面蒸散的遥感研究[J].地理与地理信息科学,2004,20(1):16-19.
    [161]张超,王会肖.土壤水分研究进展及简要评述[J].干旱地区农业研究2003,21(4):117-121.
    [162]张光灿,刘霞,贺康宁.黄土半干旱区刺槐和侧柏林地土壤水分有效性及生产力分级研究[J].应用生态学报,2003,14(6):858-862.
    [163]张光灿.黄土半干旱区集水造林水分环境容量研究[J].北京林业大学博士学位论文,2000,27-28,30-50.
    [164]张恒敢,杨四军,顾克军等.应用数字图像处理测定作物叶面积的简便方法[J].江农业科学,2002,12(3):20-22.
    [165]张继义,赵哈林.植被(植物群落)稳定性研究评述[J].生态学杂志,2003,22(4):42-48.
    [166]张建国,李吉跃,沈国舫.树木耐旱特性及其机理研究[M].北京:中国林业出版社,2000:5-38.
    [167]张建国.中国北方主要造林树种耐旱特征及其机理的研究[J].北京林业大学博士学位论文,1993,30-55.
    [168]张金屯.植被数量生态学方法[M].北京:中国科技出版社,1995:14-38.
    [169]张锦春,赵明,张应昌,徐延双.灌溉植被梭梭、白刺光合蒸腾特性及影响因素研究[J].西北植物学报,2005,25(1):70-76.
    [170]张劲松等.植物蒸散耗水量计算方法综述[J].世界林业研究,2001,14(2):23-28.
    [171]张林静,岳明,张远东,等.新疆阜康绿洲荒漠过渡带主要植物种的生态位分析[J].生态学报,2002,22(6):969-972.
    [172]张全国,张大勇.生物多样性与生态系统功能:进展与争论[J].生物多样性,2002,10(1):49-60.
    [173]张文驹,陈家宽.物种分布区研究进展[J].生物多样性,2003,11(5):364-369.
    [174]张云飞,乌云娜,杨持.草原植物群落物种多样性与结构稳定性之间的相关性分析[J].1997,28(3):419-423.
    [175]张志权,束文圣,蓝崇玉,等.土壤种子库与矿业废弃地植被恢复研究t定居植物对重金属的吸收和再分配.植物生态学报,2001,25(3)1306-311
    [176]招礼军.我国北方主要造林树种耗水特性及其抗旱造林技术研究[J].北京林业大学博士学位论文,2003,1-11.
    [177]赵明,李爱德,王耀琳等.沙生植物的蒸腾耗水与气象因素的关系研究[J].干旱区资源与环境,2003,17(6):131-137.
    [178]赵淑清,方精云,朴世龙,宗占江,吴晓莆,古陶.大兴安岭呼中地区白卡鲁山植物群落结构及其多样性研究.生物多样性,2004,12(1):182-189
    [179]郑佳丽,高国雄,周心澄等.北川河地区退耕还林还草地植物群落物种多样性的研究[J].水土保持研究,2005.
    [180]郑佳丽,胡建忠.北川河地区中国沙棘的分布、组成与群落学特征[J].水土保持研究,2005.
    [181]郑元润,徐文铎.沙地云杉种群稳定性研究[J].生态学杂志,1996,15(6):13-16.
    [182]中国农业遗传研究室.北方旱地农业[M].北京:中国农业科学技术出版社,1986:292-298.
    [183]钟育谦,郑阿宝,阮宏华等.下蜀次生林蒸腾强度的时空变化[J].南京林业大学学报,1999,23(1):61-64.
    [184]周厚诚,任海,彭少麟.广东南澳岛植被恢复过程中的群落动态研究.植物生态学报,2001,25(3):298-305
    [185]周平,李吉跃,招礼军.北方主要造林树种苗木蒸腾耗水特性研究[J].北京林业大学学报,2002,24(5):50-55.
    [186]A R McCrea,I C Trueman,M A Fullen.Relationships between soil characteristics and species richness in two botanically heterogeneous created meadows in the urban English West Midlands[J].Biological Conservation,2001,97:171-180.
    [187]Agustin R,Adrian E.Small-scale spatial soil-plant relationship in semi~arid gypsum environments[J].Plant and Soil,2000,220:139-150.
    [188]Alan K K.Gas exchange dynamics in C3 and C4 grasses consequences of differences in stomatal conductance[J].Ecology,1993,(74):113-123.
