用户名: 密码: 验证码:
三峡库区马尾松林凋落物分解及对土壤碳库动态的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林凋落物分解是陆地生态系统土壤有机质、有机养分矿化和碳平衡形成的重要过程,植物凋落物的数量和质量对土壤碳库和养分循环起着重要作用。森林土壤碳库存储了全球土壤碳库的40%,全球每年通过凋落物分解归还到土壤的有机碳约为50Gt,凋落物分解(包括根凋落物)对总年碳通量贡献70%,大约68PgCa-1(Pg=1015g),因此,森林生态系统土壤碳的微小变化,都会对地-气碳交换过程、大气中CO2浓度产生较大的影响。
     三峡库区地处长江中上游,是我国生态环境保护的重点地区;马尾松林是三峡库区主要植被类型之一,对其凋落物产量、基质质量、分解速率、养分归还与土壤养分、碳库间的关系进行研究,为凋落物分解对土壤碳库年动态影响提供重要的科学积累,为探讨三峡库区气候变化对土壤碳储量及养分循环的可能性影响和适应性措施提供科学依据,为亚热带地区森林的可持续经营和增汇潜力提供参考,对凋落物-土壤生物化学连续体的生态过程的更深层理解有重要意义。
     本研究以20年生(YS=younger stand with20years old)、30年生(MS=middle-aged stand with30years old)和46年生(OS=older stand with46years old)马尾松林为研究对象,于2010年6月至2011年12月用凋落物失重法对马尾松林混合凋落物、凋落物叶分解动态进行研究,并对其主要影响因素气候(土壤温度、水分含量)、基质质量、土壤动物、气候变化(模拟N沉降)等进行研究和分析,以探讨马尾松林凋落物输入的质和量对土壤碳库的影响过程,结果表明:
     1.20年生、30年生和46年生马尾松林凋落物年产量分别为3.38、4.69、5.60t·ha-1·a-1;凋落物总产量和叶产量均为单峰模式,即11月最高,2月最低。各组织器官凋落物产量大小顺序是:花果<皮<枝<碎屑<叶。凋落物各组分变化规律差异较大,凋落物叶含量最高;花果等繁殖器官3种林分中明显不同,OS最高(2.7%),MS最低(0.6%);3林分中花凋落的时间也有明显不同,MS主要在4月份,YS和OS则主要在5月份凋落。凋落物产量与气温呈反比,与降雨量和风速相关但不显著。
     2.凋落物分解540d后,20年生林分干重剩余率是63.57%,30年生是59.8%,46年生林分是65.50%,分解模式类似。20年生、30年生、46年生林分凋落物分解50%、95%的时间分别是2.4a、10.36a、2.11a、9.15a、2.35a、10.07a。混合凋落物分解360d后,20年生林分凋落物叶比混合凋落物分解快3.33%,30年生和46年生林分则是混合凋落物比凋落物叶分解分别快10.38%、4.67%。
     3.凋落物分解速率与土壤温度、水分含量呈正相关但非线性关系,与土壤水分含量/温度比呈二项式回归关系,土壤水分含量/土壤温度比在0.5-2.0时凋落物分解相对较快,土壤水分含量/土壤温度比在2.0-5.0时凋落物分解相对较慢;凋落物分解速率与N含量、N/P比呈正相关,与P含量、Mn含量呈负二项式回归关系,与C/N比呈负相关,与C/P比呈正二项式回归关系;土壤动物对凋落物分解作用明显,微孔径<中孔径<大孔径;凋落物分解干重剩余率与多酚氧化酶活性关系呈正相关,与过氧化物酶活性呈负相关。
     凋落物分解影响因素主成分分析表明:凋落物分解影响因素顺序是土壤动物     4.N沉降对凋落物分解速率前期影响不显著,后期影响明显,对凋落物基质质量影响较大。分解540d后,与对照相比,低氮(LN/MN)促进分解,高氮(HN)均抑制分解;N沉降对30年生林分凋落物碳释放速率影响最大,明显改变凋落物N含量净固持、P含量净释放比重;N沉降对凋落物C/N比、C/P比、N/P比的影响差异显著;土壤动物在分解过程中对N沉降响应显著。林龄、处理时间和N沉降对凋落物分解影响的方程分析结果表明,林龄、处理时间和N沉降四个梯度均显著。
     5.马尾松林土壤有机质、总氮含量变化均为30年生<20年生<46年生,且土壤有机质、总氮含量差异均显著(P<0.05),而土壤铵态氮含量是30年生<46年生<20年生,硝态氮含量则是46年生<20年生<30年生。马尾松林土壤pH值季节变化明显,土壤容重季节动态差异显著。马尾松林土壤碳密度变化不同,4个季节0-20cm.土壤碳储量均是30年生<20年生<46年生,且随着林分年龄的增加,土壤碳储量季节动态差异变大;同一林分不同土层对土壤碳储量贡献差异显著,0-5cm贡献最大。
     6.马尾松林凋落物年归还的K、Ca、Mg含量随着林龄的增加而增加,土壤养分含量与凋落物基质质量呈正比,土壤养分含量高,凋落物基质质量相对较好;土壤养分与凋落物分解速率成反比,土壤养分贫瘠的凋落物比土壤养分丰富的凋落物养分释放快;土壤表层养分中C/N比、C/P比越高,凋落物N含量固持越快,P含量释放越慢。凋落物各指标对土壤养分和碳库的影响顺序是:养分归还量<凋落物产量<基质质量(C/N比、木质素/N比等)<凋落物分解速率和C释放速率。
