用户名: 密码: 验证码:
农林复合系统中核桃冠层结构动态模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农林复合系统在解决农林用地矛盾、改善生态环境、提高自然资源利用效率、促进农村经济发展等方面具有重要的实践价值。林木冠层动态模拟技术系统对科学预测复合系统结构,进一步开展功能与效应的预测评价,提高复合系统调控管理成效具有重要技术支撑作用。同时对比野外试验研究,模拟实验能节约人力、物力和财力,提高研究水平和工作效率。核桃-作物/药草间作系统是华北石质山地重要的土地利用方式,也是当地退耕还林生态工程的主要模式之一,核桃复合经营系统林木冠层结构的动态模拟研究具有很好的代表性和实践应用性,有利于浅山丘陵地区不同类型脆弱生态区的经济和生态协调发展。
     在地处河南省济源市的黄河小浪底森林生态系统定位研究站的核桃试验地,自2008到2011年,通过核桃的生长发育观测和冠层几何结构观测,针对林木几何结构的相关田间实测技术及模型在形态学参数提取不易及时空分辨率不足等方面问题,从冠层几何结构的三维形态特征参数测算和几何形态模拟两个技术关键入手,以生育期为时间尺度,基于大量实测数据,综合采用数理统计、分形理论及计算机可视化技术等理论和方法,对核桃复合系统结构进行了田间试验和数值模拟试验,主要结果包括以下几个方面:
     (1)应用多基线近景摄影测量技术,形成了包括植株三维坐标,以及植株主干高和胸径、侧枝长和基径、侧枝生长倾斜角度和伸展方位等冠层几何结构参数等方面测算在内的树木三维几何形态测量技术,为林木虚拟植物的实现提供了廉价而实用的林木几何形态数据和参数获取技术。
     该方法的测量及精度基础是植株各部位的三维坐标测定,分析表明:X坐标的绝对误差0.000m~0.023m,平均为0.006m,相对误差0.000%~0.162%,平均为0.042%;Y坐标的绝对误差0.001m~0.032m,平均为0.006m,相对误差0.007%~0.240%,平均为0.047%;Z坐标的绝对误差0.000m~0.031m,平均为0.002m,相对误差0.000%~0.269%,平均为0.020%。测量精度完全满足了植物冠层几何结构数值表达的精度要求。
     (2)建立了基于有效发育日数概念的核桃发育的物候期模拟模型,构建了基于Logstic方程的核桃株高、主干粗生长、侧枝的粗生长和高(长)生长等模拟模型,以及双圆曲线叶片形状模型及叶片发育模型,为虚拟植物三维几何形态构成提供了基本参数和基础数据。
     对比2011年物候期观测资料,物候期模拟模型在整个生长季的物候期绝对误差2~4天、相对误差0.0%~1.2%。
     对比2011年15株核桃树高和胸径观测资料,树高模拟的绝对误差0.8cm~61.8cm,平均为27.6cm,相对误差0.2%~14.1%,平均为5.5%;胸径模拟的绝对误差0.1cm~3.2cm,平均为1.4cm,相对误差0.4%~24.5%,平均为11.4%。15株核桃平均树高505.5cm、平均胸径12.7cm,树高绝对误差和相对误差分别为4.7cm和0.9%,胸径绝对误差和相对误差分别为0.3cm和2.4%。
     对比7个复叶(共59片小叶)的实测数据,单片小叶面积模拟的绝对误差0.0cm2~14.9cm~2,平均为2.2cm~2,相对误差0.2%~11.9%,平均为3.8%。
     (3)基于核桃几何形态生长发育模型的模拟结果,采用基于L-系统分形技术的虚拟植物模拟方法和OpenGL的三维可视化技术,建立了林木单植株生长的可视化动态模拟模型。
     在单植株模型基础上,通过分级分层实现、枝条大小和伸展角度变化、叶片角度和颜色深浅变化、矢量角计算等途径实现多行植株模拟,构建了林分尺度的、“四维”动态的虚拟植物模型。
     模型采用模块化开发方法,在枝、叶等几何形态特征生长参数方面均有相应输入接口,同时实现了数量化植物生长模型和图形化植株几何形态的表达,为今后模型系统的进一步完善奠定了良好的基础。
     (4)基于叶片形状模型,以像素为计算单元,采用几何图形的布尔加和运算法则、蒙特卡罗概率方法模拟了单株和林分尺度的冠层透光特征。模拟值误差分析显示,核桃林冠下地面处的透光率实测值和模拟值的相对误差平均为15%。说明辐射模拟模式基本具备了定量描述农林复合系统中太阳辐射传输规律的动态预测功能,可为核桃-作物/药草间作系统配置模式提供辐射数据支持;同时也表明模型有待进一步改进和完善。
     (5)基于冠层辐射传输的数值模拟数据,结合决明子、绿豆、红小豆、小辣椒、花生等当地常见经济作物及药用植物的温光特性,提出核桃-经济作物、核桃-药草复合系统合理经营年限、空间结构配置方案,为不同核桃树龄条件下农林复合系统的结构调控与优化、可持续经营管理提供了重要的指导作用;同时,也为今后相应间作系统作物共生期生长发育模拟试验奠定了基础。
     上述研究成果经过不断完善,将具有很强的实用性,在农林复合系统经营实践中具有广泛的应用前景,可为生态兴国战略的实施提供重要的技术支撑。然而,由于研究实际年限只有4年,研究工作仅集中于林木生长发育期的部分阶段,这对于核桃等生长周期较长的果树而言显然不足,更进一步研究成果的获得尚需要长期的定位研究,尤其是要加强农林复合系统中林木几何形态特征参数动态变化与光照、温度、水分等环境因子之间相互作用的长期定量化研究。
Agroforestry system has important value in the practice of resolving the contradictions ofagricultural and forest land use, improving the ecological environment and the use efficiency ofnatural resources, promoting the rural economic development. Dynamic simulation technologysystems of fruit tree canopy were constructed in the fruit-crop intercropping system. Thistechnology system has important technological support roles in forecasting the structure ofagroforestry system scientifically, further studying on prediction and evaluation of the functionand effect for agroforestry system, and increasing the efficiency of regulation and managementfor agroforestry system. Compared to experimental research and treatment on field, applicationof this technology system can also reduce expend of manpower and material resources andincrease research level and efficiency to some extent. The walnut-crops/herb intercroppingsystem is important land-use way, and is also one of main pattern for reafforestation projects.The dynamic simulation research of tree canopy structure in agroforestry system with walnuthas well typical and practical application. Application of the research results can be beneficialto the harmonious development of economy and ecology in different types of fragile ecotope ofthe low hilly areas.