    [189]Allen S J.Measurement and estimation of evaporation from soil under sparse barley crops in northern Syria[J].Agric.For.Meteorol,1990,49:291-309.
    [190]Amarakoon D,Chert A,Mclean P.Estimating day time latent heat flux and evapotranspirationin Jamaica[J].AgricForMeteorol,2000,102:113-124.
    [191]Anand M and Orl(?)ci L.Complexity in plant communities:the notion and quantification[J].Journal of Theoretical Biology,1996,179:179-186.
    [192]Anand M and Orl(?)ci L.On hierarchical partitioning of an ecological complexity function.Ecological Modelling,2000,132:51-62.
    [193]Anand M,Desrochers R E.Quantification of Restoration Success Using Complex Systems Concepts and Models[J].Restoration Ecology,2000,12(1):117-123.
    [194]Anand M,Tucker B C.Defining biocomplexity-an ecological perspective[J].Comments on Theoretical Biology,2003,8:497-510.
    [195]Anderson O R.A Model of Biocomplexity and its Application to the Analysis of Some Terrestrial and Marsh Eukaryotic Microbial Communities with an Emphasison Amoeboid Protists[J].Journal of Eukuryot.Microbioiog,2003,50(2):86-91.
    [196]Ban F,Hans De K,Frank B.Soil nutrient heterogeneity alters competition between two perennial grass species[J].Ecology,2001,82:2534-2546.
    [197]Barbara L B,Mark R W.Allison A.Patternsin nutrient availability and plant diversity oftemperate North American wetlands[J].Ecology,1999,7:2151.
    [198]Barrett,D.J.,Hatton,T.J.,Ash,J.E.,et al.Transpiration by trees from contrasting forest types[J].Aust.J.Bot,1996,44:249-263.
    [199]Begon M.et al.Ecology:Individuals,Populations and Communities.2nd ed[M].Boston:Blackwell Scientific Publications,1990:816~844..
    [200]Belsky A J.Population and community processes in a mosaic grassland in the serengeti,Tanzania[J].Journal of Ecology,1986,74:841~856.
    [201]Bemhofer,C,et al.Applied single and two layer canopy models to drive conductance of a scots pine planation from micro meteorogical measurements[J].Theoretical and Applied Climatology,1996,53(1/3):95~104.
    [202]Benning T L,T R Seastedt.Landscape-level interactions between topo-edaphic features and nitrogen limitation in tall-grass prairie[J].Landscape Ecology,1995,10:337-348.
    [203]Boast C W,Robertson T M.A micro-lysimeter method for determining evaporation from bare soil:description and laboratory evaluation[J].Soil Sci.Am.J.,1982,46:689-696.
    [204]Burke A.Classification and ordination of plant communities of the Naukluft Mountain,Namibia[J].Journal of Vegetation Science,2001,12:53~60.
    [205]Campbell G S.Soil physics with basic[J].Elsevier Science publishers B V,1985.27-35.
    [206]Chaitanya K V,Jutur P P.Ramachandra Reddy.Water stress effects on photosynthesis in different mulberry cultivars[J].Plant Growth Regulation,2003,40:75-80.
    [207]Chaitin G J.On the length of programs for computing finite binary sequences[J].J.Assoc.Comput.Mach,1996,13:547~569.
    [208]Chapin F S,B H Walker,R J Hobbs.et al.Biocontrol over the functioning of ecosystems[J].Science,1997,277:500~504.
    [209]Choudhury,B.Modeling the effect of weather condition and soil water potential on canopy temperature for corn[J].Agric Meteorology,1983,29:169-182.
    [210]Cochard,H.,Brda,N.,Granier,A.Whole tree hydraulic conductance and water loss regulation in Quercus during drought:evidence for stomatal control of embolism[J]? Ann.Sci.For.,1996,53:197-206.
    [211]Cody M L.Towards a theory of continental species diversity:birds distributions over Mediterrancean habitat gradients.In:Cody,ML and Diamond J Med.Ecology and evolution of communitiesfM],Cambridge:Harvard University Press,1975,214-257.
    [212]Colwell R.Balancing the biocomplexity of the planet's living systems:A twenty-first century task for science[J].Bioscience,1998,48:786~787.
    [213]Colyn H,Daniel U.Plant-soil relationships on bentonite mine spoils and sagebrush grassland in the Northern High Plains[J].Journal of Range Management,1983,38(3):289~293.
