用户名: 密码: 验证码:
控释碘和硒在两种蔬菜中的生物富集研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碘和硒对人体健康起重要作用的微量元素,碘和硒缺乏时能导致人体患多种疾病。因此,如何提高缺碘和缺硒地区人类食物中的碘和硒含量对防治碘和硒缺乏病的发生具有重要意义。传统的补碘和补硒存在一些弊端,如产生毒副作用。因此,只有当无机形式的碘和硒转化成具有生物活性的碘和硒时,通过食物链补碘和硒,才具有普遍的意义。
     本研究采用生菜种子毒性试验、樱桃番茄幼苗水培试验,结合生物统计手段,系统研究了控释碘(硒)产品的有效成分碘和硒对作物生长发育的影响;并以生菜和樱桃番茄两种蔬菜为研究对象,采用土培方式,系统地探讨了生菜的富碘机制以及控释碘肥对土壤淋溶状况的影响,同时深入地研究了樱桃番茄的富碘富硒特性及控释碘(硒)对其生长发育及品质的影响。主要研究结果如下:
     1.包膜控释碘(硒)肥在25℃水中的累积释放曲线呈“S”型,其在静水中的具体释放特征为:其释放过程分为释放速率逐渐上升期、释放高峰期和释放速率逐渐下降期三个阶段,整个释放过程有一个释放高峰阶段。研究中测得的初期养分释放率、养分释放期等参数符合缓控释肥国家标准,因此控释碘肥和硒肥在作物上应用时,可以在作物生育期内稳定供给碘和硒等营养元素。
     2.生菜种子发芽试验结果表明,随着IO3ˉ浓度的增加,生菜种子的萌发指标和幼苗生长及过氧化物酶活性指标均随之增加。当IO3ˉ的浓度为80μmol L-1时,生菜种子的发芽势、发芽率、发芽指数和活力指数较对照提高了22.13%~25.23%,差异均达显著水平;生菜幼苗的根长、茎长、鲜重和干重均为最大值,较对照提高了16.09%~113.71%;生菜幼苗的SOD、POD和CAT活性均显著高于对照,提高了32.74%~65.71%;生菜幼苗MDA含量与对照相比无显著差异。低浓度Iˉ(10~40μmol L-1)刺激种子萌发。当Iˉ浓度为80μmol L-1时,生菜种子的发芽势、发芽率、发芽指数和活力指数较对照降低了32.78%~36.83%,其幼苗的根长、茎长、鲜重和干重最低。Iˉ条件下,生菜幼苗SOD和POD活性以处理20μmol L-1最高。幼苗CAT活性随着Iˉ浓度的增加而降低,MDA含量显著高于对照。研究结果表明,生菜的萌发及幼苗生长与IO3ˉ的浓度呈显著正相关,与Iˉ的浓度呈显著负相关。此外,低浓度IO3ˉ或Iˉ与SeO_3~(2-)互作促进了生菜种子萌发,刺激幼苗生长,提高幼苗酶活性抗逆性;高浓度Iˉ和SeO_3~(2-)互作显著抑制生菜种子萌发。
     3. IO3ˉ和SeO_3~(2-)互作条件下,樱桃番茄幼苗的株高、茎粗、叶面积、干重、根系活力、叶片叶绿素含量、净光合速率、蒸腾速率、气孔导度以及脯氨酸、可溶性蛋白和可溶性糖含量均最高;幼苗叶片过氧化物酶SOD、POD、CAT和APX活性分别较对照提高了22.25%、16.74%、31.18%和37.58%,MDA含量较对照降低了20.32%。而Iˉ和SeO_3~(2-)互作条件下,樱桃番茄幼苗生长受到抑制,株高和叶片数分别较对照下降了19.10%和7.14%,幼苗地上部鲜重和干重显著降低,分别较对照降低了25.64%和26.32%;番茄幼苗光合性能显著减弱,Pn和Gs分别较对照降低了17.68%和8.94%,过氧化物酶活性降低,膜脂质过氧化程度加剧。Iˉ条件下,番茄幼苗的生长、光合指标和生理指标均优于碘酸根处理,但无显著差异。SeO_3~(2-)处理对樱桃番茄幼苗生长无显著影响。
     4.温室盆栽试验以普通碘肥为对照,研究控释碘肥对生菜富碘、土壤淋溶及生菜某些生理特性的影响。结果表明,施碘处理与不施碘处理相比均显著提高生菜叶片的碘含量和水溶性碘的含量。在两种施碘水平下(10和20mg kg-1土),与普通碘肥相比,控释碘酸钾和控释碘化钾均显著提高生菜叶片的碘含量,分别提高了46.60%~61.16%、46.59%~58.53%;同时提高了生菜生物量、叶片叶绿素含量、维生素C含量及抗氧化酶活性(SOD、POD和CAT),降低了叶片硝态氮和丙二醛(MDA)含量。生菜生长过程中通过其根系吸收的碘绝大部分保留在根部,且生菜地上部和根部对IO3ˉ的吸收富集量远高于Iˉ;碘在控释条件下,生菜地上部和根部对IO3ˉ和Iˉ的吸收富集量远高于普通碘肥处理。IO3ˉ处理土壤碘的淋失率要高于Iˉ处理;施用控释碘酸钾和控释碘化钾后,土壤淋溶液中碘含量峰值出现时间延后,碘淋失率显著低于普通碘肥。碘肥用量结果表明,与施碘水平10mg kg-1土相比,施碘20mg kg-1土时显著提高了生菜叶片的碘含量,但对生菜品质及生理指标无显著影响。当控释碘酸钾用量为10mg kg-1土时,生菜中碘的浓度就达8.09mg kg-1。根据成年人每日150μg d-1的需碘量,缺碘人群可以通过控制食用生菜量的多少来控制每日碘摄入量。当土壤施碘为20mg kg-1土时,生菜可食部分富集的碘就可能导致碘的过量摄入以及碘的浪费。与普通碘肥相比,控释碘肥不仅显著提高了生菜叶片对碘的富集,还减少了碘素从土壤中流失,提高了碘肥利用率,碘肥控释是培育富碘蔬菜的有效途径之一。
     5.土壤施碘后其淋溶液pH变化值与对照相比无显著差异,碘的施入没有对土壤的酸碱体系平衡带来冲击。土壤施入普通碘肥后,土壤淋溶液EC值变化幅度较大,而施用控释碘肥的土壤淋溶液EC值变化比较平稳。土壤施碘可促进土壤中钾钠钙镁和无机氮的淋失。
     6.樱桃番茄盆栽试验表明,施碘和施硒显著提高了樱桃番茄果实中碘和硒的含量,且施用释碘肥和控释碘-硒肥后其果实碘含量分别较普通碘肥提高了35.58%和28.53%,控释硒肥和控释碘-硒肥条件下果实硒含量分别较普通硒肥提高了10.89%和13.86%。土壤施用控释碘肥和控释硒肥后其樱桃番茄果实碘和硒的累积量分别较普通碘肥和硒肥提高了38.78%和19.40%。施用控释硒肥后,果实有机硒的含量显著高于普通硒肥,提高了5.19%,有机硒转化率提高了3.36%。樱桃番茄施用控释碘肥和控释碘-硒肥后,樱桃番茄果实产量增加,维生素C含量提高。此外,施用控释碘肥的处理,土壤中碘的淋失率要显著低于施用普通碘肥的处理,控释碘-硒肥和控释碘肥的淋失率分别较普通碘肥处理降低了49.02%和37.25%。控释硒肥和控释碘-硒肥处理条件下中硒的淋失率显著低于普通硒肥,分别降低了38.91%和46.61%。
Iodine and selenium play an important role in human health. Iodine and selenium canlead to human suffering from various diseases.Therefore, how to improve the iodine andselenium concentrations in human food in the prevention of iodine and selenium deficiencydiseases occurrence has the vital significance.Traditional iodine and selenium supplement willhave some disadvantages. Inorganic iodine and selenium could not be well absorbed bybodies and be dangerous to human and even produces toxicity. Therefore, Iodine andselenium will have wide edible valuation only when it is transformed in to biological activeorganic iodine and selenium through food chain.
