用户名: 密码: 验证码:
黄土高原坝地和梯田土壤质量特征及评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坝地和梯田是黄土丘陵沟壑区和残塬沟壑区的基本农田,是群众的“保命田”。二者土壤质量的好坏成为区域农业和经济可持续发展的决定性因素。本研究针对坝地和梯田的土壤质量问题,以延安碾庄沟流域(坝地和梯田)和淳化泥河沟流域(梯田)为研究对象,从资料收集、野外调查和室内土壤物理、化学和生物学质量指标的土样分析入手,结合方差分析、相关性分析、因子分析、逐步回归分析等方法,系统研究了坝地和梯田土壤质量的基本特征、时空分布与演化、相关性、指标体系和综合评价。主要结论如下:
     1.颗粒组成均为粗粉粒最多(约60%),粗砂粒最少(约5%);0.01~0.25mm微团聚体占80%以上,<0.01mm微团聚体占约10%,受粘粒、CaCO_3和有机质影响显著;团聚体总量低(<12%),水稳性差,受有机质和物理性粘粒影响显著。质地粗化度、团聚度和MWD均为淳化梯田最好,延安坝地和梯田差异很小;团聚度、总团聚体和MWD沿剖面向下降低,但差异较小。含水量延安坝地>淳化梯田>延安梯田,水分受物理性粘粒的吸储作用显著,坝地更具备作物稳产高产的水分条件。坝地旋回层次构型对托水保肥和增强抗蚀性极为有利,也衍射出土壤颗粒粗化、抗蚀性减弱的生态变化足迹。
     2.表层土壤养分含量差异较大。只有全磷和钾素储量丰富,其它养分均属“中”或“低”水平。其中,淳化梯田仅缺碱解氮,延安坝地和梯田基本都缺。养分全量高并非有效养分供应充足。CEC含量淳化梯田为1级(高),延安坝地和梯田为3级(低);CaCO_3量均高,为6级;pH值显示延安坝地为碱性而淳化梯田和延安梯田属弱碱性。
     表层有机质、各形态氮素(NO_3~--N除外)、有效性钾、速效钾、速效磷、CEC含量均显著高于下层,下层间差异不显著。其它指标在层次间差异不显著。区域间,除碱解氮外的所有指标含量均为淳化梯田最高。区域内,除了速效磷、CEC、缓效钾和CaCO_3外,其它指标均为延安坝地高于延安梯田。所有化学指标(除了pH值)在细颗粒中均有明显富集,水土流失就是养分的流失。
     3.受生境条件和生物学性质本身的敏感性影响,生物学指标在区域间的差异并无一致性规律。酶活性、微生物数量、呼吸强度和微生物量C、N、P均沿剖面向下降低,其中,三大菌类数量急剧下降,表现出生境变化的极度敏感性。5种酶活性、MBC、MBN与有机质密切相关。微生物数量细菌(10~7)>放线菌(10~4)>真菌(10~3),其中,细菌占三大菌类数量的99%以上,对有机物质分解起着决定性作用。MBC、MBN和MBP含量虽少,生物有效性却很明显。细菌数量和MBC可较好地反映侵蚀过程。
     4.坝地和梯田绝大多数土壤物理、化学和生物学质量指标随着经营时间的延续均经历了先逐渐升高后缓慢降低的演变过程,现已处于衰退并将持续衰退的状态。整体来看,各指标拐点年限的出现时段淳化梯田滞后于延安梯田,延安坝地滞后于淳化梯田。
     5.除容重外,其余9项指标间均呈显著或极显著相关,特别是物理性粘粒协调性较好。17项化学指标间的相关性整体较好,特别是有机质。通径分析显示,全氮主由有机质和C/N比决定;速效磷由CEC、全磷和有机质直接影响;对速效钾的直接影响力为有机质>CEC>缓效钾>全氮;CEC主要决定于有机质、速效磷、全钾和缓效钾。
     蛋白酶具有拮抗作用,其它酶活性的协调性较好,特别是蔗糖酶。细菌、真菌与脲酶、碱性磷酸酶和蔗糖酶相关性较好;放线菌与过氧化氢酶、蛋白酶相关性较好。MBC受影响的程度MBN>蔗糖酶>蛋白酶>细菌:MBN受影响的程度MBC>放线菌>蔗糖酶>蛋白酶;MBP受影响的程度真菌>脲酶>碱性磷酸酶。化学和生物指标的通径分析显示,对有机质的直接效应蔗糖酶>过氧化氢酶>放线菌;碱解氮受蔗糖酶直接效应最大;对速效磷的直接效应MBN>脲酶>蔗糖酶;速效钾受蛋白酶的直接作用最大。
     6.筛选出物理性粘粒、质地粗化度、含水量、全钾、有机质、碱解氮、全磷、电导率、CaCO_3、蛋白酶、碱性磷酸酶、细菌和真菌等13项土壤质量综合评价指标。整体看土壤质量等级,淳化梯田属较高水平(Ⅱ级);延安坝地和延安梯田属中等水平(Ⅲ级),延安坝地稍好于延安梯田。建立了土壤综合质量评价演算模型及其随时间的演化模型。综合土壤质量已处于退化状态,临界年限淳化梯田、延安坝地和延安梯田分别约在33年、40年和22年。
Dam land and terrace are basic farmland in hilly-gullied and gullied of Loess region and considered as life farmland. Good and bad on soil quality of them is the decisive factor of regional agriculture and economic sustainable development. This research aimed at the soil quality problem of dam land and terrace, took the Nianzhuanggou watershed of Yan'an City (dam land and terrace) and Nihegou wateshed of Chunhua county(terrace), Shaanxi province, as the research object, took the collection of materials and data, field investigation, laboratory analysis on soil physical, chemical and biological indicators as a breakthrough point, used methods of variance analysis, correlation analysis, factor analysis and stepwise regression analysis, and systematic research on the basic feature, spatial and temporal distribution and evolvement, correlation, indicator system and comprehensive assessment of soil quality were finished. The main research results were as follows:
     1. Coarse silt content is the most(about 60%) and coarse sand content is the least(about 5%) in mechanical composition. The microaggregate content of 0.01~0.25mm and <0.01mm accounts for more than 80% and about 10%, respectively, and the content of clay, CaCO_3 and organic matter(OM) had significant infiuence(p<0.01) on microaggregate content. The total content of water-stable aggregate is low(less than 12%) and their water stability is bad, and influenced significantly by organic matter and physical clay(p<0.01). As a whole, texture coarseness, aggregation rate and mean weight diameter(MWD) of Chunhua terrace(CT) was the best, and that of Yan'an dam land(YD) and Yan'an terrace(YT) was very small difference. The content of aggregation rate, total aggregate and MWD showed decrease of top-down trend in vertical profile, but had no significant differences in profile. Soil water content YD>CT>YT, and it was influenced significantly by physical clay(p<0.01). Dam land possessed better moisture condition that ensured crops to provide stable and high yields. Cyclothemic hiberarchy of profile in dam land was extremely favorable to preserve soil water and fertility and to increase erosion resistance, this structure illustrated ecological change footprint of particle coarsening and erosion resistance weakening.