    [214]Covich A.Biocomplexity and the future:The need to unite disciplines[J].Bioscience,2000,50:199~202.
    [215]Currie D J,Paquin V.Largescale biogeographical patterns of species richness of trees[J].Nature,1987,329:326~327.
    [216]De Grandpre L,Y Bergeron.Diversity and stability of understory communities following disturbance in the southern boreal forest[J].Journal of Ecology,1997,85:777~786.
    [217]Desrochers R,Anand M.Quantifying the components of biocomplexity along ecological perturbation gradients[J].Biodiversity and Conservation,2005.14:3437~3455.
    [218]Dewar,R.C.Interpretation of an empirical model for stomatal conductance in terms of guard cell function[J].Plant Cell Environ.1995,18:365-37.
    [219]Diaz S,M Cabido.Vive difference:plant functional diversity matters to ecosystem process[J].Trends in ecology and evolution,2001,16:646~655.
    [220]Dolezal J & Srutek M.Altitudinal changes in composition and structure of mountain-temperate vegetation:a case study from the Western Carpathians[J].Plant Ecology,2002,158:201~221.
    [221]Dunin,et al.Evaluation of the ventilated chamber technique for measuring evaporation from a forest[J].Hydro.Proc.,1986,1:47-62.
    [222]Dunkerley DL.Banded vegetation:survival under drought and grazing pressure based on a simple cellular automation model[J].Arid Environ,1997,35(3):419~428.
    [223]Dybas C L.From biodiversity to biocomplexity:A multidisciplinary step toward understanding our environment[J].Bioscience,2001,51:426~430.
    [224]Dye,et al.A comparison of heat pulse method and deuterium tracing method for measuring transpiration from Eucalyptus grandis trees[J].J.Exp.Bot.,1992,43:337-343.
    [225]Edwards W.R.N.Precision weighing lysimeter for trees,using a simplified tared-balance design[J].Tree physiol,1986,1:127-141.
    [226]Ehleringer JR.Variation in gas exchange characteristics among desert plants.In:Schulze E D,Caldwell M.M.eds.Ecophysiology of photosynthesis[J].New York:Springer-verlag,1995,361-392.
    [227]Elton C S.The ecology of invasions by animals and plants.[M]Chapman and Hall,London,1958,143~153.
    [228]Emmett A.Biocomplexity:a new science for survival?[J]The Scientist,2000,14:1~3.
    [229]FAO.Crop water requirments[J].FAO Irrigation and Drainage,1984,12(2):24.
    [230]Farquhar,G.Feedfoward response of stomata to humidity[J].Aust J.Plant physical,1978,5:787-800.
    [231]Farquhar,G.D.,Sharkey,T.D.Stomatal conductance and photosynthesis[J].Ann Rev Plant Physiology,1982,33:317-345.
    [232]Fisher R.A.,Corbet & Willliams.The relation between the number of individuals and the number of species in a random sample of an animal population[J].Anim.Ecol,1943(12):42~58
    [233]Flerching,G.W.,et al.Modelling evapotranspiration and surface budgets across a watershed[J].Water Resources Research,1996,32(8):2539-2548.
    [234]Francno,C.M.,Magalhaes,A.C.Techniques for the measurement of transpiration of individual plants[J].Arid Zone Res.,1965,25:211-224.
    [235]Gardner M R,W R Ashby.Connectance of large dynamic(cybernetic)systems:critical values for stability[J].Nature,1970,228:784.
    [236]Gartlan J S,Newbery D M,Thomas K W.et al.The influence of topography and soilphosphorous of the vegetation of Korup Forest Reserve[J].Cameroun Vegetation,1986,65:131~148.
    [237]Gentry A H.Changes in plant community diversity and floristic composition on environmental and geographical gradients[J].Ann.Missouri Bot.Gard,1988,75:1~34.
    [238]Gezhi Weng.Upinder S.Bhalla,Ravi Iyengar.Compleity in biological signaling systems[J]. Science,1999:92~95.
    [239]Ghuman B S,Lai R.Thermal conductivity,thermal diffusivity,and thermal capacity of some Nigerian soils[J].Soil Sci.,1985,139(1):74-80.
    [240]Gimenez,K.,Mitchell,V.,Lawlor,D.Regulation of photosynthesis rate of two sunflower hybrids under water stress[J].Plant Physiology,1992,98:516-524.