     The observation experiment of field for walnut(Juglans regia) growth and canopygeometric structure were done in walnut experimental plot of Xiaolangdi Forest EcosystemResearch Station of the Yellow River which located in Jiyuan, Henan province during2008-2011. As the extraction of morphological parameter was very complicated and spatial andtemporal resolution was low in relative field measure technology and model of tree geometrystructure, two key technologies including three dimensional morphological character parametermeasurement and geometry simulation of canopy geometric structure were adopted. Takinggrowth phase as time dimension, theories and methods containing mathematics, fractal theoryas well as computer visualization technology were synthesized, and field experiment and numerical simulation test were constructed in the agroforestry system based on a great deal ofmeasured data. The main results are as follows:
     (1) A multi-baseline close-range photogrammetry technology to establish the3D geometrymeasurement technology in trees was adopted. The technology was based on estimates ofcanopy geometrical parameters, which involving in measurement of plant three-dimensionalcoordinates; estimates of the plant height and brest diameter of trunk, length, basal diameter,growth tilt angle and stretch direction of lateral branch. This technology offered a cheap andpractical technology of obtaining forest geometry data and character parameters for therealization of the forest virtual plant.
     The measurement and its accuracy of this method was based on the measuring precisionof three-dimensional coordinate for walnut plant. The case analysis showed that the absoluteerror of X-coordinate was0.000-0.023m, and0.006m for the averaged value, the relative errorwas0.000%-0.162%,0.042%for the averaged value; the absolute error of Y-coordinate was0.001-0.032m, and0.006m for the averaged value, the relative error was0.007%-0.240%,0.047%for the averaged value; the absolute error of Z-coordinate was0.000-0.031m, and0.002m for the averaged value, the relative error was0.000%-0.269%,0.020%for theaveraged value. The measuring precision fully met the requirements of quantitative expressionfor plant canopy geometric strcture.
     (2) A simulation model of walnut phonological development based on the concept of daynumber of effective development was established; and simulation models of growth withwalnut plant height, trunk thick, lateral branch length and height, and the model of leaf shapeand leaf growth were established. Establishment of these models provides the basic parametersand data of three-dimensional geometry for the virtual plan.
     Compared to the observation data of walnut phonological development in2011, theabsolute error of simulation value of phonological model in whole growth season was2-4day,the relative error was0.0%-1.2%.
     Compared to the observation data of tree height and brest diameter for15walnut plants in2011, the absolute error of simulation value for tree height was0.8-61.8cm and the average was27.6cm, the relative error was0.2%-14.1%and the average was5.5%; the absolute errorof simulation value for tree brest was0.1cm-3.2cm and the average was1.4cm, the relativeerror was0.4%-24.5%and the average was11.4%. On average for15plants, the tree heightwas505.5cm and the brest diameter was12.7cm, the absolute and relative error for tree heightwas respectively4.7cm and0.9%, the absolute and relative error for brest diameter wasrespectively0.3cm and2.4%.
     Compared to the measured data for59leaflets of7compound leaves, the absolute error ofsimulation value for the single leaflet was0.0-14.9cm2, the average was2.2cm2, the relativeerror was0.2%-11.9%, the average was3.8%.
     (3) Based on the OpenGL3D visualization technology and L-system Fractal Technologywith Virtual plant simulation capability, a visualization model of dynamically simulatingwalnut’s single plant growth was established.
     On the basis of establishing a single plant model, a stand scale, four-dimensional virtualplant growth model was constructed. This model used leveled and layered implementation,changing of the size and stretching angle for lateral branches, changing of blade angle andcolor shades, a vector angle calculation to achieve multi-row plant simulation.
     These models were developed with modularization. Model in terms of growth parameterswith branches and leaves had the corresponding input interface, while achieving the expressionof quantification of plant growth models and graphical plant geometry. It laid a goodfoundation to further improve the model system.
     (4) Based on blade shape and the Monte Carlo probability method with pixel as thecalculated cell, the Boolean algorithms of geometry was adopted to simulate the canopy lighttransmission characteristics in single-plant and stand scale respectively. The error analysis forsimulation value of canopy transmittance showed that the relative error was15%. Thesimulation model basically had the quantitative description function of the dynamic predictionof solar radiation transfer law in the agroforestry systems. Model could providewalnut-crops/herb intercropping system with the support of the radiation data. Furtherimproving of these models was anticipated.
     (5) The reasonable intercropping years and spatial configuration for agroforestry systemsuch as walnut-cash crops and walnut-herb were suggested, which being based on thesimulation result of canopy radiation transfer for walnut in walnut-crop/herb intercroppingsystems, combining with temperature and photoperiod characteristic of cash crops andmedicinal plants which being local and common such as cassia(Catsia tora Linn),mung-bean(Vigna radiata), red bean(Vigna angularis), capsicum(Capsicum frutescens) andpeanut(Arachis hypogaea). These suggestion could provide important instructive effect forstructure control and regulation as well as sustainable management of agroforestry system atdifferent age of fruit tree. Meantime, the above research also established a basis for simulationexperiment of growth and development of intercropping crop in the co-growth period in thefuture.