     2. The content of various soil nutrients in topsoil had great differences in study area. The content of total P(TP) and various soil K only was rich in study area, and other content of soil nutrients belonged to "middle" or "low" level, among them, available N(AN) was lack only in CT, and they all lack in YD and YT. High total quantity of nutrient did not mean enough effective nutrients. CEC content of CT was one grade(high), and that of YD and YT was three grade(low). CaCO_3 content all belonged to six grade(high). pH value was alkaline in YD and slightly alkaline in CT and YT.
     The content of OM, various nitrogens(except NO_3~--N), available K(AK), readily available K(RAK), available P(AP) and CEC in topsoil was highest and their significant differences were found between topsoil and subsoil, but there was no obvious differences in subsoil, the content of other indicator had no significant differences in profile. In inter-area, the content of each indicator(except AN) of terrace in Chunhua was the highest. In intra-area, the content of each indicator of dam land in Yan'an, except AP, CEC, slowly available K (SAK) and CaCO_3, was larger than that of terrace in Yan'an. All chemical properties(except pH) were obviously assembled in fine particles. Water and soil loss meant loss of nutrient.
     3. Effected by habitat condition and own sensitiveness of biological properties, differences of biological indicator in inter-area had no consistent law. The content of enzyme activities, microorganism quantities, respiration intensity, microbial biomass C(MBC), MBN and MBP showed decrease of top-down trend in vertical profile, among them, the quantities of three major microorganism dropped suddenly and showed extreme sensitiveness of habitat change. 5 kinds of enzyme activity, MBC, MBN are closely related to OM. Microorganism quantities showed bacterium(10~7)>actinomyces(10~4)>fungi(10~3), among three, bacterium's quantities accounted for more than 99% and it played a decisive role in the decomposition of OM. Although there was poor content of MBC, MBN and MBP, their biological validity was very obvious. Bacterium's quantities and MBC's content can better reflected erosion process.
     4. The overwhelming majority of soil physical, chemical and biological quality indicators increased incipiently and decreased subsequently with the increasing of dam land and terrace use years. They have been degenerate state and degradation will be lasted. As a whole, The critical year of each indicator of terrace in Chunhua hung behind that of dam land in Yan'an, and dam land in Yan'an hung behind terrace in Chunhua.
     5. Significant or very significant correlations were showed among 10 soil physical indicators(except bulk density), especially physical clay. The whole correlations of 17 soil chemical indicators were better, especially OM. The results of path analysis of chemical indicators showed that TN was mainly determined by OM and C/N, AP was mainly determined by CEC, TP and OM, the order of direct influence on RAK was OM>CEC>SAK>TN, and CEC was mainly influenced by OM, AP, TK and SAK.
     Protease had antagonistic effect on other enzyme, significant correlations were found among other 4 enzyme activities, especially invertase activity. There were better correlations between bacterium, fungi and urease, alkaline Phosphatase, invertase, respectively. Catalase and protease are closely related to actinomyces. The influence degree of biological indicators on MBC was MBN>invertase>protease>bacterium, the influence order on MBN was MBO actinomyces>invertase>protease, and the influence order on MBP was fungi>urease>alkaline Phosphatase. The results of path analysis on chemical and biological indicators showed that the order of direct influence on OM was invertase>catalase>actinomyces, the direct influence degree of invertase on AN was largest, the direct influence on AP was MBN>urease> invertase, and the direct influence degree of protease on RAK was largest.
     6. 13 comprehensive assessment indicators of soil quality were screened out in study area and these indicators included physical clay, texture coarseness, water content, TK, OM, AN, TP, electrical conductivity, CaCO_3, protease, alkaline Phosphatase, bacterium and fungi. Soil quality of CT belonged to "higher" level and was grade two, and that of YD and YT belonged to "middle" level and was grade three. In Yan'an study area, soil quality of dam land was better than that of terrace slightly. Regression computation model and evolutional model changing over time for soil quality comprehensive assessment were established. Comprehensive soil quality have been degenerate state and degradation will be continued, and the critical year was about 33 years in CT and 40 years in YD and 22 years in YT.
引文
[1]曹志洪.提高土壤质量,保证粮食安全[J].中国科学报,1998,4.15.
    [2]曹志洪.继承传统土壤学成果,促进现代土壤学发展[J].中国基础科学,2000,2:11-16.
    [3]张桃林,潘剑君,赵其国.土壤质量研究进展与方向[J].土壤,1999,(1):1-7.
    [4]周健民,曹志洪.土壤质量演变规律与持续利用[J].中科院院刊,2002,(1):45-47.
    [5]Doran,J.W.,and T.B.Parkin.Defining and assessing soil quality[J].In:Doran J.W.eds.Defining soil quality for a sustainable environment.SSSA Spec.Publ.35,Madison,USA,1994,3-21.
    [6]Hewitt,A.E.;Sparling,G.Setting soil quality standards for C contents of New Zealand soils[J].New Zealand Soil Science Society Conference,Gisborne,1998,16-19.
    [7]Kwansoo Kim,Bradford L.Barham,Ian Coxhead.Measuring soil quality dynamics A role for economists,and implications for economic analysis[J].Agricultural Ecnomics,2001,25:13-26.
    [8]Filip Z.International approach to assessing soil quality by ecologically-relatedbiological parameters[J]. Agriculture,Ecosystems & Enviroment,2002,Special Issue,88(2):169-174.
    [9]Guidelines for Soil Quality Assessment in Conservation Planning[J].United States Department of Agriculture,Natural Resource Conservation Service,Soil Quality Institute(Eds),January 2001.
    [10]Jeffrey E.Herrick,soil quality:an indicator of sustainable land management[J].Applied Soil Ecology,2000,15(1):75-83.
    [11]M.L.Norfleetl,C.A.Ditzler,W.E.PuckettO,et al.Soil Quality and Its Relationship To Pedoiody[J]. Soil Science,2003.168(3):149-155.
    [12]赵其国,孙波,张桃林.土壤质量与持续环境Ⅰ—土壤质量的定义及评价方法[J].土壤,1997,(3):113-120.
    [13]赵其国,孙波,张桃林.土壤质量与持续环境Ⅱ—土壤质量评价的生物学指标[J].Chinese Science,1997,29(5):225-234.
    [14]赵艺学.晋西沟坝地—梯田—坡耕地农业效应的比较[J].水土保持学报,2000,14(2):75-78.
    [15]唐克丽,史德明.土壤侵蚀与水土保持词条[M].科学出版社,1998:24.
    [16]黄土高原淤地坝调研组.黄土高原区淤地坝专题调研报告[R].中国水利,2003,(3):9-11.
    [17]董广辉,武志杰,陈利军,等.生态农业对土壤质量变化的响应[J].农业系统科学与综合研究,2001,17(3):190-192.
    [18]蒋定生,高可兴.黄土丘陵第Ⅱ副区坝地资源潜力与坝系建造模式[J].水土保持通报,2000,20(7):35-38.
    [19]刘正杰.黄土高原淤地坝建设现状及其发展对策[N].中国水土保持,2003,(7):1-2.