     凋落物层碳年归还量随林龄增加而增加,凋落物层和土壤碳库分别为1.85、39.52,2.62、26.12,3.22、66.69t·ha-1,凋落物层碳年归还量分别占土壤碳库的4.68%、10.03%和4.83%,30年生林分凋落物层碳对土壤碳库的贡献明显大于20年生和46年生林分。
     7.不同林型凋落物基质质量、分解速率与土壤养分相互作用更明显。不同林型凋落物分解速率是马尾松林<栓皮栎林<混交林,凋落物基质质量差异较大,起始凋落物C含量大小顺序是混交林<栓皮栎林<马尾松林,分解450d后碳释放速率是混交林最快,栓皮栎林最慢;起始凋落物N含量是栓皮栎最高,马尾松林最低,分解450d后固持量明显不同,大小顺序是混交林(44.52%)<栓皮栎(44.91%)<马尾松林(66.67%)。3种林型凋落物基质质量均与N含量、N/P比呈正相关,与P含量、Mn含量呈负二项式回归关系,与C/N比呈负相关,与C/P比呈正二项式回归关系。3种林型土壤有机质0-5cm均是马尾松林<混交林<栓皮栎林。除了11月份,栓皮栎林0-20cm土壤碳储量均高于马尾松林和混交林,3种林型中均是0-5cm对土壤0-20cm土壤碳储量贡献最大。
     总之,马尾松林凋落物年产量、基质质量、年归还量和分解速率共同决定土壤碳库。本研究中凋落物年产量和归还量随着林龄的增加而增大,凋落物基质质量起始碳、氮含量差异不显著,凋落物叶分解速率和碳释放速率均是30年生最高,20年生最低,土壤碳库则是30年生最低,46年生最高,即3种马尾松林分土壤碳库和养分与凋落物产量、基质质量和养分归还明显不同,与凋落物分解速率相反,说明凋落物分解速率对土壤碳库的影响较凋落物年产量和基质质量大,土壤养分差的林分因缓解对植物生长的限制而加快凋落物分解;土壤养分差的马尾松林固碳潜力相对较差,通过调整和优化林龄、混交林结构具有较大的增汇潜力。
Forest litter decomposition is an important step in terrestrial ecosystems soil organic matter, mineralization and formation carbon balance. The quantity and qualityof litter also play important role in soil carbon storgage and nutrient cycle. Forest soil carbon pools have40%of the global soil carbon pool, global annual litter returned by decomposition rate to soil organic carbon is about50Gt. The contribute of litter decomposition (including of the root litter) in total annual carbon flux was70%with about68Pg C a-1(Pg=1015g), so small changes in forest ecosystems will affect the process of soil-atmosphere carbon exchange and atmosphere CO2concentration.
     Three Gorges Reservoir Area locates in the middle and upper reaches of the Yangtze River, which is a key ecological environment protection area. Pinus massoniana forest is one of important vegetations of the Three Gorges Reservoir Area, studes on the relationship between litterfall, substrate quality, decomposition rate and nutrient return to soil nutrients would help to investigate the possible effects of climate change to soil caron storage and nutrients cycling and provide a scientific basis of suitability, and also contribute to further understanding forest floor dynamic assessment and litter-soil biochemistry continuum and provide a reference for sub-tropical regions sustainable forest management and increasing the exchange potential.