     The above results will have extensive application foreground in the management practiceof agroforestry system after gradual improvement, and can provide important technologicalsupport for the implement of national ecology strategy. Whereas, the actual research time isonly4years, and researches only has focused on part of the tree growth periods, which isobviously insufficient for growth and development simulation of fruits like walnut which has arelative long growth cycle. Therefore, acquirement of further research results need long-termlocation study, and long-term quantitative study of the interaction between the dynamic changeof tree geometry character parameter and environments such as light, temperature and water inagroforestry system should be enhanced especially.
引文
Anegbeh P. O.,Usoro C.,Ukafor V. et.al.. Domestication of Irvingia gabonensis:3-Phenotypic variation offruits and kernels in a Nigerian village. Agroforestry Systems,2003,58:213~218
    Angus J. F.,Mackenzie D. H.,Morton R. et al.. Phasic development in field crop II. Thermal andphotoperiodic responses of spring wheat. Field Crop Res.,1981,4:269~283
    Brookfield H.,Padovh C.. Agrodiversity. Environment,1994,36(5):7~11,37~45
    Chen S. G.,Ceulemans R.,Impens I.. A fractal-based Populus canopy structure model for the calculation oflight interception. Forest Ecology and Management,1994,69:97~110
    De Reffye P.,Houllier F.,Blaise F.,et al.. A model simulationg above-and below-ground tree architecturewith agroforestry applications. Agroforestry Systems,1995,30:175~197
    Forter J. R.. A model of canopy development in winter wheat. J. Agric. Sci. Camb..1984,102:383~392
    Fourcaud T.,Blaise F.,Lac P.,et al.. Numerical modeling of shape regulation and growth stresses in trees,Part II:implementation in the AMAPpara software and simulation of tree growth. Trees Structure andFunction,2003,17(1):31~39
    Govaerts Y.,Verstraete M. M.. Raytran:a Monte Carlo raytracing model to compute lights cattering in threedimensional heterogeneous media. IEEE Transactions on Geoscience and Remote Sensing,1998,36:493~505
    Ivanov N.,Boissard P.,Chapron M.,et al.. Computer stereo plotting for3-D reconstruction of a maizecanopy. Agric. For. Meteorl.,1995,75:85~102
    Jacquemoud S,Baret F,Andrieu B,et al.. Extraction of vegetation biophysical parameters by inversion ofthe PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRISsensors. Remote Sens Environ,1995,52:163~172
    James B. McCarter,Jeremy S. Wilson,Patrick J. Baker,et al.. Landscape management through integrationof existing tools and emerging technologies. Journal of Forestry,1998,96(6):17~23
    Leakey R. I.. Redefining agroforestry-and opening Panora’s box. Agroforestry today,1997,9(1):5
    Leroy C.,Sabatier S.,Wahyuni N. S. et al.. Virtual trees and light capture:a method for optimizingagroforestry stand design. Agrofor. Syst.,2009,77:37~47
    Li X.,Strahler A. H.. Geometric optical modeling of a conifer forest canopy. IEEE Trans Geoscience andRemote Sensing,1985,23:705~721
    Lindhagen M,Marcelis L. F. M.. Predicting branching in young apple trees (Malus domestica Borkh.).Second international symposium on models for plant growth, environmental control and farmmanagement in protected cultivation. Acta. Hort.,1998,456:125~131