    [20]江景宽,王铁宇,张旭东,等.黑土土壤质量演变初探Ⅰ—不同开垦年限黑土主要质量指标演变规律[J]. 沈阳农业大学学报,2002,33(1):43-47.
    [21]刘晓冰,邢宝山,Stephen J.Herbert.土壤质量及其评价指标[J].农业系统科学与综合研究,2002,18(2):109-112.
    [22]曹志洪.解译土壤质量演变规律,确保土壤资源持续利用[J].科技前沿与学术评论,2001,23(3):28-32.
    [23]郭旭东,傅伯杰,等.低山丘陵区土地利用方式对土壤质量的影响—以河北省遵化市为例[J].地理学报,2001,56(4):447-445.
    [24]胡金明,刘兴土.三江平原土壤质量变化评价与分析[J].地理科学,1999,19(5):417-421.
    [25]胡曰利,吴晓芙.土壤微生物生物量作为土壤质量生物学指标的研究[J].中南林学院学报,2002,22(3):51-53.
    [26]贺秀斌.林地开垦土壤质量的结构性指标响应[J].水土保持学报,2002,56:110-112.
    [27]史衍玺,唐克丽.林地开垦加速侵蚀下土壤养分退化的研究[J].土壤侵蚀与水土保持学报,1996,2(4):26-33.
    [28]史衍玺,唐克丽.人为加速侵蚀土壤质量的生物学性质变化[J].土壤侵蚀与水土保持学报,1998,4(1):29-40.
    [29]Doran,J W.Soil health and global sustainability:translating science into practice.Agriculture, ecosystem and environment,2002,88:119-127.
    [30]孙长忠.黄土高原沟坡次生植被与土壤营养现状的关系[J].林业科学研究,1998,11(3):330-334.
    [31]孙波.南方红壤丘陵区土壤养分贫瘠化的综合研究[J].土壤,1995,27(3):119-128.
    [32]史志华,蔡崇法,王天巍,等.红壤丘陵区土地利用变化对土壤质量的影响[J].长江流域资源与环境,2001,10(6):537-543.
    [33]Eswaran H,Reich P.Desertification:a global assessment and risk to sustainability In:16th World Congress of Soil Science:Summaries[C].Montpellier,France:ISSS,1998,516.
    [34]Eswaran H,Beinroth F,Reich P.Global land resources and population-supporting capacity[J]. American Journal of Alternative Agriculture,1999,14(3):129-136.
    [35]聂兴山,郭文元,卫元太.淤地坝建设与黄土高原农业的可持续发展[J].山西水土保持科技,1999,(2):18-20.
    [36]Smith,J.L.,J.J.Halvaorson,and R.J.Papendick,Using multiple-variable indicator kriging for evaluating soil quality[J].Soil Sci.Soc.Am.J.,1994,57.
    [37]Xarlen,D.L,et.,Long-term tillage effects on soil quality[J].Soil and tillage Research,1994,32.
    [38]张海林.土壤质量与土壤可持续管理[J].水土保持学报,2002,16(6):119-122.
    [39]曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    [40]Staben M L,Bezdicek D F,Smith J L,et al.Assessment of soil quality in conservation reserve program and wheat-fallow soils[J].J Soil Sci Soc A mer,1997.61:124-130.
    [41]Warkentin B P.The changing concept of soil quality[J].J Soil Water Conser,1995,50:226-228.
    [42]Arshad M A.Characterization of soil quality:physical and chemical criteria[J]. American J.of alternative agriculture,1992,7(1-2):25-31.
    [43]Karlen D L,Mausbach M J,Doran J W,etal.Soil quality:a concept,definition,and framework for evaluation[J].Soil Sci.Soc.,A m.J.,1997,(61):4-10.
    [44]Islam K R,Weil R R.Soil quality indicator properties in mid Atlantic soils as influenced by conservation management[J].J Soil Water Conser,2000.50.226-228.
    [45]Blum.W.E.H.and Santelies,A.A.,A concept of sustainability and resilience based on Soil Functions[J].In Greenland D.T.(eds)soil resilience and sustainable land Use CAB international Wallingford,UK.1994,535-542.
    [46]Staben M L,Bezdicek D F,Smith J L,et al.Assessment of soil quality in conservation reserve program and wheat-fallow soils[J].J Soil Sci Soc A met,1997.61:124-130.
    [47]Power,J.F.,and R.J.K.Myers.The maintenance or improvement of farming systems in Morth America and Australia[J].In J.W.B.Stewart(ed.).Soil quality in semi-aird agriculture.Proc.of an Int.Cong.Sponsored by the Canndian Int.Development Agency,Saskatoon,Saskatchewan, Canada,11-16 June 1989.
    [48]Larson,W.E.,Pierce,F.J.Conservation and enhancement of soil quality[J].In Proc.of the Int. Workshop on Evaluation for Sustainable land Management in the Developing World.Vol.2. IBSRAM Proc.12(2).Int.Board for Soil Res.and Management.Rangkok,Thailand.1991.
    [49]Parr,J.F.R.I.Papendick,S.B.Homick,and R.E.Meyer.Soil quality:Attributes and relationship to alternative and sustainable agriculture[J].Am.J.Altern.Agric.1992,(7):5-11.
    [50]Kirkbby M.Modeling the interactions between soil properties and water erosion[J].In:Proceedings CD-ROM of 16th World Soil Congress.Montpellier,Ffance:ISSS,1998.1517.
    [51]Loch,R.J.Effects of vegetation cover on runoff and erosion under simulated rain and overland flow on a rehabilitated site on the Meandu Mine,Tarong,Queensland[J].Aust.J.Soil Res.,2000,38:299-312.
    [52]史德明,韦启潘.关于侵蚀土壤退化及其机理[J].土壤,1996,3:140-144.
    [53]史德明,韦启潘,梁音,等.中国南方侵蚀土壤退化指标体系研究[J].水土保持学报,2000,14(3):1-9.
    [54]孙武,李森.土地退化评价与监测技术路线的研究[J].地理科学,2000,20(1):92-96.
    [55]唐克丽.土壤侵蚀环境演变与全球变化及防灾减灾的机制[J].土壤与环境,1999,8(2):81-86.
    [56]张桃林,王兴祥.土壤退化研究进展[J].自然资源学报,2000,15(3):280-284.
    [57]胡月明,万洪富,吴志峰,等.基于GIS的土壤质量模糊变权评价[J].土壤学报,2001,38(3):266-274.
    [58]龚子同,陈鸿昭,骆国保,等.人为作用对土壤环境质量的影响及对策[J].土壤与环境,2000,9(1):7-10.
    [59]Carter M.R.AND Sanderson J.B.Influence of conservation tillage and rotation length on potato productivity,tuber disease and soil quality parameters on a fine sandy loam in eastern Canada[J]. Soil & Tillage research,2001,63(1-2):1-13.
    [60]F.Caravaca,G.Masciandaro,B.Ceccanti.Land use in relation to soil chemical and biochemical properties in a semiarid Mediterranean environment[J].Soil & Tillage research,2002,68:23-30.