     In order to offer academic thereunder for producing, spreading and ecosecurity estimationof controlled-release iodine or selenium fertilizers, several experiments were conducted andbiostatistical method were used in this study. The effects of iodine, selenium and combineduse of iodine and selenium on seed germination, growth and development of plants and so onwere studied by acute toxicity and hydroponic experiment. Potted lettuce experiment wascarried to investigate the influence of controlled-release iodine (IO~-and IO_3~-) fertilizers on theiodine uptake by lettuce as well as on the growth and quality of lettuce and the influence ofiodine on soil leachate. Also, the effects of controlled-release iodate fertilizer and controlledrelease iodate-selenium fertilizers on iodine and selenium uptake, growth and quality ofcherry tomato. The main results were summarized as follows:
     1. The nutrient release curve of controlled-release iodine or selenium fertilizers in watershowed a shape of “S”. The nutrient release curve of controlled-release fertilizers in25℃water showed that release rate increased with time in the first stage, fastigium and decreasedwith time in the third stage. Parameters, like initial nutrient release rate, and release duration,accorded with Chinese National Slow and controlled-release fertilizers standard. Andcontrolled-release iodine or selenium fertilizers could be used for crops application research.
     2. Lettuce seed germination experiment results showed that seed germination indexes,seedling growth and antioxidative activities were increased with the increase of IO_3~-concentration.When the IO_3~-concentration was80μmol L-1, lettuce seed germination energy,germination rate, germination index and vigor index significantly increased by22.13%~25.23%compared with the control. Lettuce seedling root length, stem length, fresh weightand dry weight reached maximum and improved16.09%~113.71%compared to control. The SOD, POD and CAT activities of lettuce seedlings were significantly higher than those ofcontrol, increased by32.74%~65.71%. And the MDA content has no significant differencecompared with control. Low concentrations of Iˉ(10,20and40μmol L-1) stimulated lettuceseed germination.When the concentration of Iˉwas80μmol L-1, lettuce seed germinationenergy, germination rate, germination index and vigor index decreased by32.78%~36.83%compared with the control. The lettuce seedling root length, stem length, fresh weight and dryweight were the lowest. The SOD and POD activities were the highest when the lettuceseedlings treated with80μmol L-1. The CAT activity of lettuce seedlings increased with theincreased Iˉconcentration, and the content of MDA was significant higher than that of control.The results also showed that the seed germination and seedling growth of lettuce showed asignificant positive correlation with IO_3~-concentration, and showed significantly negativecorrelation with Iˉconcentration. In addition, low concentration of IO_3~-and Iˉor SeO_3~(2-)interactions promoted seed germination of lettuce, stimulated the growth of seedlings, andincreased seedling enzyme activity resistance. However, high concentrations of Iˉand SeO_3~(2-)interaction significantly inhibited lettuce seed germination.
     3. The growth parameters (plant height, stem diameter, leaf area, and dry weight) andphysiological attributes (root activity, chlorophyll (Chl) content, net photosynthetic rate (Pn),stomatal conductance (Gs), transpiration rate (Tr), and contents of proline, protein and sugar)were the greatest in the plants developed from the combination of IO_3~-and SeO_3~(2-). Theincreased activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) andascorbate peroxidase (APX) were enhanced by22.25%,16.74%,31.82%and37.58%,respectively, and the lipid peroxidation was decreased by20.32%, in comparison to control. Incontrast, the combined use of Iˉand SeO_3~(2-) resulted in reduced growth. The plant height andleaf number were decreased by19.10%and7.14%, respectively. The seedling shoot freshweight and dry weight was significantly lower than the control, were reduced by25.64%and26.32%. The combination of Iˉand SeO_3~(2-) resulted in reduced photosynthesis capacity as wellas reduced activities of antioxidant enzymes, and led to serious lipid peroxidation in plants.Plants grown with Iˉalone were taller (9.1%) and more sensitive to leaf photosynthesiscompared to those with IO_3~-supply alone, whereas the activities of antioxidant enzymes andprotein content were comparable. SeO_3~(2-) application alone generated marginal effects onmeasured characteristics. Overall, combined use of IO_3~-and SeO_3~(2-) proved to be the optimumfor boosting growth in this experiment.