     Our object was studied on decomposition couse of younger stand with20years old (YS)、 middle-aged stand with30years old (MS) and older stand with46years old (OS) Pinus massoniana mixed litter and litter leaf by litter weight loss method from June2010to December2011, research and principal component analysis the main influence factors including climate (soil temperature and water content), substrate quality, soil fauna and nitrogen deposition and so on. The study would illustrate the influence and contribution of the litter quality and quantity imput to soil carbon pools. The results showed that:
     1. The litterfall in20years old (YS),30years old (MS) and46years old (OS) Pinus massoniana stands were3.38,4.69and5.60t·ha-1·a-1, respectively. The monthly dynamic of total litterfall was similar with litter leaves in three Pinus massoniana stands, both were single peak mode, which was most in November, least was in February. The order of litterfall in each organs:floweres and fruits     2. The litter leaves decomposition rate with dry mass remain rate after540d were63.5%in YS,59.8%in MS and65.5%in OS. The decomposition mode in three stands was similar. The litter decomposition rate constant was0.29,0.33and0.30in YS, MS and OS, respectively. Predicted decomposition50%,95%in three stands were2.4a,10.36a;2.11a,9.15a;2.35a,10.07a. The mixed litter decomposition rate after360d were faster3.33%than mixed litter in YS, while the decomposition rate of mixed litter were faster10.38%,4.67%than the litter leaves in MS and OS, respectively.
     3. Litter decomposition rate was positively correlated but non-linear with soil temperature and water content instead by a polynomial function with soil water content/soil temperature ratio (SWC/ST). Litter decomposition rate was relatively fast when SWC/ST ratio was0.5-2.0, which was relatively slow when SWC/ST ratio was0.5-2.0. Litter decomposition rate in three stands was positive correlation with nitrogen content and N/P ratio, negative correlation with C/N ratio, and negative quadratic function with phosphorus content and Mn content, positive quadratic function with C/P ratio. Soil fauna obvious increased litter decomposition rate, micro-pore size     The influence order of factors of litter decomposition was soil fauna     4. The influence of simulated nigrogen deposition to the litter decomposition rate was bigger in late stage than in early stage. Compared with control (CK), low nitrogen (LN) improved the decomposition rate while higher nitrogen (HN) slowed down decomposition rate after540d exposure. The influence of nigrogen deposition to carbon release was most in MS, followed by YS, least in OS, the influence of nigrogen deposition to the amount of nitrogen net retention and phosphorus net release was great. The response of soil fauna to nitrogen deposition was obvious. Analysis of variance results showed that forest age, processing time and N deposition on decomposition were significant.
     5. Soil organic matter and total nitrogen contents both were MS     6. K, Ca, Mg nutrient contents by soil surface litter return were increased with stand age. Soil nutrient content was high with relatively high litter substrate quality, opposite, soil nutrient poor accompanied relatively low litter quality. Soil nutrient content was negative correlation with litter decomposition rate, litter decomposition rate from poor soil nutrient contents was faster than in soil rich nutrients. The higher was C/N ratio, C/P ratio in soil surface nutrient, retaining the faster was litter N content, the release sooner was P content. The influence order of litter index to soil nutrients and carbon pools were nutrients return     Carbon contents in litter layer were increasing with stand age, carbon pools of litter layers and soil in YS, MS and OS were1.85.39.52,2.62,26.12,3.22.66.69t·ha-1, respectively. The percentage of litter layers in soil carbon pools were4.68%,10.03%and4.83%, the contribution of litter layers to soil carbon pools were obvious bigger in MS than in YS and OS.
     7. The litter decomposition rate and substrate quality of coniferous stand, broad-leaved stand and mixed stand were obvious different. The order of litter decomposition rate in three forest types was Pinus massoniana stand-     In conclusion, litterfall, substrate quality, and annual nutrients return and decomposition rate together decided to soil carbon pools in Pinus massoniana stands. Annual litterfall and return contents were increasing with stand age, while substrate quality carbon was no significant difference, decomposition rate and carbon release rate were highest in MS, lowest in YS and soil carbon pools was lowest in MS, highest in OS. Soil carbon pools and nutrients contents dynamics in three Pinus massoniana stands were significantly different with litterfall, substrate quality and nutrients returns and opposite trend with littter decomposition rate, which indicated that the influence of decomposition rate to soil carbon pools was more important than annual litterfall and subatrate quality. The stands with poor soil nutrients contents would promote litter decomposition rate for relieving the restrictions of plant growth. Pinus massoniana stands with poor soil nutrients accompanied relatively poor carbon sequestration potential and would have greater potential for increasing carbon sink through the adjustment and optimization of forest age and mixed structure.
引文
Aerts R, Bobbink R. The impact of atmospheric nitrogen deposition on vegetation processes in terrestrial, non-forest ecosystems. In:The impact of nitrogen deposition on natural and semi-natural ecosystems. Dordrecht/Boston/London:Kluwer academic publishers,1999:228-238.
    Aerts R, Callaghan TV, Dorrepaal E, et al. Seansonal climate manipulations have only minor effectson litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species. Oecologia,2012,169. Doi:10.1007/s00442-012-2330-z.
    Aerts R. Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia,1990,84(3): 391-397.
    Aerts R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems:a triangular relationship. Oikos,1997,79(3):439-449.