    [61]Lindstrom,M.J.,et al.Management congsiderations for returning CRP lands to crop production[J].J. Soil Water Conversation,1994,49(5):420-425.
    [62]Natural Resources Conservation Service,Soil Quality Institute Staff.1996.Residue Management and No-Till on Soil Quality[J].Soil Quality-Agronomy Technical Note No.3
    [63]Ross,D.J.,et al.Land rehabilitation under pasture on volcanic parent materials:changes in soil microbial biobass and C and N metabolism[J].Aust.J.Soil Res.,1994,32:1321-1327.
    [64]许明祥,刘国彬.黄土丘陵区刺槐人工林土壤养分特征及演变[J].植物营养与肥料学报,2004,10(1):40-46.
    [65]章家恩,廖宗文.试论土壤的生态肥力及其培育[J].土壤与环境,2000,9(3):253-256.
    [66]吴发启,刘海斌,周正立,等.黄土高原农果复合系统N、P、K营养元素的循环特征[J].水土保持学报,2006,20(6):79-83.
    [67]王国梁,刘国彬,许明祥,等.黄土丘陵区纸坊沟流域植被恢复的土壤养分效应[J].水土保持通报,2002,22(1):1-5.
    [68]郑粉莉.子午岭林区植被破坏与恢复对土壤演变的影响[J].水土保持通报,1996,16(5):41-44.
    [69]周厚诚,任海,等.南澳岛植被恢复过程中不同阶段土壤的变化[J].热带地理,2001,21(2):104-112.
    [70]Ross D.J.,et al.Soil restoration under pasture after lignite mining:management effects on soil biochemical properties and their relationships with herbage yields[J].Plant and Soil.1992,140:85-97.
    [71]熊运兴.紫色丘岗区水土流失严重地区植被恢复技术研究[J].中南林学院学报,1995,15(2):184-189.
    [72]张甘霖,杜国华,龚子同.区域性土壤形成特征及其在土壤基层分类和土壤质量评价中的应用[J].山地学报,2002,20(2):170-175.
    [73]张华,张甘霖.土壤质量指标和评价方法[J].土壤,2001,(6):326-330.
    [74]俞慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413-422.
    [75]张兴昌,邵明安,黄占斌.不同植被对土壤侵蚀和氮素流上的影响[J].生态学报,2000,20(6):1038-1044.
    [76]Michael J.Singer,Stephanie Ewing.Soil Quality[M].In:Interdisciplinary aspects of soil science. 1999.
    [77]Sparling GP.Ratio of microbial biomass carbon to soil organic matter carbon as a sensitive indicator of changes in soil organic matter[J].Aust.J Soil Res.,1992,30:195-207.
    [78]Brookes PC,Landman A,Pruden G and Jenkinson DS.Chloroform fumigation and the release of soilnitrogen:a rapid direct extraction method to measure microbial biomass nitrogen in soil[J].Soil Biol.Biochem.,1985,17,837-842.
    [79]Powlson DS,Brookes PC and Christensen BT.Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw in corporation[J].Soil Biol. Biochem.,1987,19:159-164.
    [80]曹慧,杨浩,孙波,等.不同种植时间菜园土壤微生物生物量和酶活性变化特征[J].土壤, 2002,(4):197-200.
    [81]胡春胜.土壤质量诊断与评价理化指征及其应用[J].生态农业研究.1999,7(3):16-18.
    [82]Burger J.A.,Kelting D.L.The Contributions of Soil Science to the Development of and Implementation of Criterion and Indicators for Sustainable Forest Management[J].Soil Science Society of America Journal,1998(53):1-67.
    [83]王效举,龚子同,张西森.地理信息系统辅助土壤质量变化图的编制[J].土壤,1997,29(1):37-42.
    [84]王效举,龚子同.红壤丘陵小区域水平上不同时段土壤质量变化的评价和分析[J].地理科学,1997,17(2):141-148.
    [85]薛立,邝立刚,陈红跃,等.不同林分土壤养分、微生物与酶活性的研究[J].土壤学报,2003,40(2):280-285.
    [86]万存绪,张效勇.模糊数学在土壤质量评价中的应用[J].应用科学学报,1991,9(42):359-365.
    [87]王建国,杨林章,单艳红.模糊数学在土壤质量评价中的应用研究[J].土壤学报,2001,38(2):176-183.
    [88]武伟,唐明华,刘洪斌.土壤养分的模糊综合评价[J].西南农业大学学报,2000,22(3):270-272.
    [89]王效举,龚子同.红壤丘陵小区域不同利用方式下土壤变化的评价与预测[J].土壤学报, 1998,35(1):135-139.
    [90]许明祥.黄土丘陵区生态恢复过程中土壤质量演变及调控(博土论文)[D].陕西杨凌:中科院水土保持研究所,2003.
    [91]孙波,赵其国.红壤退化中的土壤质量评价指标及评价方法[J].地理科学进展,1999,18(2):118-128.
    [92]李红鹰,王戬,孟昭明.层次分析法在农业生态环境质量评价中的应用[J].北方环境,1999,3:23-27.
    [93]刘崇洪.几种土壤质量评价方法的比较[J].干旱环境监测,1996,10(1):26-63.
    [94]刘海斌,吴发启.黄土塬区复合型生态农业土地生产力评价[J].农业工程学报,2006,22(6):77-81.
    [95]Wardle D A.Controls of temporal variability of the soil microbial biomass:A global synthesis[J]. Soil Biol Biochem,1998,30(13):1627-1637.
    [96]Kandeler E,Tscherko D,SpiegelH.Long-term monitoring of microbial biomass.N mineralization and enzyme activities of a Chernozem under different tillagemanagement[J].Biol.Ferti.1 Soils, 1999,28:343-351.
    [97]杨玉盛,何宗明,邱仁辉,等.严重退化生态系统不同恢复与重建措施的植物多样性与地力差异研究[J].生态学报,1999,19(4):490-494.
    [98]胡斌,段昌群,王震洪,等. 植被恢复措施对退化生态系统土壤酶活性及肥力的影响[J].土壤学报,2002,39(4):604-608.
    [99]王晓龙,胡锋,李辉信,等.侵蚀退化红壤自然恢复下土壤生物学质量演变特征[J].生态学报,2007,27(4):1404-1411.
    [100]任天志,Grego S.持续农业中的土壤生物指标研究[J].中国农业科学,2000,33(1):68-75.
    [101]ZhangH,Zhang G L.Microbial biomass carbon and total organic carbon of soils as affected by rubber cultivation[J].Pedosphere,2003,13(4):353-357.
    [102]李东坡,武志杰,陈利军,等.长期培肥黑土微生物量碳动态变化及影响因素[J].应用生态学报,2004,14(8):1334-1338.
    [103]Powlson D S,Brookes P C,Christensen B T.Measurement of soil microbial biomass provides an early indication of changes in total organic matter due tostraw incorporation[J].Soil Biology & Biochemistry,1987,19:159-164.
    [104]Nsabimana D,Haynes R J,Wallis FM.Size,activity and catabolic diversity of the soil microbial biomass as affected by land use[J].Applied Soil Ecology,2004,26: 81-92.