     4. A greenhouse pot experiment was conducted to assess the effects of controlled-releaseiodine fertilizers on the iodine accumulation and physiological response of lettuce in comparison with traditional iodine fertilizers. The plants were subjected to different iodinefertilizers containing two levels of iodine as iodate or iodide at10and20mg kg-1soil. Resultsshowed that all the treatments with iodine applied significantly increased concentrations ofiodine and water-soluble iodine in the leaves of lettuce. Leaf iodine nutrition developed fromcontrolled-release potassium iodate and controlled-release potassium iodide was significantlyenhanced by46.60%~61.16%and46.59%~58.53%in comparison with correspondingtraditional iodine fertilizers, respectively. The biomass product (fresh mass and dry mass ofshoot and root) and leaf chlorophyll content of lettuce grown with controlled-release iodinefertilizers were higher than those of traditional iodine fertilizers. The growth-promotingfunction was also associated with increased content of vitamin C and activities of superoxidedismutase (SOD), peroxidase (POD) and catalase (CAT) in lettuce leaves. Application ofcontrolled-release iodine fertilizers resulted in reduced NO_3~--N content and diminished lipidperoxidation (MDA) content of lettuce leaves. The iodine uptook by lettuce mostly retained inthe root and lettuce absopted more iodine when the iodate applied. The iodine accumulation inlettuce plants treated by controlled-release iodine fertilizers was much higher than that of thetraditional iodine fertilizers treatment. The iodine content in leachate peaked withcontrolled-release iodine fertilizers were later than those with the traditional iodine fertilizers.Controlled-release potassium iodate and controlled-release potassium iodide also significantlyreduced the iodine leached rate by45.99%~50.97%and39.18%~46.29%compared totraditional fertilizers, respectively. When iodine applied rate was20mg kg~(-1)soil, the leafiodine content was significant higher than that of10mg kg-1soil, whereas no significantdifference was found in other indexes. Overall, controlled-release iodine fertilizers increasediodine accumulation in lettuce leaves, prevented iodine leaching and improved iodine useefficiency, proving to be the optimum for cultivating iodine-enriched vegetables. Whencontrolled-release iodate fertilizer was used as10mg kg-1soil, the iodine concentration inlettuce leaves reached8.09mg kg~(-1). The iodine deficiency populations can eat quantitativelettuce to meet their daily iodine demand150μg d~(-1). When the applied dosage was20mg kg~(-1)soil, it may lead to excessive intake of iodine in lettuce and iodine waste.
     5. The pH value of soil leachate had no significant difference compared with the control.The application of iodine in soil did not impact the acid-base equilibrium. The EC valuechanged more stable when the soil treated by controlled-release iodine fertilizers. Theapplication of iodine in soil could promote the leaching of K~+, Na~+, Ca~(2+), Mg2+and inorganicnitrogen.
     6. The potted cherry tomato experiment showed that the concentrations of iodine and selenium in fruits were significantly enhanced when iodine and selenium applied. Theconcentrations of iodine in fruits treated by the controlled-release iodine fertilizer andcontrolled-release iodine-selenium fertilizers increased by35.58%and28.53%compared tothe traditional iodine fertilizers. The concentrations of selenium in fruits treated by thecontrolled-release selenium and controlled-release iodine-selenium fertilizers increased by10.89%and13.86%, respectively. Applications of controlled-release iodine fertilizer andcontrolled-release selenium fertilizer resulted in significant higher iodine and seleniumaccumulation in fruits, increased by38.78%and19.40%. The organic seleniumconcentrations and conversion rate in cherry tomato fruits treated by controlled-releaseselenium fertilizers increased by5.19%and3.36%, respectively, comparing with traditionalselenium fertilizers. The cherry tomato fruit yield and content of vitamin C increased unferthe application of controlled release fertilizers. In addition, application of controlled-releaseiodine-selenium fertilizer and controlled-release fertilizer caused iodine leaching ratesdecreased by49.02%and37.25%. When applying the controlled-release selenium fertilizerand controlled-release iodine-selenium fertilizer in the soil, the soil iodine leaching ratesdecreased by38.91%and46.61%, respectively.