    Aerts R, Caluwe H. Initial litter respiration as indicator for long-term leaf litter decomposition of Carex species. Oikos,1997,80(2):353-361.
    Aerts R, Caluwe HD. Nutritional and Plant-mediated controls on leaf litter decomposition of Carex species. Ecology,1997,78(1):244-260.
    Aerts R, Callaghan TV, Dorrepaal E, et al. Seasonal climate manipulations result in species-specific changes in leaf nutrient levels and isotopic composition in a sub-arctic bog. Functional Ecology,2009,23(4): 680-688.
    Aber JD, Melillo JM, Mcclaugherty CA. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany,1990,68(10):2201-2208.
    Andersson FA, Agren GI, Fuhrer E. Sustainable tree biomass production. Forest Ecology and Management, 2000,132(1):51-62.
    Austin AT, Ballare CL. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. PNAS, 2010,107(10):4618-4622.
    Austin AT, Vitousek PM. Nutrient dynamics on a precipitation gradient in Hawai'i Oecologia,1997,113(4): 519-529.
    Austin AT, Vitousek PM. Precipitation, decomposition and litter decomposability of Metrosideros polymorpha in native forests on Hawai's. Journal of Ecology,2000,88(1):129-138.
    Blair JM, Parmelee RW, Beare MH. Decay rates, nitrogen fluxes, and decomposer communiies of single-and mixed-species foliar litter. Ecology,1990,71(5):1976-1985.
    Bokhorst S, Bjerke JW, Melillo J, et al. Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland. Soil Biology and Biochemistry,2009,42(4):611-617.
    Berg B, Davey MP, Marco AD, et al. Factors influencing limit values for pine needle litter decomposition:a synthesis for boreal and temperate pine forest systems. Biogeochemistry,2010,100(1-3):57-73.
    Berg B, Matzner E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Review,1997,5(1):1-25.
    Berg B, Berg PM, Bottner P, et al. Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry,1993,20(3):127-159.
    Ball BA, Bradford MA, Hunter MD. Nitrogen and phosphorus release from mixed litter layers is lower than predicted from single species decay. Ecosystems,2009,12(1):87-100.
    Berg B. Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management,2000,133(1-2):13-22.
    Berg B, McClaugherty C. Plant litter:decomposition, humus formation, carbon sequestration. New York: Springer Verlag,2003.
    Berg B, Gunnar Ekbohm. Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest.Ⅶ. Canadian Journal Botany,1991,69(7): 1449-1456.
    Berg B, Ekbohm G, Johansson MB, et al. Maximum decomposition limits of forest litter types:a synthesis. Canadian Journal Botany,1996,74(5):650-672.
    Boerner BREJ. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility. Journal of Applied Ecology,1984,21(3):1029-1040.
    Burke DJ, Weintraub MN, Hewins CR, et al. Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biology and Biochemistry,2011,43(4): 795-803.
    Bray JR, Gorham E. Litter production in forests of the world. Advances in Ecological Research,1964(2): 101-157.
    Carlyle JC, Malcolm DC. Nitrogen availability beneath pure spruce and mixed larch+spruce stands growing on a deep peat. Ⅰ. Net N mineralization measured by field and laboratory incubations. Plant and Soil, 1986,93(1):95-113.
    Cortez J. Field decomposition of leaf litters:relationship between decomposition rates and soil moisture, soil temperature and earthworm activity. Soil Biology and Biochemistry,1998,30(6):783-793.
    Cleveland CC, Townsend AR, Taylor P, et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest:a pan-tropical analysis. Ecology letters,2011,14(9):939-947.
    Crow SE, Lajtha K, Bowden RD, et al. Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. Forest Ecology Management,2009,258(10),2224-2232.
    Dang CK, Schindler M, Chauvet E, et al. Temperature oscillation coupled with fungal community shifts can modulate warming effects on litter decomposition. Ecology,2009,90(1):122-131.
    Daubenmire R, Prusso DC. Studies of the decomposition rate of tree litter. Ecology,1963,44(3):589-592.
    Davidson EA, Janssens LA. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature,2006,440:165-173.
    Dalton H, Brand-Hardy R. Nitrogen:the essential public enemy. Journal of Applied Ecology,2003,40(5): 771-781.
    Dent DH, Bagchi R, Robinson D, et al. Nutrient fluxes via litterfall and leaf litter decomposition vary across a gradient of soil nutrient supply in a lowland tropical rain forest. Plant and Soil,2006,288(1-2): 197-215.
    Descheemaeker K, Muys B, Nyssen J, et al. Litter production and organic matter accumulation in exclosures of the Tigray highlands, Ethiopia. Forest Ecology and Management,2006,233(1):21-35.