    [105]胡诚,曹志平,叶钟年,等.不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响[J].生态学报,2006,26(3):808-814.
    [106]蔡晓布,钱成,张永清.退化高寒草原土壤生物学性质的变化[J].应用生态学报,2007,18(8):1733-1738.
    [107]徐阳春,沈其荣,冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报,2002,39(1):89-96.
    [108]Spedding T A,Hamel C,Mehuys G R.Soil microbial dynamics in maize-growing soil under different tillage and residue management systems[J].Soil Biology & Biochemistry,2004, 36:499-512.
    [109]孔维栋,朱永官,傅伯杰,等.农业土壤微生物基因与群落多样性研究进展[J].生态学报,2004,24(12):2894-2900.
    [110]张磊,肖剑英,谢德体,魏朝富.长期免耕下水稻田土壤的生物特征研究[J].水土保持学报,2002,16(2):111-114.
    [111]张平究,李恋卿,潘根兴,等.长期不同施肥下太湖地区黄泥土表土微生物量碳、氮量及基因多样性变化[J].生态学报,2004,24(12):2818-2824.
    [112]王霞,胡锋,李辉信,沈其荣.秸秆不同还田方式下蚯蚓对旱作稻田土壤碳、氮的影响[J].生态环境,2003,12(4):462-466.
    [113]Li F M,Song Q H,Jembac P Ket al.Dynamics of soil microbial biomass C and soil fertility in cropland mulched with plastic film in a semiarid ago-ecosystem[J]. Soil Biology and Biochem,2004,36:1893-1902.
    [114]谢正苗,卡里德,黄昌勇. 镉铅锌污染对红壤中微生物生物量碳、氮磷的影响[J].植物营养与肥料学报,2000,6(1):69-74.
    [115]赵祥伟,骆永明,滕应,等.重金属复合污染农田土壤的微生物群落遗传多样性研究[J].环境科学学报,2005,25(2):186-191.
    [116]刘文娜,吴文良,王秀斌,等.不同土壤类型和农业用地方式对土壤微生物量碳的影响[J].植物营养与肥料学报,2006,12(3):406-411.
    [117]曹幼琴.六种有机污染物对土壤微生物的影响[J].土壤学报,1991,28(4):426-432.
    [118]吕春花.子午岭地区植被恢复对土壤质量的影响研究(硕士论文)[D]. 陕西杨凌:西北农林科技大学,2006.
    [119]Caravaca F,alguacil M M,Figueroa D,et al. Re-establishment of Retama sphaerocarpa as a target species for reclamation of soil physical and biological properties in a semiarid Mediterranean land[J].Forest Ecology and Management,2003,182:49-58.
    [120]Kandeler E,Pakki S,Stemmer M,et al.Tillage changes microbial biomass and enzyme activities in particle-size fractions ofa Haplic Chernozem[J].Soil Biology and Biochemistry,1999,31: 1253-1264.
    [121]Ekenler M,Tabatabai M A.Effects of trace elements on β-glucosaminidase activity in soils[J]. Soil Biology and Biochemistry, 2002,34:1829-1832.
    [122]邱莉萍,张兴昌.子午岭不同土地利用方式对土壤性质的影响[J].自然资源学报,2006,21(6):965-972.
    [123]张社奇,王国栋,刘云鹏,等. 黄土高原人工油松林地土壤微生物的分布特征[J].激光生物学报,2005,14(5):353-358.
    [124]张薇,胡跃高,黄国和,等.西北黄土高原柠条种植区土壤微生物多样性分析[J].微生物学报,2007,47(5):751-756.
    [125]宋西德,叶彦辉,张永,等.黄土高原沟壑区林草景观界面土壤养分、水分和微生物的研究[J].西北农林科技大学学报(自然科学版),2007,35(7):55-60.
    [126]贾国梅,王刚,陈芳清.子午岭植被演替过程中土壤生物学特性的动态[J].生态环境,2007,16(5):1466-1469.
    [127]薛萐,刘国彬,戴全厚,等.黄土丘陵区人工灌木林恢复过程中的土壤微生物生物量演变[J].应用生态学报,2008,19(3):517-523.
    [128]张志山,谭会娟,王新平,等.沙漠人工植被区土壤呼吸初探[J].中国沙漠,2005,25(4): 525-528.
    [129]樊丽琴,南志标,沈禹颖,等.保护性耕作对黄土高原小麦田土壤微生物量碳的影响[J].草原与草坪,2005,(4):51-54.
    [130]金发会,李世清,卢红玲,等.黄土高原不同土壤微生物量碳、氮与氮素矿化势的差异[J].生态学报,2008,28(1):227-236.
    [131]党亚爱,李世清,王国栋,等.黄土高原典型土壤全氮和微生物氮剖面分布特征研究[J].植物营养与肥料学报,2007,13(6):1020-1027.
    [132]党亚爱,李世清,王国栋,等. 黄土高原典型土壤有机碳和微生物碳分布特征的研究[J].自然资源学报,2007,22(6):936-945.
    [133]来璐,郝明德,王永功.黄土高原旱地长期轮作与施肥土壤微生物量磷的变化[J].植物营养与肥料学报,2004,10(5):546-549.
    [134]蔡艳,薛泉宏,侯琳,等.黄土高原几种乔灌木根区土壤微生物区系研究[J].陕西林业科技,2002,(1):4-10.
    [135]廉梅霞,李云平,郭晋平,等.黄土高原农林复合经营土壤微生物种群及数量变化的初步研究[J]. 山西林业科技,2006,(4):20-23.
    [136]马效国,樊丽琴,陆妮,等.不同土地利用方式对苜蓿地土壤微生物生物量碳、氮的影响[J].草业科学,2005,22(10):13-17.
    [137]张成娥,梁银丽.高原沟壑区套作苹果幼园土壤养分及酶活性研究[J].干旱地区农业研究,1999,17(4):22-26.
    [138]张成娥,杜社妮,白岗栓,等.黄土源区果园套种对土壤微生物及酶活性的影响[J].土壤与环境,2001,10(2):121-123.
    [139]李西祥,白红英,丁琦,等.黄土区冬小麦田土壤理化性状、磷酸酶活性与氧化亚氮的排放[J].生态学杂志,2007,26(8):1187-1192.
    [140]岳庆玲,常庆瑞,刘京,等.黄土高原不同土地利用方式对土壤养分与酶活性的影响[J].西北农林科技大学学报(自然科学版),2007,35(12):103-108.
    [141]邱莉萍,张兴昌,张晋爱.黄土高原长期培肥土壤团聚体中养分和酶的分布[J].生态学报,2006,26(2):364-373.
    [142]樊军,郝明德.黄土高原旱地轮作与施肥长期定位试验研究Ⅰ—长期轮作与施肥对土壤酶活性的影响[J].植物营养与肥料学报,2003,9(1):9-13.
    [143]樊军,郝明德.黄土高原旱地轮作与施肥长期定位试验研究Ⅱ—土壤酶活性与土壤肥力[J].植物营养与肥料学报,2003,9(2):146-150.