    [241]Gitay H Wilson,W G Lee.Species redundancy:a redundant concept ?[J]Journal of Ecology,1996,84:121~124.
    [242]Glaser P H.Raised bogs in eastern North America regional control for species richness and floristic assemblages[J].Journal of Ecology,1992,80:525~554.
    [243]Glenn-Lewin D C.Species diversity in North American temperate forest[J].Vegetatio,1977,33:153~162.
    [244]Goldberg D E,Miller T E.Effects of different resource additions on species diversity in an annual plant community[J].Ecology,1990,71:213~225.
    [245]Golwell R.Balancing the biocomplexity of the planet's living systems:a twenty-first century task for science[J].BioScience,1998,48:786~787.
    [246]Goodman D.The theory of diversity-stability relationships in ecology[J].Quarterly Review of Biology,1975,50:237~266.
    [247]Gowing,D.J.G.,Jones,H.G.,Davies,W.J.Xylem-trans-ported abscisic acid:the relative importance of its mass and its concentration in the control of stomatal aperture[J].Plant Cell Environ.1993,16:453-459.
    [248]Graan,T,Boyer,J S.Very high C02 partially restores photosynthesis in sunflower at low water r potential[J].Planta,1990,181:378-384.
    [249]Grainier,A.,et al.Comparison of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine[J].Theoretical and Applied Climatology,1996,53(1/3)115-122.
    [250]Grainier,A.,et al.Transpiration of natural forest and its dependence on climatic factors[J].Agri.For.Meteorol.,1996,78(l/2):19-26.
    [251]Greenler RM.JM Greenler.Biocomplexity:A definition under development[J].Bioquest notes,2002,11(2):1:4~8.
    [252]Grime J P.Benefits of plant diversity to ecosystems:immediate,filter and founder effects[J].Journal of Ecology,1998,86:902~910.
    [253]Grime J P.Benefits of plant diversity to ecosystems:immediate,filter and founder efTects[J].Journal of Ecology,1998,86:902~910.
    [254]Grime J P.Biodiversity and ecosystem function:the debate deepens[J].Science,1997,277:1260~1261.
    [255]Grusev,Y.M.Modelling annual dynamics of soil water storage for agro-and natural ecosystems of the steppe and forest-steppe zones on a local scale[J].Agri.For.Meteorol,1997,85(3/4):171-191.
    [256]Guo,Q.F.and Berry,W.Species richness and biomass:dissection of the hump-shaped relationships[J].Ecology,1998,79:2555-2559.
    [257]Hamilton A C,Perrott R A.A study of altitudinal zonation in the montane forest belt of Mt.Elgon,Kenya/Uganda[J].Vegetatio,1981,45:107~125.
    [258]Hanks,R.J.Yield and water-use relationships.In:Limitations to efficient water use in crop production(Ed.By Taylor,H.M.et al.),American Society of Agronomy[J].Inc.,Madison. WI.1982:393-411.
    [259]Hardtle W,Oheimb G V,Westphal C.The effects of light and soil conditions on the species richness of the ground vegetation of deciduous forests in northern Germany(Schleswig-Holstein)[J].Forest Ecology and Management,2003,182:327~338.
    [260]Hatton,T.J.,Moore,S.J.,Reece,RH.Estimating stand transpiration in Eucalyptus populnea woodland with the head pulse method:measurement errors and sampling strategies[J].Tree physiology,1995,219-227.
    [261]HeeMyong,R.Water use of young 'Fuji' apple trees at the soil moisture regions in drainage lysimeters[J].Agricultural Water Management,2001,50(3):185-196.
    [262]Hogg,E.H.,Saugier,B.,et al.Response of trembling aspen and hazelnut to vapor pressure deficit in a boreal deciduous forest[J].Tree Physiol.2000,20:725-734.
    [263]Hooper D U,Vitousek P M.The effects of plant composition and diversity on ecosystem processes[J].Science,1997,277:1302~1305.
    [264]Huisman J A,Sperl C,W.Bouten J M.Verstraten.Soil water content measurements at different scales:accuracy of time domain reflectometry and ground penetrating gradar[J].Journal of Hydrology.2001,245:48-58.
    [265]Huston M A,Aarssen L W,Austin M P.etal.No consistent effect of plant diversity on productivity[J].Science,2000,289:1255.
    [266]Huston M A.Biological diversity along elevational gradients in the Philippines:an assessment of patterns and hypotheses[J].Global Ecology and Biogeography,1994,10:15~39.