    LOTT J.E.,HOWARD S. B.,BLACK C. R.,et.al.. Allometric estimation of above-ground biomass and leafarea in managed Grevillea robusta agroforestry systems. Agroforestry Systems,2000,49:1~15
    Meloni S.. A simplified description of the three-dimensional structure of agroforestry trees for use with aradiative transfer model. Agroforestry Systems,1999,43:121–134
    Mialet-Serra I.,Dauzat J.,Auclair D.. Using plant architectural models for estimation of radiation transfer ina coconut-based agroforestry system. Agroforestry Systems,2001,53:141~149
    Norman J. M.,Campbell G. S.. Canopy structure:field methods and instrumentation. Plant PhysiologicalEcology,1989,91:301~325
    North P. R. J.. Three dimensional forest light interaction model using a Monte Carlo method. IEEETransactions on Geoscience and Remote Sensing,1996,34:946~956
    Pommel B.,Sohbi Y.,Andrieu B. Use of virtual3D maize canopies to assess the effect of plot heterogeneityon radiation interception. Agricultural and Forest Meteorology,2001,110(2001):55–67
    Prusinkiewicz P.,Lindenmayer A.. The Algorithmic Beauty of Plants. New York:Springer Verlag,1990
    Prusinkiewicz P.. Art and science for life:Designing and growing virtual plants with L-systems. Acta. Hort.,2004,630:15~28
    Prusinkiwicz P.. Modeling of spatial structure and development of plants:a review. Scientia Horticulturae,1998,74:113~149
    Ross J. K.,Nilson. Solar radiation regine in plant canopy. IPA,Tartu,1966
    Richards F. J.. A flexible growth function for empirical use. J. Exp. Bot.1959,10:290~300
    Ruark G. A.,Martin G. L.,Bockheim J. G.. Comparison of constant and variable allometric ratios forestimating Populu stremuloides biomass. For. Sci.,1987,33:294~300
    Sanchez P. A.. Science in agroforestry. Agroforestry Systems,1995,30:5~55
    Sinoquet H,Moulia B,Bonhomme R. Estimating the three-dimensional geometry of a maize crop as aninput of radiation models:comparison between three-dimensional digitizing and plant profiles.Agric forMeteorol,1991,55:233~249
    Tamm C. O.,Fu Mao-Yi.. Predicting branch and needle growth of spruce (Piceaabies (L.) Karst.) fromeasily measurable tree parameters:II Branch weight.Ecol. Plant,1987,8(22):21~36
    Travis K. Z.,Day W.,Porter J. R.. Modelling the timing of the early development of winter wheat. Agric.And For. Meteo.,1988,44:67~79
    Zeide B.. Fractal analysis of foliage distribution in loblolly pine crowns. Can J. For. Res.,1998,28:106~114
    Zhang Jun-hui,Ding Zhi-hui,Han Shi-jie et al.. Dominate time scale characteristics of the turbulence acrosscanopy-atmosphere interface of a mixed broadleaved-Korean pine forest in Changbai Mountains.Journal of Forest Research,2002,13(3):205~208
    曹永慧,陈存及,李生.间伐对杉莲混交林中乳源木莲树冠结构的影响.林业科学研究,2004,17(5):646~653
    常丽英.水稻植株形态建成的模拟模型研究.南京农业大学博士学位论文,2007
    常月梅.核桃良种繁育与丰产栽培.山西科学技术出版社,2003
    陈崇成,唐丽玉,权兵等.基于信息管理的一种虚拟森林景观构建及应用探讨.应用生态学报,2005,16(11):2047~2052
    陈高,代力民,周莉.受干扰长白山阔叶红松林林分组成及冠层结构特征.生态学杂志,2004,23(5):116~120
    陈国庆,朱艳,刘惠等.基于形态模型的小麦器官和单株虚拟生长系统研究.农业工程学报,2007,23(3):126~130
    陈虹,朱小虎,黄学芹等.不同早实核桃品种物候期观察与低温抗性评价.新疆农业大学学报,2010,33(6):479~483
    陈华,张立中,方娟.小麦发育动态模拟模型的初步研究.中国农业气象,1995,16(1):1~4
    陈颖,隋宏大,冯仲科等.2种树高测量方法的测量精度对比分析.林业调查规划,2009,34(6):1~5
    程述汉,束怀瑞,魏钦平.苹果树新梢生长动态的数学模型.生物数学学报,1999,14(1):82~85