    [144]安韶山,黄懿梅,郑粉莉.黄土丘陵区草地土壤脲酶活性特征及其与土壤性质的关系[J].草地学报,2005,13(3):233-237.
    [145]黄懿梅,安韶山,曲东,等.黄土丘陵区植被恢复过程中土壤酶活性的响应与演变[J].水土保持学报,2007,21(1):152-155.
    [146]Hammond A,Adriaanse A,et al.Environmental indicators:a system aticap proach to measuring and reporting on environmental policy performance in the context of sustainable development[J]. 1995,World Resources Institute,Washington D.C.
    [147]张学雷,张甘霖,龚子同.SOTER数据库支持下的土壤质量综合评价—以海南岛为例[J].山地学报,2001,19(4):377-380.
    [148]俞海.农地制度及改革对土壤质量演变的影响(博士论文)[D].北京:中国农业科学院,2002.
    [149]陈立新.落叶松人工林土壤质量变化规律月调控措施的研究(博士论文)[D].北京:中林业科学研究院,2003.
    [150]郭旭东,傅伯杰,陈利顶,等.低山丘陵区土地利用方式对土壤质量的影响——以河北省遵化市为例[J].地理学报,2001,56(4):447-455.
    [151]胡金明,刘兴土.三江平原土壤质量变化评价与分析[J].地理科学,1999,19(5):47-52.
    [152]胡建军,牛萍,曹炜.浅谈黄河上中游地区水土保持淤地坝工程的作用[J].西北水资源与水工程,2002,13(2):28-31.
    [153]范瑞瑜.山西省坝系农业建设与发展前景[J].山西水利,1999,(4):4-7.
    [154]蔺明华,王志意,段文中.淤地坝研究的回顾与展望[J].中国水利,2003-9,A:61-63.
    [155]淤地坝是黄土高原地区全面建设小康的战略性措施[N].人民网(http://www.people.com.cn/),2003-10-30.
    [156]陈晓梅.黄土高原地区淤地坝的形成与发展[J].山西水土保持科技,2006,(4):20-21.
    [157]石琼.黄土高原地区淤地坝建设情况及建议[J].甘肃科技,2005,21(12):14-17.
    [158]姜峻,都全胜.陕北淤地坝发展特点及其效益分析[J].中国农学通报,2008,24(1):503-509.
    [159]任世英.延安市淤地坝产权制度改革调查[J]. 中国水土保持,2000,(4):40-41.
    [160]中国水土保持环境建设网(http://swcc.gov.cn/).淤地坝建设管理,2005,(17).
    [161]延安市水保局.碾庄沟流域坝系建设[J]. 中国水土保持,2000,(4):40-41.
    [162]姚云峰,王礼先.我国梯田的形成与发展[J]. 中国水土保持,1991,(6):54-56.
    [163]张玉斌.黄土高原南部水平梯田环境效应研究(硕论)[D].陕西:西北农林科技大学,2006.
    [164]赵文礼.黄河流域的梯田[J].中国水土保持,1983,(2):36-40.
    [165]闵宗殿.中国古代农耕史略[M].石家庄:河北科学技术出版社,1992.
    [166]高容乐.黄河流域水土保持梯田建设[J].中国水土保持,1996,(10):30-32.
    [167]刘万全.水土保持是黄土高原改善生态环境抱着农业可持续发展的必由之路[J].中国水土保持,1999,(4):1-4.
    [168]侯建才,李占斌,李勉,等.基于淤地坝淤积信息的小流域泥沙来源及产沙强度研究[J].西安理工大学学报,2007,23(2):118-122.
    [169]冉大川,左仲国,上官周平.黄河中游多沙粗沙区淤地坝拦减粗泥沙分析[J].水利学报,2006,37(4):443-450.
    [170]冉大川,罗全华,刘斌,等.黄河中游地区淤地坝减洪减沙及减蚀作用研究[J].水利学报,2004,35(5):7-13.
    [171]许炯心,孙季.无定河淤地坝拦沙措施时间变化的分析与对策[J].水土保持学报,2006,20(2):26-30.
    [172]魏霞,李占斌,李鹏,等.黄土高原典型淤地坝淤积机理研究[J].水土保持通报,2006,26(6):10-14.
    [173]管新建,李占斌,李勉,等.基于BP神经网络的淤地坝次降雨泥沙淤积预[J].西北农林科技大学学报(自然科学版),2007,35(9):221-225.
    [174]李勉,杨剑锋,侯建才,等.黄土丘陵区小流域淤地坝记录的泥沙沉积过程研究[J].农业工程学报,2008,24(2):64-69.
    [175]魏霞,李占斌,沈冰,等.陕北子洲县典型淤地坝淤积过程和降雨关系的研究[J].农业工程学报,2006,22(9):80-84.
    [176]张红娟,延军平,周立花,等.黄土高原淤地坝对水资源影响的初步研究——以绥德县韭园 沟典型坝地为例[J].西北大学学报(自然科学版),2007,37(3):475-478.
    [177]周立花,延军平,徐小玲,等.黄土高原淤地坝对土壤水分及地表径流的影响——以绥德县辛店沟为例[J]. 干旱区资源与环境,2006,20(3):112-115.
    [178]姚西文.纸坊沟流域淤地坝坝地水分环境与可持续发展[J].甘肃水利水电技术,2004,40(4):384-387.
    [179]王继夏,孙虎,王祖正.延安碾庄沟流域梯田与坝地土壤水分对比分析[J].干旱地区农业研究,2007,25(1):88-93.
    [180]李勋贵,李占斌,魏霞.黄土高原淤地坝坝地淤积物两个重要物理特性指标研究[J].水土保持研究,2007,14(2):218-221.
    [181]赵海仙,郭玉记.浅谈坝地在晋西农业生产中的地位[J].山西水土保持科技,1998,(1):23-25.
    [182]包耀贤,吴发启,谭红朝.坝地土壤养分分布特征研究[J].水土保持通报,2005,25(4):12-16.
    [183]包耀贤,吴发启,贾玉奎.黄土丘陵沟壑区坝地和梯田土壤氮素特征与演变[J].西北农林科技大学学报(自然科学版),2008,36(3):97-104.
    [184]包耀贤,吴发启,贾玉奎,等.黄土丘陵沟壑区人工农田土壤钾素特征研究[J].干旱地区农业研究,2008,26(2):1-6.
    [185]崔亦昊,谢定松,杨凯虹,等.淤地坝坝面过水试验研究[J].中国水利水电科学研究院学报,2006,4(1):42-46.
    [186]曹文洪,胡海华,吉祖稳.黄土高原地区淤地坝坝系相对稳定研究[J].水利学报,2007,38(5):606-610.
    [187]裴新富,甘枝茂,桑广书,等.黄土丘陵沟壑区坝地防洪保收有关技术研究[J].干旱区资源与环境,2004,18(2):120-124.
    [188]裴新富,甘枝茂.黄土丘陵沟壑区坝地防洪保收试验研究[J].干旱区资源与环境,2003,17(6):103-107.
    [189]马福武,贾志军.晋西黄土丘陵沟壑区不同地类土壤水份额变化规律研究[J].中国水土保持,1998,(2):26-28.