    Dilly O, Munch JC. Microbial biomass countent, basal respiration and enzyme activities during the course of decomposition of leaf litter in a black alder (Alnus Glutinosa (L.) Gaertn.) forest. Soil Biology and Biochemistry,1996,28(8):1073-1081.
    Embermayer E. Die gesampte Lehre der Waldstreumit Rucksicht auf die chemisched statik des Waldbaues. Berlin:Julius springer,1876:116.
    Fanin N, Hattenschwiler S, Barantal S, et al. Does variability in litter quality determine soil microbial respiration in an Amazonian rainforest? Soil Biology and Biochemistry,2011,43(5):1014-1022.
    Fahey TJ, Yavitt JB, Sherman RE, et al. Transport of carbon and nitrogen between litter and soil organic matter in a northern hardwood forest. Ecosystems,2011,14(2):326-340.
    Frey SD, Six J, Elliott ET. Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface. Soil Biology and Biochemistry,2003,35(7):1001-1004.
    Fierer N, Craine JM, Mclauchlan K, et al. Litter quality and the temperature sensitivity of decomposition. Ecology,2005,86(2):320-326.
    Fioretto A, Musacchio A, Andolfi G, et al. Decomposition dynamics of litters of various pine species in a corsican pine forest. Soil Biology and Biochemistry,1998,30(6):721-727.
    Finzi AC, Allen AS, Delucia EH, et al. Forest litter production, chemistry, and decomposition following two years of Free-air CO2 enrichment. Ecology,2001,82(2):470-484.
    Galloway JN, Cowling EB. Reactive nitrogen and the world:200 years of change. A Journal of the Human Environment,2002,31(2):64-71.
    Galloway JN, Dentener FJ, Capone DG, et al. Nitrogen cycles:past, present, and future. Biogeochemistry, 2004,70(2):153-226.
    Gentile R, Vanlauwe B, Six J. Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions. Ecological Applications,2011,21(3):695-703.
    Gessner MO. Functional leaf traits and biodiversity effects on litter decomposition in a stream:reply. Ecology,2010,91(6),1869-1871.
    Gill RS, Lavender DP. Litter decomposition in coastal hemlock stands:impact of nitrogen fertilizers on decay rates. Canadian Journal of Forest Research,1983,13(1):116-121.
    Gonzalez E, Muller E, Gallardo B, et al. Factors controlling litter production in a large Mediterranean river floodplain forest. Canadian Journal of Forest Research,2010,40(9):1698-1709.
    Hattenschwiler S, Gasser P. Soil animals alter plant litter diversity effects on decomposition. PNAS,2005, 102(5):1519-1524.
    Harmon ME, Silver WL, Fasth B, et al. Long-term patterns of mass loss during the decomposition of leaf and fine root litter:an intersite comparison. Global Change Biology,2009,15(5):1320-1338.
    Heneghan L, Coleman DC, Zou X, et al. Soil microarthropod community structure and litter decomposition dynamics:a study of tropical and temperate sites. Applied Soil Ecology,1998,9(1-3):33-38.
    Hoorens B, Aerts R, Stroetenga M. Does initial litter chemistry explain litter mixture effects on decomposition? Oecologia,2003,137(4):578-586.
    Hobbie SE. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian Montane forest. Ecosystems,2000,3(5):484-494.
    Hobbie SE, Vrrousek PM. Nutrient limitation of decomposition in Hawaiian forests. Ecology,2000,81(7): 1867-1877.
    Huang JJ, Wang XH, Yan ER. Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China. Forest Ecology and Management,2007,239(1-3): 150-158.
    IPCC. Climate change 2001:the science of climate change. Cambridge:Cambridge University Press,2001.
    Jensen LS, Salo T, Palmason F, et al. Influence of biochemical quality on C and N mineralisation from a broad variety of plant materials in soil. Plant and Soil,2005,273(1-2):307-326.
    Kavvadias DVAK, Alifragis DD, Tsiontsis DA, et al. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. Forest Ecology and Management,2001,144(1-3): 113-127.
    Kabzems R, Haeussler S,2005. Soil properties, aspen, and white spruce responses 5 years after organic matter removal and compaction treatments. Canadian Jouranl of Forest Research,2005,35(8), 2045-2055.
    Knicker H. Soil organic N-An under-rated player for C sequestration in soils? Soil Biology and Biochemistry,2011,43(6):1118-1129.
    Kuzyakov Y, Friedel JK, Stahr K. Review of mechanisms and quantification of priming effects. Soil Biology and Biochemistry,2000,32(11-12):1485-1498.
    Lang SI, Cornelissen JHC, Klahn T, et al. An experimental comparison of chemical traits and litter decomposition rates in a diverse range of subarctic bryophyte, lichen and vascular plant species. Journal of Ecology,2009,97(5):886-900.