    程述汉,束怀瑞,魏钦平等.红富士干周增长规律的数学模型.数理统计与管理,1999,18,3:1~4
    崔劲,徐凯声,高军峰.基于L-系统的交互式虚拟植物结构建模.武汉理工大学学报,2005,29(2):312~314
    大隅真一.森林计测学.于璞和译.北京:中国林业出版社,1981
    单玉珊.小麦分蘖规律的统计分析及其在实践中的应用.作物学报.1982,8(1):49~56
    邓向瑞,冯仲科,马钦彦等.三维激光扫描系统在立木材积测定中的应用.北京林业大学学报,2007,29(增刊2):74~77
    丁维龙,刘端阳,古辉.基于模板库的三维植物形态模拟系统研究.计算机工程,2006,32(9):178~180
    丁维龙,熊范纶,张友华.基于构件的植物三维结构模拟模型.小型微型计算机系统,2004,25(9):1624~1627
    丁维龙.基于虚拟植物生长模型的农业专家系统研究.浙江工业大学学报,2005,3(5):525~529
    董斌,冯仲科,姚山等.天地空立体化森林精准自动计测技术研究.北京林业大学学报,2008,30(增刊1):174~176
    杜国强.早实核桃生长及生理生化特性的研究.河北农业大学硕士学位论文,1991
    段红喜.核桃成熟期间主要营养变化及其相关性的研究.河北农业大学硕士学位论文,2005
    樊金拴,陈原国,李凯荣等.土壤水分状况对核桃生长和发育的影响.林业科学,2006,42(12):39~46
    樊志和,王占武,邢树本等.廊坊红小豆品质、产量与气候条件的关系.中国农业气象,1992,13(4):12~14,28
    方江平,钟政昌,钟国辉.林芝地区光核桃种群的年龄结构.林业科技开发,2008,22(1):53~56
    房瑶瑶,陈兴彬,杨克强.核桃实生群体物候的观测.经济林研究,2011,29(3):97~101
    冯莉,王力.基于L-系统的三维分形植物的算法及实现.计算机仿真,2005,22(11):205~208
    冯仲科,殷嘉俭,贾建华等.数字近景摄影测量用于森林固定样地测树的研究.北京林业大学学报.2001,23(5):15~18
    冯仲科,罗旭,马钦彦等.基于三维激光扫描成像系统的树冠生物量研究.北京林业大学学报,2007,29(增刊2):52~56
    冯仲科,隋宏大,邓向瑞等.三角高程法树高测量与精度分析.北京林业大学学报,2007,29(增刊2):31~35
    冯仲科,赵英琨,邓向瑞等.三维前方交会法测量树高及其精度分析.北京林业大学学报,2007,29(增刊2):36~39
    高登涛,韩明玉,李丙智.冠层分析仪在苹果树冠结构光学特性方面的研究,西北农业学报,2006,15(3):166~170
    高金成,张发寿,卢小扣等.小麦生殖生长阶段综合温度指标研究.中国农业气象,1993,14(5):7~9
    高亮之,金之庆,黄耀等.水稻种模型-水稻发育动态的计算机模型.中国农业气象,1989,10(3):3~10
    高亮之著.农业模型学基础.香港:天马图书有限公司,2004
    高露双.长白山典型树种径向生长与气候因子的关系研究.北京林业大学博士学位论文,2011
    高照全,魏钦平,王小伟.果树光合作用数学模拟的研究进展.果树学报,2003,20(5):338~344
    耿瑞平,段军,班小娟等.基于马氏链遗传与繁衍模型的随机L-系统.计算机工程与应用,2003,23:16~18
    宫鹏,梅雪良,张祖勋.利用数字摄影测量探测橡树草原变化.遥感学报,1999,3(4):285~289
    郭爱霞.温185等3个早实核桃品种的早期丰产性状调查初报.落叶果树,2008,1:7~8
    郭功波.济源市核桃(Juglans regia L.)品种特征及部分生理特性的研究.河南农业大学硕士学位论文,2010
    郭华,王孝安.黄土高原子午岭人工油松林冠层特性研究.西北植物学报,2005,25(7):1335~1339
    郭向华;李保国;齐国辉等.核桃叶片早衰与叶片矿质元素含量的关系.林业科学,2007,43(2):111~114
    郭焱,李保国.玉米冠层三维结构研究.作物学报,1998,24(6):1006~1009
    郭焱,李保国.玉米冠层的数学描述与三维重建研究.应用生态学报,1999,10(1):39~41
    郭焱,李保国.虚拟植物的研究进展.科学通报,2001,4(46):273~280
    国家气象局编定.农业气象观测规范(下册).气象出版社.1993.3~34
    韩光瞬,冯仲科,刘永霞等.三维激光扫描系统测树原理及精度分析.北京林业大学学报.2005,27(增刊2):187~190
    郝延军,桑育黎,赵余庆.决明子的研究进展.中草药,2001,32(9):858~859
    郝艳宾.核桃种质资源与良种选育研究.北京林业大学博士学位论文,2008
    何桃元.红小豆新品种鄂红豆1号特征特性与栽培技术.湖北农业科学,1998,4:29~30
    贺跃光,王秀美,曾卓乔.数字化近景摄影测量系统及其应用.矿冶工程.2001,21(4):1~3
    洪明,张丽,赵经华等.滴灌施肥条件下核桃树早衰叶片矿质元素含量分析.干旱地区农业研究,2011,29(4):153~156
    侯加林,王一鸣,董乔雪等.虚拟植物生长的研究现状与发展趋势.农业机械学报,2004,35(3):159~163
    侯玉侠.薄壳核桃叶片早衰原因及防治.落叶果树,2010,6:35
    胡国登.埔上林场杉木大径材生长规律研究.内蒙古林业调查设计.2008,31(4):44~46,123
    胡海英,曹秀鸽,林斌. L-系统的三维化.工程图学学报,2003,3:89~93
    胡卫平,王献荣,徐剑青.浙西山区天然林阔叶树数量成熟龄的确定.华东森林经理,2008,22(1):36~39
    黄冲平.马铃薯生长发育的动态模拟研究.浙江大学博士学位论文,2003
    黄景云,公庆党,房义福等.梨树主干与叶面积及总枝量的相关分析.经济林研究,1996,14(增刊):144~145
    黄麟,张晓丽.三维成像激光雷达遥感技术在林业中的应用.世界林业研究,2006,19(4):11~17
    黄文江,王纪华,刘良云等.基于多时相和多角度光谱信息的作物株型遥感识别初探.农业工程学报,2005,21(6):82~86
    姬谦龙.不同基因型美国黑核桃对干旱胁迫的适应机制研究.山东农业大学博士学位论文,2002
    贾炜玮.樟子松人工林枝条生长及节子大小预测模型的研究.东北林业大学博士学位论文,2006
    贾志华,梁红霄.香玲核桃树生长发育规律观察.山西果树,2007,2:43~44
    焦素芳,韩海东.决明子的化学成分与药理作用.临床合理用药,2010,3(14):81~82
    金开正,刘茂泉,唐俊泓.果树干周生长预测模型的研究.安徽农业科学,2002,30(3):426~427,429
    金以文,鲁世杰编著.分形几何原理及其应用.杭州:浙江大学出版社,1997,93~128
    靳润昭,王兆毅. L-系统的基本概念与示例.天津农学院学报,2002,9(1):49~54
    景向欣.樟子松人工林单木动态生长三维可视化模型的研究.东北林业大学硕士学位论文,2007
    雷静品.三峡库区马尾松、柏木林木生长及健康经营研究.中国林业科学研究院博士学位论文,2009
    黎海彬,方昆阳,李续娥.中药决明子蒽醌类成分含量测定的研究.食品科学,2007,11(28):427~429.