    [267]Ives A R,K Gross,J L klug.Stability and variability in competitive communities[J].Science,1999,286:542~545.
    [268]Jackson R B,M M Galdwell.Geostatistical patterns of soil heterogeneity around individual perennial plants[J].Journal of Ecology,1993,81:683~692.
    [269]J.Ludwig,D.Tongway,D.Freudenberger.Landscape Ecology function and management principles from Australia's Rangelands[M].1998
    [270]Johnson,I.R.,Melkonian,J.J.,Thornley,J.H.M.,et al.A model of water flow through plants incorporating shoot/root ‘message’ control of stomatal conductance[J].Plant Cell Environ,1991,14:531-544.
    [271]Jones,P.G.Plant and microclimate[J].Cambridge University press,1983.
    [272]Kanechi,M.,Kunitomo,E.,Inagaki,N.,et al.Water stress affects on ribulose-l,5-bisphosphate carboxylase and its relationship to photosynthesis in sunflower leaves.In:Mathis P eds.Photosynthesis:from light to biosphere[M].Hague:Kluwer Academy Publishers,1995:597-600.
    [273]Kaufmann,M.R.Automatic determination of conductance,transpiration and environmental conditions in forest trees[J].For.Sci.,1981,27:817-827.
    [274]Kell B.Wilson,Paul J.Hanson b,Patrick J.Mulholland,Dennis D.Baldocchi c,Stan D.Wullschleger.A comparison of methods for determining forest evapotranspiration and its components:sap-flow,soil water budget,eddy covariance and catchment water balance[J].Agricultural andForest Meteorology,2001,106:153-168.
    [275]Kellomaki S,Wang Kai-Yun.Effects of long-term CO_2 and temperature elevation on crown nitrogen distribution and daily photosynthetic performance of Scotspine[J].Forest Ecology and Management,1997,99:309-326.
    [276]Kennedy T,S Naeem,K M Howe,et al.Biodiversity as a barrier to ecological invasion[J].Nature,2002,417:636~639.
    [277]Kent M.Vegetation description and analysis[M].Boca Raton:CRC Press.1 992.213—251.
    [278]Kim,C.P.Impact of soil heterogeneity in a mixed-layer model of the planetary boundary layer[J].Hydrological Sciences Journal,1998,43(4):633-658.
    [279]Knight,et al.Transpiration from 100-year-old lodge pole pine forests estimated with whole-tree potometers[J].Ecology,1981,62:717-726.
    [280]Kolmogorov,A N.Three approaches to the quantitative definition of information[J].Probl.Peredachi Inform,1965,1:3~11.
    [281]Kowailik,P.,et al.Diurnal water relations of beech(Fugus Sylvationca.L.)trees in the mountains of Italy[J].Agri.For.Meteorol.,1997,84(1/2):11-23.
    [282]Kozlowski T T,Kramer P L,Pallardy S G,et al.The Physiological Ecology of Wood Plants[M].New York:1991,Academic Press.
    [283]Kozlowski T T,Pallar d y SGP hysiology of woody plants[M].US:Academic Press,1996,270-286.
    [284]Kozlowski T T.Water deficits and plant growth[M].New York:Academic press,1967,10-38.
    [285]Kramer P J.Water relations of plants.New York and London:Academic Press,1983.
    [286]Kumar A,Turner N C,Singh D P,et al.Diurnal and seasonal patterns of water potential,photosynthesis,evapotranspiration and water use efficiency of cluster bean.Photosynthetica,1999,37(4):601-607.
    [287]Kumar B,Pandey D M,Goswai C L,Jain S.Effect of growth regulators on photosynthesis,transpiration and related parameters in water stressed cotton[J].BIOLOGIA PLANTARUM,2001,44(3):475-478.
    [288]Lagergren,F.,Lindroth,A.Transpiration response to soil moisture in pine and spruce trees in Sweden[J].Agriculture and For.Meteor.2002,112:67-85.
    [289]Larcher,W.Physiological plant ecology(third edition)[M].New York,Berlin:Heidelberg,Aufl.,Spinger-Verlag,1995:15-23.
    [290]Latham R E,Ricklefs R E.Global patterns of tree species richness in moist forests:energy-diversity theory does not account for variation in species richness[J].Oikos,1993,67:325~333.