    Liao JH, Wang HH, Tsai CC, et al. Litter production, decomposition and nutrient return of uplifted coral reef tropical forest. Forest Ecology and Management,2006,235(1-3):174-185.
    Li LJ, Zeng DH, Yu ZY, et al. Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. Journal of Arid Environments,2011,75(9):787-792.
    Madritch MD, Cardinale BJ. Impacts of tree species diversity on litter decomposition in northern temperate forests of Wisconsin, USA:a multi-site experiment along a latitudinal gradient. Plant and Soil,2007, 292(1-2):147-159.
    Magill AH, Aber JD. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant and Soil,1998,203(2):301-311.
    Magill AH, Aber JD, Hendricks JJ, et al. Biogeochemical response of forest ecosystems to simulated chronic nitrogen decomposition. Ecological Applications,1997,7(2):402-415.
    Marinez-Yrzar A, Nunez S, Burquez A. Leaf litter decomposition in a southern Sonoran Desert ecosystem, northwestern Mexico:effects of habitat and litter quality. Acta Oecologica,2007,32(3):291-300.
    McClaugherty CA, Pastor J, Aber JD, et al. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology,1985,66(1):266-275.
    Meier CL, Bowman WD. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. PNAS,2008,105(50):19780-19785.
    Mendonca ES, Stott DE. Characteristics and decomposition rates of pruning residues from a shaded coffee system in Southeastern, Brazil. Agroforestry Systems,2003,57(2):117-125.
    Moore TR, Trofymow JA, Prescott CE, et al. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems,2006,9(1):46-62.
    Moore TR, Trofymow JA, Prescott CE, et al. Nature and nurture in the dynamics of C, N and P during litter decomposition in Canadian forests. Plant and Soil,2011,339(1-2):163-175.
    Moore TR, Trofymow JA, Taylor B, et al. Litter decomposition rates in Canadian forests. Global Change Biology,1999,5(1):75-82.
    Moore TR, Trofymow JA, Prescott CE, et al. Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems,2006,9(1):46-62.
    Maisto G, Marco AD, Meola A, et al. Nutrient dynamics in litter mixtures of four Mediterranean maquis species decomposing in situ. Soil Biology and Biochemistry,2011,43(3):520-530.
    Melillo JM, Aber JD, Linkins AE, et al. Carbon and nitrogen dynamics along the decay continuum:plant litter to soil organic matter. Plant and soil,1989,115(2):189-198.
    Melillo JM, Aber JD, Muratore JF. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology,1982,63(3):621-626.
    Nazareno MC, Rocca M, Aulicine M, et al. Celtis tala and Scutia buxifolia leaf litter decomposition by selected fungi in relation to their physical and chemical properties and lignocellulolytic enzyme activity. European Journal of Soil Biology,2008,44(4):400-407.
    Nave LE, Vance ED, Swanston CW, et al. Impacts of elevated N inputs on north temperate forest soil C storage, C/N, and net N mineralization. Geoderma,2009,153(1-2):231-240.
    Nikolaidou AE, Pavlatou-Ve AK, Kostoppulou SK, et al. Litter quality and decomposition of Vitis vinifera L. residues under organic and conventional farming systems. European Journal of Soil Biology.2010, 46(3-4):208-217.
    Ohrui K, Mitchell MJ, Bischoff JM. Effect of landscape position on N mineralization and nitrification in a forested watershed in the Adirondack Mountains of New York. Canadian Journal Forestry Research, 1999,29(4):497-508.
    Ostertag R, Hobbie SE. Early stages of root and leaf decomposition in Hawaiian forests:effects of nutrient availability. Oecologia,1999,121(4):564-573.
    Pastor J, Stillwell MA, Tilman D. Litter bluestern litter dynamics in Minnestota old fields. Oecologia,1987, 72(3):327-330.
    Pandey RR, Sharma G, Tripathi SK, et al. Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India. Forest Ecology and Management,2007,240(1-3):96-104.
    Prescott CE. Influence of forest floor type on rates of litter decomposition in microcosms. Soil Biology and Biochemistry,1996,28(10-11):1443-1463.
    Pregitzer KS, Burton AJ, Mroz GD, et al. Foliar sulfur and nitrogen along an 800 km pollution gradient. Canadian Journal of Forest Research,1992,22(11):1761-1769.
    Quested HM, Press MC, Callaghan TV, et al. The hemiparasitic angiosperm Bartsia alpina has the potential to accelerate decomposition in sub-arctic communities. Oecologia,2002,130(1):88-95.
    Quested HM, Callaghan TV, Cornelissen JHC, et al. The impact of hemiparasitic plant litter on decomposition:direct, seasonal and litter mixing effects. Journal of Ecology,2005,93(1):87-98.