    李保国,郭焱.作物生长的模拟研究.科技导报,1997,7:11~12
    李崇贵,赵宪文,李春千.森林蓄积量遥感估测理论与实践.北京:科学出版社,2005
    李德志,臧润国.森林冠层结构与功能及其时空变化研究进展.世界林业研究,2004,17(3):12~16
    李凤日.长白落叶松人工林树冠形状的模拟.林业科学,2004,40(5):16~23
    李伏生,Shabtai Cohen.利用林窗部分转换技术测定苹果树冠层结构.果树科学,2000,17(2):101~104
    李光辉,卢凤珠,于芹芬.基于对象类方法的三维树造型技术.辽宁工学院学报,2002,22(4):57~59
    李国和.核桃种质资源研究.四川农业大学博士学位论文,2007
    李火根,黄敏仁.分形及其在植物研究中的应用.植物学通报,2001,18(6):684~690
    李火根,潘惠新,严相进等.杨树树冠分维数与生长的相关关系.南京林业大学学报(自然科学版),2005,29(2):43~46
    李金玲,张立瑞,赵松林等.南阳市小辣椒产业的现状和发展对策.长江蔬菜,2007,3:64~65
    李明泽,范文义,张元元.基于全数字摄影测量的林分立木高度量测.北京林业大学学报,2009,31(2):74~78
    李生,陈存及.混交林分中乳源木莲冠层特性与生长的通径分析.林业科学研究,2005,18(3):310~314
    李淑芳,习学良,范志远等.美国山核桃1年生播种苗的年生长节律.西部林业科学,2008,37(1):103~107
    李淑芳,杨建华,习学良.美国山核桃苗木生长规律及育苗技术的研究.江西林业科技,2006,3:19~20
    李小军.文县杨生长规律及其生态学研究.甘肃农业大学硕士学位论文,2005
    梁士楚,王伯荪.植物木榄种群植冠层结构的分形特征.海洋通报,2002,21(5):26~31
    梁长秀,冯仲科,姚山.基于电子经纬仪及PDA自动量测的电子角规测树原理、功能及精度研究.北京林业大学学报,2005,27(增刊2):142~148
    廖邦洪,陈东立.北美地区森林景观可视化的研究与应用.世界林业研究,2005,18(5):57~64
    刘春延.河北塞罕坝华落叶松人工林生长及生境因子关系研究.中国林业科学研究院博士学位论文,2009
    刘发林,吕勇,曾思齐.森林测树仪器使用现状与研究展望.林业资源管理,2011,1:96~99
    刘千里,李春友,孟平等.多基线数字近景摄影测量系统测树方法及数据分析,2010,46(2):166~170
    刘清华.核桃种子萌发及苗期生长特性研究.山东师范大学硕士学位论文,2011
    刘伟.基于ThiessenPolygon和ANN的槲栎单木生长模型的研究.河南农业大学硕士学位论文,2009
    刘玮. N、P、K水平对核桃幼树生长及其生理指标的影响.河北农业大学硕士学位论文,2005
    刘新彩.核桃幼树生长特性及其相关生理生化特性的研究.河北农业大学硕士学位论文,2004
    刘益军,张子树.数码相机用于经济林生态测量的探讨.经济林研究,2004,22(3):42~44
    刘云伟,冯仲科,刘永霞等.全站仪在林业数字化工程上的应用.北京林业大学学报,2008,30(增刊1):306~309
    刘兆刚,李凤日,卢军等.基于林氏系统语言的树木枝条分形特征模拟.东北林业大学学报,2006,34(1):34~37
    刘兆刚,舒扬,李凤日.樟子松人工林一级枝条基径和枝长模型的研究.植物研究,2008,28(2):244~248
    卢其亮,吕归宝.中药决明子的本草考证.河南科学,1999,17(专辑):156~157
    罗树宏.晋东干旱土石山区核桃幼树栽培技术示范研究.西北农林科技大学硕士学位论文,2004
    罗旭,冯仲科,邓向瑞等.三维激光扫描成像系统在森林计测中的应用.北京林业大学学报,2007,29(增刊2):82~87
    马钦彦,刘志刚,潘向丽等.华北落叶松人工林生长季内的林冠结构和光分布.北京林业大学学报,2000,22(4):18~21
    马温韬,郭焱,李保国.应用三维数字化仪对玉米植株叶片方位分布的研究.作物学报,2006,32(6):791~798
    毛向红,王福宗.河北省核桃栽培现状和发展对策.河北林果研究,1997,12(4):386~389
    孟军,陈温福,徐正进.水稻株型与冠层三维结构计算机模拟初报.中国农学通报,2005,21(6):403~406
    孟平,张劲松,樊巍编著.中国复合农林业研究.北京:中国林业出版社,2003
    孟平,张劲松,高峻.中国复合农林业发展机遇与研究展望.世界林业研究,2004,17:30~34
    孟平,张劲松,高峻.果树冠层太阳总辐射与净辐射分形特征的相关分析.林业科学,2005,41(1):1~4
    孟平,张劲松,王鹤松等.苹果树蒸腾规律及其与冠层微气象要素的关系.生态学报,2005,25(5):1075~1081
    孟宪宇.测树学.北京:中国林业出版社,2002
    聂敏,廖桂平,金晶等.油菜虚拟生长的研究.农业网络信息,2007(3):19~21,38
    庞勇,孙国清,李增元.林木空间格局对大光斑激光雷达波形的影响模拟.遥感学报,2006,10(1):97~103
    裴东,曾新政主编.中国核桃种质资源.北京:中国林业出版社.2011.25~43,102~102
    裴志永.树木生长量无线遥测方法及装置研究.北京林业大学博士学位论文,2010
    彭士琪,温陟良主编.干果研究进展.中国林业出版社,1999
    申广荣,王人潮,李云梅等.水稻群丛结构和辐射传输分析.作物学报,2001,27(6):769~775
    沈国权.当量积温及其应用.气象,1981(7):23~25
    沈国权.影响作物发育速度的非线性温度模式.气象,1980(6):9~11
    沈艳,牛铮,缪启龙.双层植被结构冠层光谱特性的理论模拟.遥感技术与应用,2005,20(5):465~468
    石春林,金之庆,葛道阔.植物可视化研究进展.江苏农业科学,2004,6:11~15
    石春林,朱艳,曹卫星.水稻叶片几何参数的模拟分析.中国农业科学,2006,39(5):910~915
    石培礼,李文华,王金锡.岷江冷杉林线交错带的植冠三维结构.生态学报,2002,22(11):1819~1824
    史永江.矿质营养水平对核桃幼树生长发育的影响.河北农业大学硕士学位论文,2004
    史振华.晋西黄土区刺槐生长与降水量的关系.北京林业大学博士学位论文,2009
    宋尚伟,苗红霞,王娟.早实核桃的生长发育特点和整形修剪技术.吉林农业科学,2008,33(4):56~58,61
    宋有洪,郭焱,李保国等.玉米虚拟模型Ⅱ.基于器官生物量的植株形态构建.生态学报,2003,23(12):2578~2586
    苏沛兰.动物源有机肥料的养分释放及对核桃发育与抗旱特性的影响.山西农业大学硕士学位论文,2005
    孙红,孙明,王一鸣.植物生长机器视觉无损测量研究综述.农业机械学报,2006,37(10):181~185
    孙晓梅.日本落叶松纸浆材优良家系选择及家系生长模型的研究.中国林业科学研究院博士学位论文,2003
    孙永香,刘彤,郑永果等.树木模拟的粒子系统模型及其实现.系统仿真学报,2006,18(增刊1):263~266
    唐卫东,李萍萍,崔梅英.基于生长机的虚拟植物可视化技术研究.微计算机信息与测控自动化,2006,22(6-1):240~242
    唐卫东,李萍萍.基于状态机的植物生长模型可视化研究.农业机械学报,2006,37(7):104~108
    陶司光,刘兆刚.基于数码相片图像三维信息提取技术的研究.森林工程,2010,26(3):90~93
    田静.小豆的产业发展思路.农产品加工,2008,3:16~17
    田雪亮,胡小平,杨家荣.苹果叶片生长模拟模型的建立.西北农林科技大学学报(自然科学版),2006,34(4):105~109
    王凤,史军海.激光三维立体扫描技术在林业测树制表中的应用.河北林业科技,2010,3:40~41
    王凤兰,徐爱荣,孙廷文等.苹果干周和枝量的数学模型及量化修剪技术的研究.河北林业科技,1997,1:22~24
    王红霞,张志华,玄立春.我国核桃种质资源及育种研究进展.河北林果研究,2007,22(4):387~392.