    [291]Laura Gough,Gaiusr Shaver,Jenny Carroll,et al.Vascular plant species richness in Alaskan arctic tundra:the importance of soil pH[J].Journal of Ecology,2000,88:54~66.
    [292]Lawlor D W.Limitation to photosynthesis in water-stressed leaves:stomata vs metabolism and the role of ATP[J].Ann.Bot.2002,89:871-885.
    [293]Levitt,J.Response of plants to environmental stress[M].New York:Academic Press,1972:27-35.
    [294]L(o|¨)fgren L.(1977).Complexity of descriptions of systems:a foundational study[J].Int.J.Gen.Sys.3,197~214
    [295]Loreau M,S Naeem,P Inchausti.et al.Biodiversity and ecosystem functioning:current knowledge and future challenges[J].Science,2001,294:804~808.
    [296]Loreau M.Biodiversity and ecosystem functioning:recent theoretical advances[J].Oikos, 2000,91:3~11.
    [297]Loustau,D.,Berbigier,P.P.,et al.Transpiration of a 64-year-old maritime pine stand in Portugal.I.Seasonal course of water flux through maritime pine[J].Oecologia,1996,107:33-42.
    [298]Middleton B.Succession theory and wetland restoration.Porceed.ingsof INTECOL。V Intenational Wetlands Conference,Perth,Australia,1999131~47
    [299]MA.K.M.,FU.B.J,LIU.S.L,etal.Multiple-scale soil moisture distribution and its implication for ecosystem restoration in an arid river valley,China.Land Degradation&Development[J],2003,14:1~11
    [300]MacArthur R H.Fluctuations of animal populations and a measure of community stability[J].Ecology,1955,36:533~536.
    [301]Magurran,A.E.Ecology Diversity and its Measurement[M],New Jersey:Princeton University Press.1988
    [302]Malyshev L,Nimis P L,Bolognini G Essays on the modeling of spatial floristic diversity in Europe:British Isles,West Germany,and East Europe[J].Flora,1994,189:79~88.
    [303]Masle J,Farquhar G D.Effects of soil strength on the relation of water use efficiency and growth to carbon isotope discrimination in wheat seedlings[J].Plant Physiol,1988,83:32-38.
    [304]Maurer B A.Untangling ecological complexity.The macroscopic perspective[M].Chicago:University of Chicago Press,1999
    [305]May R M.Stability and complexity in model ecosystems.Princeton University Press,Princeton,1973,447.
    [306]May R M.Stability and complexity in model ecosystems.Princeton University Press,Princeton,1973,447.
    [307]May R M..Stability and complexcity in Model Ecosystems(2nd ed)[M].Princeton,New Jersey,USA:Princeton University Press,1974.
    [308]McCann K S.The diversity-stability debate[J].Nature,2000,405:228~233.
    [309]McGrady-Steed J,Morin P J.Biodiversity,density compensation,and the dyn-nics of pepulafiom and functional groups[J].Ecology,2000,81(2):361~373.
    [310]Mcnaughton K.G.,Black,T.A.A Study of evapotranspiration from a Douglas fir forest using the energy balance approach[J].Water Res.,1973,9(10):1579-1590.
    [311]McNaughton S J.Diversity and stability[J].Nature,1988,333:204~205.
    [312]Meinzer,F.C.Grantz,D.A.Coordination of stomatal,hydraulic and canopy boundary layer properties:do stomata balance conductances by measuring transpiration[J]? Physiol.Plant.1991,83:324-329.
    [313]Michener W K,Baerwald T J,Firth P.et al.Defining and unraveling biocomplexity[J].Bioscience,2001,51(12):1018~1023.
    [314]Mielke M S,Oliva M A,Martinez C A,et al.Leaf gas exchange in a clonal eucalypt plantation as related to soil moisture,leaf water potential and microclimate variables[J].Trees,2000,14:263-270.
    [315]Mohammad,F.S.Calibration and use of evapotranspiration equations under arid climatic conditions[J].International Agriculture Engineering Journal,1998,7(3-4):185-200.
    [316]Monteith,J.L.Vegetation and the Atmosphere Principles[M].London:Academic Press,1975:1-55.
    [317]Monteith,J.L.,Unsworth,M.H.Principles of environmental physics[M].New York:Edward Arnold,1990,291.
    [318]Moriana A,Villalobos F J,Fereres E.Stomatal and photosynthetic responses of olive(Olea europaea L.)leaves to water deficits[J].Plant,Cell & Environment,2002,25(3):395-415.