    Raich JW, Schlesinger WH. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus,1992,44(2):81-89.
    Raich JW, Nadelhoffer KJ. Belowground carbon allocation in forest ecosystems:global trends. Ecology, 1989,70(5):1346-1354.
    Raich JW, Russell AE, Bedoya-Arrieta R. Lignin and enhanced litter turnover in tree plantations of lowland Costa Rica. Forest Ecology and Management,2007,239(1-3):128-135.
    Riutta T, Slade EM, Bebber DP, et al. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biology Biochemistry,2012,49,9(1): 124-131.
    Rusek J. Biodiversity of collembola and their functional role in the ecosystem. Biodiversity And Conservation,1998,7(9):1207-1219.
    Rubino M, Dungait JAJ, Evershed RP, et al. Carbon input belowground is the major C flux contributing to leaf litter mass loss:evidences from a 13C labelled-leaf litter experiment. Soil Biology and Biochemistry, 2010,42(7):1009-1016.
    Rustad LE. Element dynamics along a decay continuum in a red spruce ecosystem in Maine, USA. Ecology, 1994,75(4):867-879.
    Saver EJ. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biology Reviews,2006,81(1):1-31.
    Saiya-Cork KR, Sinsabaugh RL, Zak DR. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry,2002,34(9): 1309-1315.
    Schlesinger WH. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 1990,348(11):232-234.
    Simmons JA, Fernandez IJ, Briggs RD, et al. Forest floor carbon pools and fluxes along a regional climate gradient in Maine, USA. Forest Ecology and Management,1996,84(1-3):81-95.
    Swift MJ, Heal OW, Anderson JM. Decomposition in terrestrial ecosystems. Berkeley:University of California Press,1979.
    Sulkava P, Huhta V, Laakso J. Impact of soil faunal structure on decomposition and N-mineralization in relation to temperature and moisture in forest soil. Pedobiologia,1996,40(6):505-513.
    Szanser M, Ilieva-Makulec K, Kajak A, et al. Impact of litter species diversity on decomposition processes and communities of soil organisms. Soil Biology and Biochemistry,2011,43(1):9-19
    Tang JW, Cao M, Zhang JH, et al. Litterfall production, decomposition and nutrient use efficiency varied with tropical forest types in Xishuangbanna, SW China:a 10-year study. Plant and soil,2010,335(1-2): 271-288.
    Tian G. Soil fauna-nediated decomposition of plant residues under constrained environmental and residue quality conditions. IN:Cadish G, Giller K E. Driven by nature:plant litter quality and decomposition. Wallingford:CAB International,1997:125-144.
    Thevenot M, Dignac MF, Rumpel C. Fate of lignin in soils:a review. Soil Biology and Biochemistry,2010, 42(8):1200-1211.
    Vargas DN, Bertiller MB, Ares JO, et al. Soil C and N dynamics induced by leaf-litter decomposition of shrubs and perennial grassed of the Patagonian Monte. Soil Biology and Biochenistry,2006,38(8): 2401-2410.
    Vasconcelos HL, Laurance WF. Influence of habitat, litter type, and soil invertbrates on leaf-litter decomposition in a fragmented Amazonian landscape. Oecologia,2005,144(3):456-462.
    Vestgarden LS. Carbon and nitrogen turnover in the early stage of Scots pine(Pinus sylvestris) needle litter decomposition:effects of internal and external nitrogen. Soil Biology and Biochemistry,2001,33(4-5): 465-474.
    Vitousek JDAR, Vitousek PM, Aber JD, et al. Human alteration of the global nitrogen cycle:sources and consequences. Ecological Applications,1997,7(3):737-750.
    Vitousek PM. Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology,1984,65(1): 285-298.
    Vitousek P. Nutrient cycling and nutrient use efficiency. The American Naturalist,1982,119(4):553-572.
    Trap J, Bureau F, Brethes A, et al. Does moder development along a pure (Fagus sylvatica) chronosequence result from changes in litter production or in decomposition rates? Soil Biology and Biochemistry,2011, 43(7):1490-1497.
    Trofymow JA, Moore TR, Titus B, et al. Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Canadian Journal Forestry Research,2002,32(5):789-804.
    Wang CY, Han GM, Jia Y, et al. Insight into the temperature sensitivity of forest litter decomposition and soil enzymes in subtropical forest in China. Journal of Plant Ecology,2011,4(3):1-8.
    Wang GG, Klinka K. White spruce foliar nutrient concentrations in relation to tree growth and soil nutrient amount. Forest Ecology and Management,1997,98(1):89-99.
    Wetterstedt JAM, Agren GI. Quality or decomposer efficiency-which is most important in the temperature response of litter decomposition? A modelling study using the GLUE methodology. Biogeosciences Discussions,2010,7(6):8699-8722.