引文
陈元明.硒的神秘疗效[M].北京:中国财经出版社,1998,12-38
    陈志辉.近年来国内外碘缺乏病防治研究进展[J].海峡预防医学杂志,2001,7(2):27-29
    迟凤琴.土壤环境中的硒和植物对硒的吸收转化[J].黑龙江农业科学,2001,6:33-34
    迟玉森,何熹,韩丽英,等.海带生物活性碘剂及其在碘盐中的应用[J].现代科技,2002,4:50-51
    崔晓阳,桑英,宋金凤.外源碘在森林土壤中的残留及对山野菜植物的施用效果[J].应用生态学报,2003,14(10):1612-1616
    但德忠,李平.环境地球化学中的碘与我国的碘缺乏病[J].矿物岩石,1994,12:71
    段曼莉,胡斌,梁东丽,等.4种蔬菜对硒酸盐的吸收、富集与转运特征的研究[J].农业环境科学学报,2011,30(3):422-428
    段荣祥,黎平,安东,等.贵州生活燃煤与碘缺乏病的关系[J].中国地方病学杂志,1994,13:241-242
    范晓,王孝举.海藻中的碘[J].海洋科学,1994,4:16-20
    冯两蕊,杜慧玲,王曰鑫.叶面喷施硒对生菜富硒量及产量与品质的影响[J].山西农业大学学报(自然科学版),2007,3:291-294
    冯润金.喜马拉雅山区的地方性克汀病[J].国外医学:医学地理分册,1990,11(4):145-147
    冯自松.稳定态碘对黑麦草生理生化特性的影响[D].杭州:浙江大学,2008
    高雁,李春,娄恺.干旱胁迫条件下加工番茄对喷施甜菜碱的生理响应[J].植物营养与肥料学报,2012,18(2):426-432
    顾爱军,翁焕新,陈静峰,等.利用海藻中的碘培育富碘蔬菜防治IDD病的初步研究[J].广东微量元素科学,2007(7):12-18
    关海霞,滕卫平.碘与甲状腺疾病—内分泌代谢疾病(l)[J].新医学,2003,34(l):54-56
    郭青,张晓红,孙爱宗.富硒苹果的生产及配套技术初探[J].果农之友,2003,(9):11
    何芳禄,王明全.水稻根系的生长生理[J].植物生理学通报,1980,(3):21-26
    何绪生,李素霞.控效肥料的研究进展[J].植物营养与肥料学报,1998,4(2):97-106
    洪春来,翁焕新,严爱兰,等.几种蔬菜对外源碘的吸收与积累特性[J].应用生态学报,2007,18(10):2313-2318
    何振立.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998
    洪富贵,曹衍祥,刘恒泰.滨州地区高氟高碘水的分布及其危害调查[J].预防医学文献信息,1997,3(4):341-342
    侯少范.中国低硒带人群硒营养状态的变化趋势与成因分析[J].地理研究,2000,19(2):134-140
    侯小琳.用核方法研究生物和环境体系中的碘及化学种态[D].北京:中国科学院高能物理研究所,1997
    呼世斌,冯贵颖,赵晓农,等.苹果对硒的吸收及其积聚特征研究[J].西北植物学报,1998,18(1):110-115
    呼世斌,薛澄泽,李嘉瑞,等.食物链植物施硒的研究进展[J].西北农业学报,1996,5(3):87-90
    黄鹏.施钾对不同栽培模式兰州百合植株生长及鳞茎产量的影响[J].甘肃农业大学学报.2007,(1):41-44
    黄勤妮,刘祥林,柴晓清,等.草莓富硒的培育[J].首都师范大学学报(自然科学版),1995,(2):83-87
    黄益宗,朱永官,胡莹,等.土壤—植物系统中的碘与碘缺乏病防治[J].生态环境,2003,12(2):228-231
    贾彦博,范浩定,杨肖娥.碘从环境向人类食物链的迁移[J].广东微量元素科学,2003,12:1-12
    蒋挺大.食物与营养化学[M].北京:科学出版社,1987,116-117
    李春喜,蒿宝珍,姜丽娜,等.小麦生长发育过程中硒的研究进展[J].安徽农业科学,2007,35(13):3811-3814
    李合生.现代植物生理学[M].北京:高等教育出版社,2002
    李丽辉,林亲录.我国富硒食品的研究进展[J].中国食物与营养,2007,26(2):23-25
    李素媚.微量元素硒的临床应用新进展[J].广东微量元素科学,2009,7:8-12
    林年丰.医学环境地球化学[M].长春:吉林科学技术出版社,1991:164-175
    刘广明,杨劲松.土壤含盐量与土壤电导率及水分含量关系的实验研究[J].土壤通报,2001,32(50):85-87
    刘广明,杨劲松.影响土壤浸提液电导率的盐分化学性质要素及其强度研究[J].土壤学报,2005,42(2):247-252
    刘桂仪.鲁北平原深层地下水开发与环境问题[J].水文地质工程地质,2001(3):43-45
    刘会媛,白鹤英.加碘食盐中碘损失的实验研究[J].中国井矿盐,2004(5):43-45
    刘景春,李裕红,晋宏.铜污染对辣椒产量、铜累积及叶片膜保护酶活性的影响[J].福建农业学报,2003,18(4):254-257
    刘勤,张新,赵言文,等.土壤植物营养与农产品品质及人畜健康关系[J].应用生态学报,2001,12(4):623-626
    刘琼英.放射性碘在土壤和农作物中的动态[J].国外科技,1988,(9):31-34
    刘胜杰,周瑞华,殷太安,等.生物样品、水及土壤中痕量硒的荧光测定法—(二)粮食和蔬菜中痕量硒的荧光测定法[J].营养学报,1985,7(2):142-147
    刘晓红,刘琼英,邝炎华,等.碘-125在盆栽水稻田中的去向[J].核农学报,1998,12(1):41-45
    刘晓红,刘琼英,邝炎华,等.碘-125在华南亚热带地区土壤中淋溶和迁移的研究[J].核农学报,1998,12(3):171-174
    刘晓红,刘琼英,邝炎华,等.水生植物对125I和3H的吸收、分配及消长[J].核农学报,1998,12(6):359-364
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2001
    吕金印,黄亚冰,刘军等.小麦幼苗对硒的吸收、分布与转运[J].核农学报,1996,10(l):54-56
    彭安,王子健, Whanger P. D.,等.硒的环境生物无机化学[M].北京:中国环境科学出版社,1995:3-44
    彭永梅.碘与甲状腺疾病[J].现代医药卫生,2002,18(10):864-865
    乔玉辉.富硒螺旋藻的应用基础研究[D].北京:中国农业大学,1995
    石磊,周瑞华,王光亚.食物烹调方法对含碘食盐中碘含量的影响[J].卫生研究,1998,27(6):412-414
    史衍玺,杜振宇,马丽,等.不同施硒方式下小白菜对硒的吸收与累计特征[J].土壤通报,1998,29(5):229-231
    宋家永,李敬光,王永华,等.喷施硒肥对小麦生理特性、子粒硒含量的影响[J].河南农业大学学报,2005,39(2):139-142
    宋旭旭,郑成淑,孙霞,等.控释肥对菊花叶片叶绿素荧光特性及观赏品质的影响[J].应用生态学报,2011,22(7):1737-1742
    孙向武,翁焕新,雍文彬,等.菠菜对外源碘的生物地球化学吸收[J].植物营养与肥料学报,2004,10(2):192-197
    唐拴虎,徐培智,张发宝,等.一次性全层施用控释肥对水稻根系形态发育及抗倒伏能力的影响[J].植物营养与肥料学报,2006,12(1):63-69
    万洪富.大麦等四种作物对土壤中硒的吸收与累积[J].土壤,1989,21(5):268-271
    汪建飞,段立珍,刘乃会.放大反应比色法测定土壤中微量碘[J].分析试验室,1999,18(6):71-74
    王东升.地下淡水演变与水致疾病[J].地球学报,1998,19(4):443-448
    王桂美,姜伟,尉晶,等.富硒苹果生产技术研究初报[J].落叶果树,2004,(4):58-59
    王红美,何守森.微量元素锌和硒与儿童白血病的治疗[J].癌变.畸变.突变,2009,5:408-409
    王景怀,施辰子.富硒农产品开发及含硒量标准的探讨[J].天津农林科技,2005,(3):15-17
    王娟,陈晓雪,刘德兵,等.硒的生物学功效及富硒果品研究进展[J].华南热带农业大学学报,2007,13(1):18-19
    王柯,侯小琳,张永保.碘的微堆超热中子活化法测定[J].核化学与放射化学,1996,18(4):243-246
    王客安,何启伟,陈云起,等.低温对黄瓜幼苗根活力及生物学产量影响的研究[J].山东农业科学,2000,(4):17-19
    王夔.生命科学中的微量元素(第二版)[M].北京:中国计量出版社,1996:620-668
    王明远.中国粮食硒含量的地区分布[J].地理研究,1982,2:51-57