    王锦地,项月琴,李小文.考虑开放度的树冠层辐射传输模型及实验验证.遥感学报,1999,3(4):279~284
    王利溥编著.经济林气象.昆明:云南科技出版社.1995.35~61,567~572
    王娜,徐明举,王超.早实核桃实生后代部分性状的遗传变异.山东农业科学,2010,7:8~11
    王小铭,林拉.树木模拟的粒子系统模型及其实现.华南师范大学学报(自然科学版),2003,3:49~53
    王秀美,曾卓乔.数字摄影测量技术在森林调查中的应用研究.林业资源管理,2001,1:31~35
    王志和.近景树木的三维可视化重建.武汉大学硕士学位论文,2005
    王忠利,张放,谭学仁等.红松人工林林冠结构动态规律的研究.辽宁林业科技,2000,3:9~10,12
    吴春峰,陆怀民,郭秀荣等.三维激光扫描系统在测树中的应用.林业机械与木工设备,2008,36(12):48~49,54
    吴富桢.测树学.北京:中国林业出版社,1992
    吴开志,肖千文,廖运洪等.早实核桃采穗圃修剪技术效应研究.安徽农业科学,2007,35(36):11835~11836,11855
    吴鹏,丁访军,许丰伟等.黔南马尾松人工林生长规律研究.中南林业科技大学学报,2011,31(8):51~55
    吴强.巨尾桉立木测树因子关系的研究.林业勘察设计,2001,2:14~16
    伍艳莲.作物形态结构的可视化技术研究.南京农业大学博士学位论文,2009
    武伟,刘洪斌.L系统的植物计算机模拟.西南农业大学学报,1999,21(3):292~294
    郗荣庭,张毅萍.中国果树志·核桃卷.北京:中国林业出版社,1996
    夏宁,李保国,邓西民等.桃树修剪分枝模式的模拟.植物学报,2004,46(7):793~802
    夏天.基于高光谱遥感的区域冬小麦生物量模拟及粮食安全评价.华中师范大学博士学位论文,2010
    向志民,何敏.几种落叶松生长规律及树高与胸径间关系的研究.林业科技,1999,1:10~12
    肖君泽,李益锋,邓建平.小豆的经济价值及开发利用途径.作物研究,2005,19(1):62~63
    谢春华,关文彬,吴建安等.贡嘎山暗针叶林生态系统林冠截留特征研究.北京林业大学学报,2002,24(4):68~71
    谢东辉,王培娟,谭文汉等.叶生非朗伯特性影响冠层辐射分布的辐射度模型模拟与分析.遥感学报,2007,11(6):868~874
    徐德聪,吕芳德,唐荣青.美国山核桃叶片性状及其与苗木生长量的关系.经济林研究,2006,24(1):16~20
    徐继忠,袁小乱,邵建柱.初果期苹呆树干周与枝量的相关研究.河北农业大学学报,1994,17(1):50~52
    徐盛,袁震东.树木成长过程的计算机仿真.东南大学学报(自然科学版),2003,33(增刊):190~193
    徐颖.核桃花期生物学特性研究.山东农业大学硕士专业学位论文,2004
    薛云,陈水森,夏丽华等.几个典型的叶片/冠层模型.西部林业科学,2005,34(1):70~73
    闫明准.帽儿山地区天然次生林单木生长模型的研究.东北林业大学硕士学位论文,2009
    颜春燕,刘强,牛铮等.冠层光谱的多顶式分析及生化参量反演.中国科学D辑地球科学,2005,35(9):881~890
    颜文洪,胡玉佳.海南石梅湾青皮林LAI的冠层数字成像间接法测算.中山大学学报,2004,43(3):71~74
    杨刚,邢美军,黄心渊.应用于GreenLab模型构建的测树方法.北京林业大学学报,2009,31(增刊2):60~63
    杨国强.数字近景摄影测量系统研究.西安科技大学硕士学位论文,2005
    杨红云,罗威,何火娇等.水稻主茎三维形态建模与计算机模拟.江西农业大学学报,2008,30(6):1153~1156,1160
    杨继武.第五讲农作物发育期预报.1986,12(8):45~49
    杨娟,赵明,潘学标.基于NURBS和VC++60的棉花生长可视化研究.农业工程学报,2006,22(10):159~162
    杨玉芬.气象条件对小辣椒种植的影响及其对策.现代农业科技,2010,10:297~303
    殷新佑.稻发育温度效应的非线性模型及其应用.作物学报.1994,20(6):692~700
    于颖,范文义,李明泽等.利用大光斑激光雷达数据估测树高和生物量.林业科学,2010,46(9):84~87
    余涛,顾行发,田国良等.利用夜间热红外遥感影像研究玉米冠层空隙率分布.遥感学报,2005,9(6):640~645
    翟国芳,史红梅.昔阳县种植核桃的气候条件分析.安徽农学通报,2011,17(8):159,165
    张旦儿.早实核桃生长发育特点及整形修剪技术.山西林业科技,2003,1:44~46
    张焕丽,李宁,李逸等.河南省小辣椒产业现状及发展对策.中国瓜菜,2008,4:50~51