    [319]Morrison J A.Wetland vegetation before and after experimental purple loosestrife removal[J].Wetlands,2002,22(1):159~169.
    [320]Mulder C.P.H,Jumpponen A,Hogberg P.et al.How plant diversity and legumes affectnitrogen dynamics in experimental grassland communities[J].Oecologia,2002,133:412~421.
    [321]Naeem S,Li S.Biodiversity enhances ecosystem reliability[J].Nature.1997,390:507~509.
    [322]Naeem S.Speices redundancy and ecosystem reliability[J].Conservation Biology,1998,12:39~44.
    [323]Nobel,P.S.Physiochemical and environmental plant physiology[M].San Diego:Academic Press,1991,635.
    [324]Noss R F.Indicators for monitoring biodiversity:a hierarchical approach[J].Conservation Biology,1990,4:355~364.
    [325]Palmer M W.The coexistence of species in fractal landscapes[J].American Naturalist,1992,139:375~397.
    [326]Papentin F.On order and complexity.I.General considerations[J].J.Theor.Biol,1980,87:421~456.
    [327]Parrish J K,L Edelstein-Keshet.Complexity,pattern,and evolutionary trade-offs in animal aggregation[J].Science,1999,284:99~101.
    [328]Patten B,S E Jorgensen.Complex ecology~The spatial distribution of individual trees maintains forest ecosystem function[J].Oikos,1995,74:357~365.
    [329]Peet R K.The measurement of species diversity[J].Annual Review Ecological System.1974,5:285—305.
    [330]Pickett ST A,Gadenasso M L.Spatial heterogeneity in ecological system[J].Science.Landscape ecology,1995,269:331~334.
    [331]Pimm SL.The complexity and stability of ecosystems[J].Nature,1984,307:321~326.
    [332]Plotkin J B.Predicting species diversity in tropical forests[J].Pro Nat Acad Sci U.S.A.2000,97:10850~10854.
    [333]Powell,D.B.B.,Thorpe,M.R.Dynamic aspects of plant-water relations in environmental effects on crop physiology[M].LondonrAcademic Press,1977:259-279.
    [334]R Aerts,H de Caluwe,B Beltman.Is the relation between nutrient supply and biodiversity co-determined by the type of nutrient limitation?[J]Oikos,2003,101:489~498.
    [335]Rapoport E H.(translated by Barbara D.1982)Areography:Geographical Strategies of Species[M].Pergamon Press,New York,1975.
    [336]Ren H,Peng S L.Restoration and rebuilding of degraded ecosystem[J].Youth Geography,1998,3(3):7~11.
    [337]Rey Benayas J M,Schenier S M.Diversity patterns of wet meadows along geographical gradients in Spain[J].Journal of Vegetation Science,1993,4:103~108.
    [338]Richards JH,Galdwell MM.Hydraulic lift:Substantial nocturnal water transport between soil layers by Artemisia tridentataroots[J].Oecologia,1987,73:486~489.
    [339]Robertson G P,Vitousek P M.Nitrification potentials in primary and secondary succession[J].Ecology,1981,62:376~386.
    [340]Roem W J,Berendse F.Soil acidity and nutrient supply ratio as possible factors determining changes in plant species diversity in grassland and heathland communities[J].Biological Conservation,2000,92:151~161.
    [341]Rohde K.Latitudinal gradients in species diversity:the search for the primary cause[J].Oikos,1992,65:514~527.
    [342]Rosenthal G.Selecting target species to evaluate the success of wet grassland restoration[J].Agriculture Ecosystem&Environment,2003,98(3):227~246.
    [343]Rosenzweig M L.Species Diversity in Space and Time[M].Cambridge University Press,Cambridge.1995.
    [344]Sennhauser EB.The concept of stability in connection with the gallery forests of the Chaco region[J].Vegetation,1991,94:1~13.
    [345]Shannon C E,W Weaver.The mathematical theory of communication[J].Urbana:University of Illinois Press,1949.
    [346]Shiyoml M.Spatial pattern changes in aboveground plant biomass in a grazing pasture[J].Ecol.Res,1998,13:313~322.
    [347]Smith EP.Niche breadth,resource availability and inference[J].Ecology,1982,63:1675~1681.
    [348]Sole R V,S Levin.Preface to “The biosphere as a complex adaptive system.”[J]Philos.Trans.R.Soc.Lond.B,2002,357:617~618.