    王希群,马履一,贾忠奎,等.叶面积指数的研究和应用进展[J].生态学杂志,2005,24(5):537-541
    王孝举.海带中碘的含量、分布及化学种态研究[D].中科院海洋研究所,1995
    王学奎.植物生理生化实验原理和技术(第2版)[M].北京:高等教育出版社,2006
    王云,魏复盛.土壤环境元素化学[M].北京:中国环境出版社,1995
    魏显有,刘云惠,王秀,等.土壤中硒的形态分布及有效态研究[J].河北农业大学学报,1999,22(1):20-23
    吴世汉,邢光熹.我国主要土壤类型中溴和碘的分布特性[J].土壤,1996,1:21-33
    吴泰相,俞红吉,郝保清.解决我国微量元素营养不足问题的建议[J].微量元素与健康研究,1999,16(4):61-63
    吴耀明,杨玉爱.硒的土壤化学及其生物有效性[J].广东微量元素科学,1996,3(7):14-20
    夏石头,彭克勤,萧浪涛,等.施碘对萝卜芽生长及其营养品质的影响[J].园艺学报,2003,30(2):218-220
    谢伶莉.蔬菜对外源碘的吸收剂碘的形态分析[D].杭州:浙江大学,2006
    谢伶莉,翁焕新,洪春来,等.小白菜和空心菜对不同形态碘的吸收[J].植物营养与肥料学报,2007,13(1):123-128
    谢正苗,黄铭洪.铝超积累植物和铝排斥植物吸收和累积铝的机理[J].生态学报,2002,22(10):1653-1659
    邢怡.富碘油菜栽培与干制过程中碘含量变化的初步研究[D].兰州:兰州理工大学,2010
    徐文.硒的生物有效性及植物对硒的吸收[J].安徽农学通报,2009,15(23):46-47
    严爱兰,翁焕新,洪春来,等.青菜(Brassica chinesis L.)对碘动态吸收的同位素示踪[J].生态学报,2006,26(12):4120-4126
    严爱兰,洪春来,宋秀辉,等.土壤一青菜系统中125I的生物地球化学迁移及其动态变化[J].地球化学,2007,36(5):525-532
    颜世铭,李增禧,熊丽萍.微量元素的生理作用和体内平衡[J].广东微量元素科学,2002,(9):1-49
    杨凡,李钦伯.碘营养与生长发育[J].中华妇幼临床医学杂志,2006,2(l):50-51
    杨光圻,周瑞华,孙淑庄,等.人的地方性硒中毒和环境及人体硒水平[J].营养学报.1982,4(2):81-89
    杨若明,乌兰塔娜.在膳食中补碘,消除碘缺乏病[J].中央民族大学学报(自然科学),2000,19(l):47-51
    杨宇峰,费修绠.大型海藻对富营养化海水养殖区生物修复的研究与展望[J].青岛海洋大学学报,2003,33(l):53-57
    杨越超,张民,马丽,等.包膜控释肥料养分释放率快速测定方法的研究[J].植物营养与肥料学报,2007,13(4):730-738
    于文进,姚艳,李正为,等.营养液栽培中添加碘对樱桃番茄果实品质的影响[J].中国蔬菜,2011(2):67-72
    臧世臣,倪树林,李长林,等.16种野生植物硒含量与土壤硒的关系[J].林业科技,1996,21(4):41-42
    曾可明.碘盐质控样测定结果分析[J].中国地方病学杂志,2001,20(5):364-364
    章衡,李恋卿,李志宏.喷施锌、碘对大白菜锌、碘累积量、产量及品质的影响[J].农业工程学报,1997,13(1):140-143
    张驰,吴永尧,彭振坤.油菜中硒含量分布和赋存形态研究[J].湖北农业科学,2004,(2):40-42
    张霆.硒在生物体内生化作用的实验研究进展[J].医药导报,2003,22(7):445-446
    赵成义.环境中的硒及其与植物的关系[J].新疆环境保护,1991,13(3):28-34
    赵春梅,曹启民,唐群锋,等.植物富硒规律的研究进展[J].热带农业科学,2010,7:82-86
    赵少华,宇万太,张璐,等.环境中硒的生物地球化学循环和营养调控及分异成因[J].生态学杂志,2005,24(10):1197-1203
    赵世杰,史国安,董新纯.植物生理学实验指导[M].北京:中国农业科学技术出版社,2002
    中国国家标准化管理委员会. GB/T13882-2002饲料中碘的测定(硫氰酸铁-亚硝酸催化动力学法)[S].北京:中国标准出版社,2002
    中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990:134-137,370-373
    郑宝山,王滨滨,朱广伟,等.大气与植物中带碘的环境地球化学—综述与新的假说[J].地学前缘,2002,8(2):359-365
    朱建明,秦海波,李璐,等.湖北恩施渔塘坝高硒土壤中硒的结合态[J].环境科学学报,2008,28(4):772-777
    朱玲.不同品种小麦中硒含量的测定及其与生长土壤中硒水平的相关性研究[D].郑州:河南农业大学,2007
    朱慧,马瑞君,吴双桃,等.五爪金龙对其草本伴生种部分生理指标的影响[J].武汉植物学研究,2007,25(1):75-78
    朱发庆,谭见安.土壤碘的来源及其与我国地甲病分布规律的研究[J].地理科学,1989,9(4):370-377
    朱永懿,杨俊成,陈景坚,等.春小麦对不同形态硒的吸收和分配[J].核农学报,1996,10(4):233-238
    Abdel-Moati M. A. R.. Iodine speciation in the Nile River estuary[J]. Mar. Chem.,1999,65:211-225
    Ahuka O. L., Geelhoed G. W.. Iodine deficiency disorders and infertility in Northeast Zaire[J].Nutrition,1997,13(4):342-343
    Alderman G., Jonez D. I. H.. The iodine content of pastures[J]. J. Sci. Food. Agric.,1967,18:197-199
    Alejandro F. M., Charlet L.. Selenium environmental cycling and bioavailability: a structuralchemist point of view[J]. Rev. Environ. Sci. Biotechnol.,2009,8:81-110
    Arthur J. R., Beckett G. J., Mitchell J. H.. The interactions between selenium and iodinedeficiencies in man and animals[J]. Nutr. Res. Rev.,1999,12,55-73
    Asada K.. The role of ascorbate peroxidase and monodehydroascorbate reductase in H2O2scavenging in plants. Oxidative Stress and the Molecular Biology of AntioxidantDefenses[M]. Cold Spring Harbor Laboratory Press, New York,1997:715-735
    Asher C. J, Butler G. W., Peterson P. J.. Selenium transport in root systems of tomato[J]. J.Exp. Bot.,1997,28(2):279-291
    Aubert H., Pinta M.. Trace elements in soils[M]. Elsevier,1977
    Baker A. R., Thompson D., Campos M. L. A. M., et al. Iodine concentration andavailability in atmospheric aerosol[J]. Atmos. Environ.,2001,34:4331-4336
    Barakat M. Z., Bassiouni M., EI-Wakil M.. Evaluation of iodine content of certain vegetables[J]. Bull. Acad. Pol. Sci. Biol.,1972,8:531-533
    Blasco B., Rios J. J., Cervilla L. M., et al.. Iodine biofortification and antioxidant capacity oflettuce: potential benefits for cultivation and human health[J]. Ann. Appl. Bio.,2008,152(3):289-299
    Bollard E. G., Butler G. W.. Mineral nutrition of plants[J]. Annu. Rev. Plant Physiol.,1966,17:77-112
    Borst G. W., Pauwels F. H. Iodine as a micronutrient for plants[J]. Plant Soil,1962,14(4):377-392