    [190]吴发启,张玉斌,余雕,等.黄土高原南部梯田土壤水分环境效应研究[J].水土保持研究,2003,10(4):128-130.
    [191]张玉斌,曹宁,武敏,等.黄土高原南部水平梯田的土壤水分特征分析[J].中国农学通报,2005,21(8):215-220.
    [192]陶士珩,王立祥,胡希远.西北黄土高原水平梯田冬小麦的水分供应状况分析[J].中国农业气象,1996,17(3):7-10.
    [193]杨玉惠,张仁陟.黄土高原半干旱地区施氮对土壤硝态氮分布与累积的影响[J].甘肃农业大学学报,2006,41(6):102-107.
    [194]郭胜利,党廷辉,郝明德.黄土高原沟壑区不同施肥条件下土壤剖面中矿质氮的分布特征[J].干旱地区农业研究,2000,18(1):23-29.
    [195]樊军,邵明安,郝明德,等.黄土旱塬塬面生态系统土壤硝酸盐累积分布特征[J].植物营养与肥料学报,2005,11(1):8-12.
    [196]樊军,邵明安,郝明德,等.渭北旱塬苹果园土壤深层干燥化与硝酸盐累积[J].应用生态学报,2004,15(7):1213-1216.
    [197]党廷辉,郭胜利,樊军,等.长期施肥条件下黄土旱塬土壤NO_3-N的淋溶分布规律[J]. 应用生态学报,2003,14(8):1265-1268.
    [198]党廷辉,郭胜利,郝明德.黄土旱塬长期施肥下硝态氮深层累积的定量研究[J].水土保持研究,2003,10(1):58-61.
    [199]彭令发,郝明德,来璐.黄土旱塬长期连作条件下土壤氮素变化及管理[J].水土保持研究,2003,10(1):43-45.
    [200]刘晓宏,郝明德,樊军.黄土高原旱区长期不同轮作施肥对土壤供氮能力的影响[J].干旱地区农业研究,2000,18(3):1-7.
    [201]包耀贤,吴发启,刘莉.渭北旱塬梯田土壤钾素状况及影响因素分析[J].水土保持学报,2008,22(1):78-82.
    [202]潘成忠,上官周平,刘国彬.黄土丘陵沟壑区退耕草地土壤质量演变[J].生态学报,2006,26(3):690-696.
    [203]张晋爱,张兴昌,邱丽萍,等.黄土丘陵区不同年限柠条林地土壤质量变化[J].农业环境科学学报,2007,26(增刊):136-140.
    [204]许明祥,刘国彬,赵允格.黄土丘陵区侵蚀土壤质量评价[J].植物营养与肥料学报,2005,11(3):285-293.
    [205]许明祥,刘国彬,赵允格.黄土丘陵区土壤质量评价指标研究[J].应用生态学报,2005,16(10):1843-1848.
    [206]巩杰,陈利顶,傅伯杰,等.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响[J].应用生态学报,2004,15(12):2292-2306.
    [207]岳庆玲.黄土丘陵沟壑区植被恢复重建过程土壤效应研究(博士论文)[D].陕西杨凌:西北农林科技大学,2007.
    [208]鲍士旦.土壤农化分析(第三版)[M]. 北京:中国农业出版社,1999.
    [209]中国分析网(http://www.analysis.org.cn/)—土壤分析. 2003.
    [210]程丽娟,薛泉宏,韦革宏,等. 微生物学实验技术[M]. 西安·北京·上海·广州:世界图书出版公司,2002.
    [211]吴金水,林启美,黄巧云,等.土壤微生物生物量测定方法及其应用[M].北京:气象出版社,2006.
    [212]关松荫.土壤酶及其研究方法[M].北京:中国农业出版社,1986.
    [213]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [214]唐启义,冯明光.实用统计软件分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    [215]魏义长,康玲玲,王云璋,等.水土保持措施对土壤物理性状的影响—以黄土高原水土保持世界银行贷款项目区为例[J].水土保持学报,2003,17(5):114-116.
    [216]陕西省土壤普查办公室.陕西土壤[M].北京:科学出版社,1992,299-303.
    [217]毕银丽. 黄土丘陵坝地系统土壤养分特征及其与侵蚀环境的关系(硕士论文)[D].中科院水土保持研究所,1996.
    [218]赵传燕,李林.兰州市郊区土壤水稳定性微团聚体的组成分析[J].兰州大学学报(自然版),2003,39(6):91-94.
    [219]陈恩凤,关连珠,汪景宽,等.土壤特征微团聚体的组成比例与肥力评价[J].土壤学报,2001,38(1):49-53.
    [220]史奕,陈欣,沈善敏.有机胶结形成土壤团聚体的机理及理论模型[J].应用生态学报,2002,13(11):1495-1498.
    [221]迟凤琴.通径分析在土壤微团聚体研究中的应用[J].农业系统科学与综合研究,1997,13(1):58-60.
    [222]曾河水.不同治理措施侵蚀地土壤物理性状变化的研究[J].福建水土保持,2002,14(1):50-52.
    [223]韩永伟,韩建国,张蕴薇.农牧交错带退耕还草对土壤物理性状的影响[J].草地学报,2002,10(2):100-105.
    [224]卜崇峰,刘国彬,戴全厚.纸坊沟流域狼牙刺对土壤物理性状的影响[J].水土保持研究,2003,10(2):25-27.
    [225]高亚军.陕北农牧交错带土地荒漠化演化机制及土壤质量评价研究(硕论)[D].陕西杨凌:西北农林科技大学,2003.
    [226]刘国彬.黄土高原草地植被恢复与土壤抗冲性形成过程[J].水土保持研究,1997,4(5):122-128.
    [227]彭新华,张斌,赵其国.红壤侵蚀裸地植被恢复极土壤有机碳对团聚体稳定性的影响[J].生态学报,2003,23(10):2176-2183.
    [228]曲东,尉庆丰,张英利.土壤水稳性团聚体测定方法改进[J].陕西农业科学,1994,(1):7-9
    [229]Kemper W D,Koch E J.Aggregate stability of soils from western US and Canada VSDA[J]. Tech.Bull.1355.US Govt.Printing office,Washington DC,1966.
    [230]Edwards A P,Bremner J M.Microaggregates in soils[J].J.Soil Sci.1969,18:64-73.
    [231]杨文治,邵明安,彭新德.等.黄土高原环境的旱化与黄土中水分关系[J].中国科学(D辑),1998,2(3):357-365.
    [232]刑存旺,陈峻崎,金子明.整地对滨海盐碱地土壤物理性状的影响[J]. 河北林业科技,1998,(1):17-20.
    [233]陈海滨,孙长忠,安锋.等.黄土高于沟壑区林地土壤水分特征的研究(Ⅰ)—土壤水分的垂直变化和季节变化特征[J]. 西北林学院学报,2003,18(4):13-16.
    [234]李志洪,王淑华.土壤容重对土壤物理性状和小麦生长的影响[J].土壤通报,2000,31(2):55-58.