    [349]Solomonoff R J.A formal theory of inductive inference,parti and 2[J].Inform Contr,1964,7:224~254.
    [350]Steege H,Cornelissen JHC.Distribution and Ecology of vascular epiphytes in lowland rain forest of Guyana[J].Biotropica,1989,21(4):331~339.
    [351]Stewart G H,Basher L R,Burrow L E.Beechhardwood forest composition,landforms,and soil relationships,northWestland,NewZealand[J].Vegetatio,1993,106:111~125.
    [352]Swansond F J,Kratz T K,Caine N.Landform effects on ecosystem patterns and processes[J].Bioscience,1988,38:92-98.
    [353]Sylvain D,Daniel C,Clementine G C.Niche separation in community analysis:A new method[J].Ecology,2000,81(10):2914~2927.
    [354]Szathmary E,F Jordan.Can genes explain bio-logical complexity?[J]Science,2001,292:1315~1316.
    [355]Thomas J Valone,Catherine D Hoffman.Population stability is higher in more diverse annual plant communities[J].Ecology Letters,2003,6:90~95.
    [356]Tilman D&Haddi A.Drought and biodiversity in grasslands[J].Oecologia,1992,89:257~264.
    [357]Tilman D&Wedin D.Plant strategies and the dynamics and structure of plant com unities[M].Princeton:Princeton University Press,1988.
    [358]Tilman D,C L Lehman,C E Bristow.Plant diversity and ecosystem productivity:theoretical considerations[J].Proceedings of the national Academy of Science,USA,1996,94:1857~1861.
    [359]Tilman D,Knops J,Wedin D.et al.The influence of functional diversity and composition on ecosystem process[J].Science,1997,277:1300~1302.
    [360]Tilman D,Reich P B,Knops J.et al.Diversity and productivity in along-term grassland experiment[J].Science,2001,294:843~845.
    [361]Tilman D,Wedin D,Knops J.Productivity and sustainability influenced by biodiversity in grassland ecosystems[J].Nature,1996,379:718~720.
    [362]Tilman D.Biodiversity:population versus ecosystem stability[J].Ecology,1996,77:350~363.
    [363]Vazquez,GJ.A.and Givnish,T.J.Altitudinal gradients in tropical forest composition,structure,and diversity in the Sierra de Manantlan[J].Journal of Ecology,1998,86:999~1020.
    [364]Vinton M A,Burke I C.Interactions between individual plant species and soil nutrient status in sho-grass steppe[J].Ecology,1995,76:1116~1133.
    [365]Vitousek P M,Matson P A,Cleve K V.Nitrogen availability and nitrification during succession.primary.secondary and old field series[J].Plant and Soil,1989,115:229~239.
    [366]Vogt K A.Production,turnover and nut rient dynamics of above and below ground det ritus of world forests[J].Advances in Ecological Research,1986,15:277~282.
    [367]Walker B H.Conserving biological diversity through ecosystem resilience[J].Conservation Biology,1995,9:747~752.
    [368]WANG S Z,CHEN G C,ZHOU G Y,et al.Communit~Char—acteristics of the Grassland in the Bird Island of the Qing—hat lake[J],Chinese Jounral of Ecology,2004,23(3):16—19.
    [369]Wang,G H.,Zhou,G S.,Yang,L.M.et al.Distribution,species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains,Gansu,China[J].Plant Ecology,2002.165:169-181.
    [370]Wardle D A.Experimental demonstration that plant diversity reduces invisibility-evidence of a biological mechanism or a consequence of sampling effect?[J]Oikos,2001,95:161~170.
    [371]Whitfield J,All creatures great and small[J].Nature,2001,413:342~344.
    [372]Whittaker R H,Niering W A.Vegetation of the Santa Catalina Mountains,Arizona:V.Biomass.production,and diversity along the elevation gradient[J].Ecology,1975,56:771~790.
    [373]Whittaker R J,Willis K J,Field R.Scale and species richness:towards a general,hierarchical theory of species diversity[J].Journal of Biogeography,2001,28:453~470.
    [374]Willis K J,Whittaker R J.Species diversity—scale matters[J].Science,2002,295:1245~1248.
    [375]Wilson S M,Pyatt D G,Malcolm D C.et al.Ecological site classification:soil nutrient regime in British woodlands[J].Scott Forestry,1998,52:86~92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700