    Bowen H. J.. Trace Elements in Biochemistry[M]. London: Academic Press,1966
    Davies B. E.. Applied soil trace elements[M]. John Wiley&Sons Ltd.,1980,199-215
    Davies H.A., Daniels M. J., Dow J. M.. Induction of extracellular matrix glycoproteins inBrassica petioles by wounding and in response to Xanthomonas campestris[J]. Mol.Plant Microbe. In.,1997,10:812-820
    Brunsch n-Harti S., Fangmeier A., J ger H. J.. Effects of ethylenediurea and ozone on theantioxidative systems in beans (Phaseolus vulgaris L.)[J]. Environ. Pollut.,1995,90,95-103
    Buhl M. B., Stewart C. R.. Effects of NaCl on proline synthesis and utilization in excisedbarley leaves[J]. Plant Physiol,1983,72:664-667
    Cakmak I., Horst W. J.. Effect of aluminium on lipid peroxidation, superoxide dismutase,catalase, and peroxidase activities in root tips of soybean (Glycine max)[J]. Physiol.Plantarum,1991,83:463-468
    Cambouris A. N., Nolin M. C.. Soil management zones delineated by electrical conductivityto characterize spatial and temporal variations in potato yield and in soil properties[J].Am. J. Potato Res.,2006,83(5):381-395
    Chameides W. L., Davis D. D.. Iodine: its possible role in tropospheric photochemistry[J]. J.Geophys. Res.,1980,85(12):7383-7398
    Chaoui A., Mazhoudi S., Ghorbal M. H., et al. Cadmium and zinc induction of lipidperoxidation and effects on antioxidant enzyme activities in bean(Phaseolus vulgarisL.)[J]. Plant Sci.,1997,127:139-147
    Dai J. L., Zhang M., Hu Q. H., et al.. Adsorption and desorption of iodine by various Chinesesoils: II. Iodide and iodate[J]. Geoderma,2009,153(1-2):130-135
    Dai J. L., Zhu Y. G., Huang Y. Z., et al. Availability of iodide and iodate to spinach (Spinaciaoleracea L.) in relation to total iodine in soil solution[J]. Plant Soil,2006,289:301-308
    Davies, H.A., Daniels, M.J., Dow, J.M.. Induction of extracellular matrix glycoproteins inBrassica petioles by wounding and in response to Xanthomonas campestris[J]. Mol.Plant Microbe. In.,1997,10,812-820
    Delange F., de Benoist B., Pretell E., et al. Iodine deficiency in the world: where do we standat the turn of the century?[J]. Thyroid,2001,11:437-447
    Delong G. R., Paul W. L.. Effect on infant mortality of iodination of irrigation water in aseverely iodine-deficient area of China[J]. Lancet,1997,1350(13):771-773
    Dhindsa R. S., Thorpe T. A.. Leaf senescence correlated with increased levels of membranepermeability and lipid peroxidation and decreased levels of superoxide dismutase eandcatalase[J]. Exp. Bot.,2001,32:93-101
    Dowd C. D. O., Jimenez J. L., Bahreini R., et al. Marine aerosol formation from biogeniciodine emissions[J]. Nature,2002,1417:632-636
    Ekdahl I.. The action of chlorate and some related substances upon roots and root hairs ofyoung wheat plants[J]. Ann. Roy. Agric. Coll. Sweden,1948,15,113-172
    Farrenkopf A. M., Luther G. W., Truesdale V. W., et al. Sub-surface iodide maxima: evidencefor biologically catalyzed redox cycling in Arabian Sea OMZ during the SWintermonsoon[J]. Deep-Sea Research II,1997,44(6-7):1391-140
    Fordyce F. M., Stewart A. G., Ge X., et al. Environmental Control in IDD: A case study in theXinjiang Province of China[C]. British Geological Survey, Keyworth, UK, TechnicalReport,2003,13-81
    Fuge R.. Iodine in water, possible links with endemic goiter[J]. Appl. Geochem.,1989,4:203-208
    Fuge R., Johnson C. C.. The geochemistry of iodine-a review [J]. Environ. Geochem. Health,1986,8(2):31-54
    Fuhrmann M., Bajt S., Schoonen M. A. A.. Sorption of iodine on minerals investigated byX-ray absorption near edge structure (XANES) and125I tracer sorption experiments[J].Appl. Geochem.,1998,13:127-141
    G bler H. E., Heumann K. G.. Determination of atmospheric iodine species using a system ofspecifically prepared filters and IDMS[J]. Fresen. J. Anal. Chem.,1993,345(1):53-59
    Gerzabek M. H., Muramatsu Y., Strebl F., et al. Iodine and bromine contents of some Austriansoils and relations to soil characteristics[J]. J. Plant Nutr. Soil Sci.,1999,162:415-419
    Gonda K., Yamaguchi H., Maruo T., et al. Effects of iodine on growth and iodine absorptionof hydroponically grown tomato and spinach[J]. Hort. Res.,2007,6,223-227(inJapanese).