    张惠杰,李宁辉.我国绿豆生产走势分析.中国食物与营养,2003,1:5~6
    张继祥,魏钦平,陆佩玲等.美国黑核桃实生苗干物质积累与分配过程的数值模拟.生物数学学报,2004,19(1):109~116
    张继祥.美国黑核桃实生苗生态生理过程对环境因素响应的数值模拟.山东农业大学博士学位论文,2002
    张剑清,胡安文.多基线摄影测量前方交会方法及精度分析.武汉大学学报·信息科学版.2007,32(10):847~850
    张杰伟.合肥市三种常绿园林树木生长模型的研究.安徽农业大学硕士学位论文,2010
    张丽敏,王力华,殷红.一种半球图像的处理方法.辽宁林业科技,2006,3:16~20
    张树兵,王建中.基于L-系统的植物建模方法改进.中国图像图形学报,2002,7(A版)(5):457~460
    张文娟,赵娟,黄华兵等.基于地基激光雷达数据的单株古树稳定性研究.西南林业大学学报,2011,31(5):36~39
    张向华,陆载涵,宋小春.图像测量技术在森林调查中的应用.湖北工学院学报,2004,19(1):36~38
    张小全,徐德应,赵茂盛.林冠结构辐射传输与冠层光合作用研究综述.林业科学研究,1999,12(4):411~421
    张小卫.北京部分绿地群落冠层结构研究.北京林业大学硕士学位论文,2011
    张志华,刘新彩,刘彦红等.核桃叶片解剖结构与生长势的关系.华北农学报,2007,22(2):129~132
    张志华,刘新彩,刘彦红等.核桃枝条解剖结构与生长势的关系.中国农业科学,2007,40(6):1303~1308
    张志华,刘新彩,王红霞等.核桃IOD和POD酶活性与生长势的关系.园艺学报,2006,33(2):229~232
    张志华,王文江,高仪等.核桃雌雄花期预测模式研究.园艺学报,1997,24(1):91~93
    张祖勋,杨生春,张剑清等.多基线-数字近景摄影测量.地理空间信息.2007,5(1):1~4
    张祖勋,张剑清.数字摄影测量学.武汉:武汉大学出版社,1997.
    赵春江,王纪华,吴华瑞等.小麦叶形空间分布的模拟模型及推理系统.农业工程学报,2002,18(5):221~225
    赵春艳.向日葵生长模型的构建方法研究.东北师范大学硕士学位论文,2010
    赵峰,顾行发,刘强等.基于3D真实植被场景的全波段辐射传输模型研究.遥感学报,2006,10(5):670~675
    赵金锁.早实核桃的生长发育特点与整形修剪.北方果树,2006,3:28~29
    赵茂程,高素萍,潘一凡等.分形理论及其在林业中的应用与研究进展.世界林业研究,2002,15(2):28~34
    赵平,饶兴权,马玲等.马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异.生态学报,2006,26(12):4050~4058
    赵庆丹.树木三维可视化模拟研究与系统实现.东北林业大学硕士学位论文,2011
    赵星,de Reffye P.,熊范纶等.虚拟植物生长的双尺度自动机模型.计算机学报,2001,24(6):608~615
    赵阳,余新晓,黄枝英等.北京西山侧柏水源涵养林空间结构特征研究.水土保持研究,2011,18(4):183~187
    赵阳,余新晓,宋思铭等.北京山区栓皮栎水源涵养林空间结构特征研究.水土保持研究,2011,18(3):41~47
    赵阳,余新晓,信忠保等.地面三维激光扫描技术在林业中的应用与展望.2010,23(4):41~44
    赵营颖.树木三维建模与交互式渲染关键技术研究与实现.电子科技大学硕士学位论文,2011
    甄志高,王晓林,段莹等.气象条件对花生蛋白质和脂肪含量的影响.花生学报,2004,33(3):22~24
    郑彦妍,周国民.虚拟现实与果树修剪.农业网络信息,2004,8:10~12
    中国气象局.生态气象观测规范.气象出版社.2005
    周凤娇,丁访军,潘明亮等.贵州西部地区光皮桦的生长规律.贵州农业科学,2011,39(9):170~173
    周娟,周治国,陈兵林等.基于形态模型的棉花(Gossypium hirsutum L.)虚拟生长系统研究.中国农业科学,2009,42(11):3843~3851
    周淑秋,郭新宇,雷蕾.黄瓜生长可视化系统的设计与实现.计算机技术与发展,2007,17(1):227~228,232
    周元满,谢正生,刘素青等.短轮伐期桉树林分树冠生长的阶跃函数模型.南京林业大学学报(自然科学版),2006,30(2):59~62
    周元满,谢正生,刘新田.雷州半岛不同桉树品系树冠生长预测模型研究.福建林业科技,2005,32(4):10~14
    朱庆生,黄伟,屈洪春等.植物茎生长过程细粒度仿真.农业机械学报,2011,42(3):192~196

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700