    [235]北京林业大学.土壤学(上册)[M].中国林业出版社,1981:140-143.
    [236]莫翼翔,吴发启.泥河沟小流域土壤养分的分布与保护[J].水土保持学报,2002,16(3):86-89.
    [237]曹慧,藏波.太湖流域丘陵地区土壤养分的空间变异[J].土壤,2002,(4):201-205.
    [238]徐明岗,于荣,王伯人.土壤活性有机质的研究进展[J].土壤肥料,2000,(6):3-7.
    [239]常庆瑞,王立祥,李新平.宁南地区土壤营养障碍性分析[J].干旱地区农业研究,1997,15(2):63-68.
    [240]Wandde,M.,yang,X.Influence of tillage on the dynamics of loose and occluded particulate and humified organic matter fractions[J]. Soil Biol.Biochem.2000,(32):1151-1160.
    [241]郭兆元.陕西土壤[M].北京:科学出版社,1992,363-369;394-406;424-431;445-457.
    [242]朱祖祥.土壤学(上、下册)[M].北京:农业出版社,1985.
    [243]李世清,王瑞军,李紫燕,等.半干旱半湿润农田生态系统不可忽视的土壤氮库——土壤剖面中累积的硝态氮[J].干旱地区农业研究,2004,22(4):1-13.
    [244]林昌虎,张清海,段培,等.贵州东部石漠化地区不同生态模式下土壤氮素变异特征[J].水土 保持学报,2007,21(1):128-130.
    [245]邢维芹,王林权,李立平,等.半干旱区玉米水肥空间耦合效应Ⅱ.土壤水分和碱解氮的动态分布[J].土壤,2003,35(3):242-247.
    [246]王辉,王全九,邵明安.降水条件下黄土坡地氮素淋溶特征的研究[J].水土保持学报,2005,19(5):61-64.
    [247]张亚丽,张兴昌,邵明安,等.秸秆覆盖对黄土坡面矿质氮素径流损失的影响[J].水土保持学报,2004,18(1):85-88.
    [248]崔德杰,刘永辉,隋方功,等.长期定位施肥对土壤钾素形态的影响[J].莱阳农学院学报,2005,22(3):165-167.
    [249]张会民,吕家珑,李菊梅,等.长期定位施肥条件下土壤钾素化学研究进展[J].西北农林科技大学学报(自然科学版),2007,35(1):155-160.
    [250]谢建昌.土壤钾素研究的现状与展望[J].土壤学进展,1981,9(1):1-16.
    [251]Sadusky M C,Sparks D L,Noli M R.et al.Kinetics and mechanisms of potassium release from sandy middle Atlantic coastal plain soils[J].Soil Science,1987(4):1460-1465.
    [252]彭浩,邵明安,张兴昌.黄土区土壤钾素径流流失机理研究进展[J].土壤与环境,2002,11(2):172-177.
    [253]周礼恺.土壤酶学[M].北京:科学出版社,1987.
    [254]樊军.黄土高原旱地长期定位试验土壤酶活性研究(硕论)[D].中科院水土保持研究所,2001.
    [255]Nannipieri,P.,Pedrazzini,F.,Arcara,P.G.and Piovanelli,C.Changes in amino acids, enzyme activities and biomass during soil microbial growth[J].Soil Sci.1979,127:26-34.
    [256]Gagnon,B.Lalande,R.Simard,R.R.and Roy M.Soil enzyme activities following paper sludge addition in a winter cabbage-sweet corn rotation[J].Can.J.Soil Sci.2000,80:91-97.
    [257]Bergstrom,D.W.,Monreal,C.M.Increased soil enzyme activities under two row crops[J]. Soil Sci.Soc.Am.J.1998,62:1295-1301.
    [258]Martens,D.A.,Johason,J.B.and Frankenberger,Jr.,W.T.Production and persistence of soil enzymes with repeated addition of organic residues[J].Soil Sci.1992,153:53-61.
    [259]Ingrid C.Bruke.Soil organnic matter recovery in semiarid grasslands:implications for the conservation reserve program[J].Ecological Application,1995,5(3):793-801.
    [260]万忠梅,吴景贵.土壤酶活性影响因子研究进展[J].西北农林科技大学学报(自然版),2005,33(6):87-92.
    [261]赵之重.土壤酶与土壤肥力关系的研究[J].青海大学学报(自然版),1998,16(3):24-29.
    [262]宋海燕,李传荣,许景伟,等.滨海盐碱地枣园土壤酶活性与土壤养分、微生物的关系[J].林业科学,2007,43(增刊):28-32.
    [263]黄昌勇.土壤学[M].北京:中国农业出版社,2004.
    [264]陈宝玉,刘世荣,葛剑平,等.川西亚高山针叶林土壤呼吸速率与不同土层温度的关系[J].应用生态学报,2007,18(6):1219-1224.
    [265]Stoan H.De-Polliy H,Bohm S,et al. Spatial heterogeneity of soil respiration and related properties at the plant scale[J].Plant and Soil,2000,222:203-214.
    [266]陈述悦,李俊,陆佩玲,等.华北平原麦田土壤呼吸特征[J].应用生态学报,2004,15(9):1552-1560.
    [267]韩广轩,周广胜,许振柱,等.玉米农田土壤呼吸作用的空间异质性及其根系呼吸作用的贡 献[J].生态学报,2007,27(12):5254-5261.
    [268]Singh J S,Raghubanshi A S,Singh R S,Srivastraca S C.Microbial biomass acts a source of plant nutrients in dry tropical forest and savanna[J].Nature,1989,338:499-500.
    [269]Srivastava S C,Sungh J S.Microbial C,N and P in dry tropical soils:Effects of alternate land-uses and nutrient flux.Soil Biology & Biochemistry,1991,23(2):117-124.
    [270]张浩,姚宁卿,金轲,等.保护性耕作对坡耕地土壤微生物量碳、氮的影响[J].水土保持学报,2007,21(4):126-129.
    [271]黄敏,肖和艾,童成立,等. 稻田土壤微生物磷变化对土壤有机碳和磷素的响应[J].中国农业科学,2004,37(9):1400-1406.
    [272]Brookes P C,Powkson D S,Jenkinson D S.Phosphorus the in soil microbial biomass. Soil Biology & Biochemistry,1984,16(2):169-175.
    [273]张展羽,詹红丽,郭相平. 滨海平原农田土壤含盐量空间变异分析[J].河海大学学报(自然版),2002,30(4):61-65.
    [274]胡小平,王长发.SAS基础及统计实例教程[M].陕西:西安地图出版社,2001.
    [275]蔡崇发,丁树文,史志华.GIS支持下乡镇域土壤肥力评价与分析[J].土壤与环境,2000,9(2):99-102.
    [276]李双异.黑龙江中部黑土区土壤肥力质量时空变异规律与评价(硕论)[D].辽宁:沈阳农业大学,2005.
    [277]何鑫.成都平原土壤肥力综合评价与空间变异研究(硕论)[D].雅安:四川农业大学,2004.
    [278]穆兴民.黄土高原土壤水分与水土保持措施相互作用[J].农业工程学报,2000,16(2):41-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700