    Gerber H., Peter H. J., Bürgi E., et al. Colloidal aggregates of insoluble inclusions in humangoiters[J]. Bioehimie,1999,81:441-445
    Hamilton J. W., Benth O. A.. Selenium in vegetables, amount and chemical form of seleniumin vegetable plants[J]. J. Agric. Food Chem.,1964,12(4):371-374
    Hartsock N. J., MuEller T. G.. Interpreting soil electrical conductivity and terrain attributevariability with soil surveys[J]. Precis. Agr.,2005,6(1):53-72
    Herrett R. A., Hatfield Jr. H. H., Crosby D. G., et al. Leaf abscission induced by the iodineion[J]. Plant Physiol.,1962,37:358-363
    Hetzel B. S.. Iodine deficiency disorders (IDD) and their eradication[J]. Lancet,1983,2:1126-1129
    Hong C. L., Weng H. X., Yan A. L., et al. The fate of exogenous iodine in pot soil cultivatedwith vegetables[J]. Environ. Geochem. Hlth.,2009,31:99-108
    Horvatic G., Skreb F., Kusacic K. S., et al. Echographic thyroid changes in iodine deficiencyand excess[J]. Eur. J. Ultrasound,1998,7:26
    Hou X. L., Chai C. F., Qian Q. F., et al. The study of iodine in Chinese total diets[J]. Sci. TotalEnviron.,1997,193(3):161-167
    Jiang X., Cao X., Jiang J., et al. Dynamics of environmental supplementation of iodine: fouryears’ experience of iodination of irrigation water in Hotien, Xinjiang, China[J]. Arch.Environ. Health,1997,52(6):399-408
    Kanazawa S., Sano S., Koshiba T., et al. Changes in antioxidative enzymes in cucumbercotyledons during natural senescence: comparison with those during dark-inducedsenescence[J]. Physiol. Plantarum,2000,109:211-216
    Eckhoff K. M., Maage A.. Iodine content in fish and other food products from East AfricaAnalyzed by ICP-MS[J]. J. Food Composition Anal.,1997,10:270-282
    Kabata-Pendias A., Pendias H. Trace elements in soils and Plants[M].3rd edition. CRC PressInc.,1984,219-222
    Keppler F., Borchers R., Elsner P., et al. Formation of volatile iodinated alkanes in soil: resultsfrom laboratory Studies[J]. Chemosphere,2003,52:477-483
    Krapp A., Hofmann B., Sch fer C., et al. Regulation of the expression of rbcS and otherphotosynthetic genes by carbohydrates: a mechanism for the 'sink regulation' ofphotosynthesis?[J]. Plant J.,1993,3:817-828
    Lisk D. J.. Trace metals in soils, plants, and animals[J]. Adv. Agron.,1972,24(2):267-326
    Lovelock J. E., Maggs R. J., Wade R. J.. Halogenated hydrocarbons in and over the Atlantic[J].Nature,1973,241:1942-1961
    Mackowiak C. L., Grossl P. R.. Iodate and iodide effects on iodine uptake and partitioning inrice (Oryza sativa L) grown in solution culture[J]. Plant Soil,1999,212:135-143
    MacRae E. A., Ferguson I. B.. Changes in catalase activity and hydrogen peroxideconcentration in plants in response to low temperature[J]. Physiol. Plantarum,1985,65:51-56
    Maetaylor R.S, Gilligan J. J., Castleman A.W.. Reactions of iodine oxide and iodine oxoacid
    anion species with nitric acid[J]. Int. J. Mass Spectrom.,1998,180:327-335
    Malcolm J., Hawkesford, Zhao F. J.. Strategies for increasing the selenium content ofwheat[J]. J. Cereal Sci.,2007,46:282-292
    Medina E., Klinge H.. Productivity of tropical forests and tropical woodlands[A]. In:LangeOL, eds. Encyclopedia of Plant Physiology. Physiological Plant Ecology IV[C]. Berlin,Heidelberg, New York: Springer-Verlag,1982,12:281-303
    Miyake Y., Tsunogai S.. Evaporation of iodine from the ocean[J]. Geophys. Res.,1963,68:3989-3993
    Muramatsu Y., Fehn U., Yoshida S.. Recycling of iodine in fore-arc areas: evidence from theiodine brines in Chiba, Japan[J]. Earth Planet. Sc. Lett.,2001,192:583-593
    Muramatsu Y., Uchida S., Sriyotha P., et al. Some considerations on the sorption anddesorption phenomena of iodide and iodate on soil[J]. Water Air Soil Pollut.,1990,49:125-138
    Muramatsu Y., Wedepohl K. K.. The distribution of iodine in the earth’s crust[J]. Chem.Geol.,1998,147:201-216
    MuramatsuY., Yoshida S.. Volatilizations of methyl-iodide from the soil-plant system[J].Atmos. Environ.,1995,29:21-25
    MuramatsuY., Yoshida S.. Effects of microorganisms on the fate of iodine in the Soilenvironment[J]. Geomicrobiol. J.,1999,16:85-93
    Mynett A., Wain R. L.. Herbicidal action of iodide: effect on chlorophyll content andphotosynthesis in dwarf bean Phaseolus vulgaris[J]. Weed Res.,1973,13(1):101-109
    Paramasivam S., Alva A. K.. Leaching of nitrogen forms from controlled-release nitrogenfertilizers[J]. Commun. Soil Sci. Plan.,1997,28(17-18):1663-1674
    Peterson S.. Improved cassava-proeessing can help reduce iodine defieiency disorders in theCentral African Republic[J]. Nutr. Res.,1995,15(6):803-812
    Pettersson C. G.., S derstr m M., Eckersten H.. Canopy reflectance, thermal stress, andapparent soil electrical conductivity as predictors of within-field variability in grain yieldand grain protein of malting barley[J]. Precis. Agr.,2006,7(5):343-359
    Pezzarossa B., Piccotino D., Shennan C., et al. Uptake and distribution of selenium in tomatoplants as affected by genotype and sulphate supply[J]. J. Plant Nutr.,1999,22:1613-1635
    Rayman M. P.. The importance of selenium to human health[J]. Lancet,2000,356(15):233-241
    Robison L.M., Sylvester P. W., Birkenfeld P., et.al. Comparison of the effects of iodine andiodide on thyroid function in humans[J]. Toxicol. Environ. Health Part A,1998,55(2):93-106
    Ron M.. Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sci.,2002,7,405-410
    Rose N. R., Bonita R., Burek C. L.. Iodine: an environmental trigger of thyroiditis[J].Autoimmunity Reviews,2002(1):97-103
    Rui L., Liu M. Z. Controlled release NPK compound fertilizer with the function of waterretention[J]. Reactive&Function Polymers,2007,67(2):759-779
    Scandalios J. G.. Oxygen stress and superoxide dismutases[J]. Plant Physiol.,1993,101:7-12
    Sheen J.. Metabolic repression of transcription in higher plants[J]. Plant Cell,1990,2:1027-1038
    Sheppard S. C., Evenden W. G.. Response of some vegetable crops to soil-applied halides[J].Can. J. Soil Sci.,1992,72:555-567
    Sheppard S. C., Motycka M.. Is the akagare phenomenon important to iodine uptake by wildrice (Zizania aquatica)?[J]. J. Environ. Radioact.,1997,37(3):339-353
    Shinonaga T., Gerzabek M. H., Strebl F., et al. Transfer of iodine from soil to cereal grains inagricultural areas of Austria[J]. Sci. Total Environ.,2001,267:33-40
    Shoji S., Kanno H.. Use of polyolefin-coated fertilizers for increasing fertilizer efficiency andreducing nitrate leaching and nitrous oxide emissions[J]. Fertilizer Research,1994,39(2):145-152
    Stewart C. R.. The mechanism of abscisic acid-induced proline accumulation in barleyleaves[J]. Plant Physiol.,1980,66:230-233
    Eich-Greatorex S., Sogn T.A., gaard A. F., et al. Plant availability of inorganic and organicselenium fertiliser as influenced by soil organic matter content and pH[J]. Nutr. Cycl.Agroecosyst.,2007,79:221-231
    Swaine J.. The trace-element content in soil[J]. Soil Sci.,1956,81(2):156
    Thomson C. D.. Selenium and iodine intakes and status in New Zealand and Australia[J]. Br. J.Nutr.,2004,91:661-672
    Tinggi U.. Essentiality and toxicity of selenium and its status in Australia: a review[J]. Toxicol.Lett.,2003,137:103-110
    Turekian K. K., Wedepohl K. H.. Distributionof the elements in some major units of theearth’s crust[J]. Geol. Soc. Am. Bull.,1961,72:175-192
    Umaly R. C., Poel L. W.. Effects of iodine in various formulations on the growth of barleyand pea plants in nutrient solution culture [J]. Ann. Bot.,1971,35:127-131
    Underwood E. J.. Trace Elements in Human and Animal Nutrition[M].4thed. London:Academic Press,1977
    Cho U. H., Park J. O.. Mercury-induced oxidative stress in tomato seedlings[J]. Plant Sci.,2000,156(1):1-9
    Upadhyay G., Singh R., Sharma R., et al. Differential action of iodine on mitochondria fromhuman tumoral-and extra-tumoral tissue in inducing the release of apoptogenicproteins[J]. Mitochondrion,2002,2(3):199-210
    Voogt W., Holwerda H. T., Khodabaks R.. Biofortification of lettuce (Lactuca sativa L.) withiodine: the effect of iodine form and concentration in the nutrient solution on growth,development and iodine uptake of lettuce grown in water culture[J]. J. Sci. Food Agr.,2010,90(5):906-913
    Wan H. F., Mikkelsen R. L., Page A. L.. Selenium uptake by some agricultural crops fromcentral California soil[J]. J. Environ. Qual.,1988,17:269-272
    Wang F. L., Alva A. K.. Leaching of nitrogen from slow-release urea sources in sandy soils[J].Soil Sci. Soc. Am. J.,1996,60(1):1454-1458
    Watanabe I., Tensho K.. Further study on iodine toxicity in relation to “Reclamation Akagare”disease of lowland rice[J]. Soil Sci. Plant Nutr.,1970,16(5):192-194
    Welch R. M., Graham R. D.. Agriculture: the real nexus for enhancing bioavailablemicronutrients in food crops[J]. J. Trace Elem. Med. Bio.,2005,18:299-307
    Weng H. X., Hong C. L., Yan A. L., et al. Mechanism of iodine uptake by cabbage: effects ofiodine species and where it is stored[J]. Biol. Trace Elem. Res.,2008,125:59-71
    Whitehead D. C.. The sorption of Iodide by soils as influenced by equilibrium conditions andsoil properties[J]. J. Sci. Food Agric.,1973,24:547-556
    Whitehead D.C.. Iodine in the UK environment with particular reference to agriculture[J]. J.Appl. Ecol.,1979,16:269-279
    Whitehead D. C.. The volatilization, from soils and mixtures of soil components, of iodineadded as potassium iodide [J]. Eur. J. Soil Sci.,1981,32(1):97-102
    Whitehead D. C.. The distribution and transformation of iodine in the environment[J].Environ. Int.,1984,10:321-339
    Whyte J. N. C., Englar J. R., Borgmann P. E.. Compositional changes on freshwater leachingof the marine algae Nereocystis luetkeana and Macrocystis integrifolia[J]. Can J. FishAquat.Sci.,1981,38:194-198
    Worrall R. J., Lamont G. P.. The growth response of container grown woody ornamentals tocontrolled-release fertilizers[J]. Sci. Hortic-Amsterdam,1987,32(3):275-286
    Yawata A., Oishi Y., Anan Y., et al. Comparison of selenium metabolism in three brassicaceaeplants[J]. J. Health Sci.,2010,56(6):699-704
    Yoshida S., Muramatsu Y.. Determination of organic, inorganic, and particulate iodine in thecoastal atmosphere of Japan[J]. J. Radioanal. Nucl. Chem. Articles,1995,196:295-302
    Yuita K., Tanaka T.. Dynamics of iodine, bromine, and chlorine in soil, I: Effect of moisture,temperature, and pH on the dissolution of the triad from soil[J]. Soil Sci. Plant Nutr.,1991,37(1):61-73
    Zaichiek V., Zaichick S.. Normal human intrathyroidal iodine[J]. Sci. Total Environ.,1997(206):39-56
    Zhu J. M., Wang N., Li S. H., et al. Distribution and transport of selenium in Yutangba, China:impact of human activities[J]. Sci Total Environ.,2008,392:252-261
    Zhang L. H., Shi W. M., Wang X. C.. Difference in selenium accumulation in shoots of tworice cultivars[J]. Pedophere,2006,16(5):646-653
    Zhu Y. G., Huang Y. Z., Hu Y., et al. Iodine uptake by spinach (Spinacia oleracea L.) plantsgrown in solution culture: effects of iodine species and solution concentrations[J].Environ. Int.,2003,29(1):33-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700