    Xuluc-Tolosa FJ, Vester HFM, Ramirez-Marcial N, et al. Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. Forest Ecology and Management,2002,174(1-3):401-412.
    Yang XD, Chen J. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biology and Biochemistry,2009,41(5):910-918.
    Yang YS, Chen GS, Guo JF, et al. Litter decomposition and nutrient release in a mixed forest of Cunninghamia Lanceolata and Tsoongiodendron Odorum. Acta Phytoecologica Sinica,2002,26(3): 275-282.
    Zhang CF, Trofymow JA, Jamieson RC, et al. Litter decomposition and nitrogen mineralization from an annual to a monthly model. Ecological Modelling,2010,221(16):1944-1953.
    Zhang DQ, Hui DF, Luo YQ, et al. Rates of litter decomposition in terrestrial ecosystems:global patterns and controlling factors. Journal of Plant Ecology,2008,1(2):85-93.
    常超,谢宗强,熊高明,等.三峡库区不同植被类型土壤养分特征.生态学报,2009,29(11):5978-5985.
    陈法霖,郑华,阳柏苏,等.中亚热带几种针、阔叶树种凋落物混合分解对土壤微生物群落碳代谢多样性的影响.生态学报,2011,31(11):3027-3035.
    陈瑾,李扬,黄建辉.内蒙古典型草原4种优势植物凋落物的混合分解研究.植物生态学报,2011,35(1):9-16.
    陈亮中.三峡库区主要森林植被类型土壤有机碳研究.北京林业大学博士学位论文,2007.
    陈印平,赵丽华,吴越华,等.森林凋落物与土壤质量的互作效应研究.世界科技研究与发展,2005,27(4):88-94.
    程煜,陈灿,范海兰,等.不同坡向对木荷马尾松凋落物分解及养分释放速率的影响.中国农学通报,2011,27(31),6-17.
    代力民,徐振邦,陈华,等.长白山红松阔叶混交林紫椴枝条的分解实验.生态学报,2002,22(6),854-858.
    樊后保,苏兵强,刘春华,等.林下套种阔叶树的马尾松林凋落物生态学研究-II.凋落物养分归还动态,福建林学院学报,2003,23(2):97-101.
    方华,莫江明.氮沉降对森林凋落物分解的影响.生态学报,2006,26(9):3127-3136.
    方运霆,莫江明,Per Gundersen,等.森林土壤氮素转换及其对氮沉降的响应.生态学报,2004,24(7):1523-1531.
    傅懋毅,方敏瑜,谢锦忠.竹林养分循环:I.毛竹纯林的叶凋落物及其分解.林业科学研究,1989,2(3),207-213.
    高永恒,陈槐,罗鹏,等.放牧强度对川西北高山草甸两个优势物种凋落物分解的影响.生态科学,2007,26(3):193-198.
    葛晓改,肖文发,曾立雄,等.三峡库区不同林龄马尾松土壤养分与土壤酶活性分析.应用生态学报, 2012,23(2):445-451.
    葛晓改,肖文发,曾立雄,等.不同林龄马尾松凋落物基质质量与土壤养分关系分析.生态学报,2012,32(3):852-862.
    宫超,汪思龙,曾掌权,等.中亚热带常绿阔叶林不同演替阶段碳储量与格局特征.生态学杂志,2011,30(9):1935-1941.
    关松荫.土壤酶及其研究法.北京:中国农业大学出版社,1986.
    国家林业局.中华人民共和国林业行业标准—森林土壤分析方法.北京:中国标准出版社,2000.
    郭伟,文维全,黄玉梅,等.川西亚高山针阔混交林与针叶纯林苔藓凋落物层持水性能研究.水土保持学报,2009,23(6):240-243.
    郭玉硕.楠木叶凋落物的分解及其养分动态.福建林学院学报.2007,27(3):199-202.
    何帆,王得祥,雷瑞德,等.秦岭南坡不同海拔林分凋落物叶分解特征.西北植物学报,2010,30(5),1004-1011.
    何广琼,黄承标,曹继钊,等.桂西北干热河谷区马尾松人工林土壤理化特性.安徽农业科学,2010,38(3):1610-1613,1649.
    何宗明,陈光水,刘剑斌,等.杉木林凋落物产量、分解率与储量的关系.应用与环境生物学报,2003,9(4):352-356.
    黄昌勇.土壤学.北京:中国农业出版社,2000.
    黄建辉,陈灵芝,韩兴国.辽东栋枝条分解过程中几种主要营养元素的变化.植物生态学报,1998,22(5):398-402.
    黄靖宇,宋长春,张金波,等.凋落物输入对三江平原弃耕农田土壤基础呼吸和活性碳组分的影响.生态学报,2008,28(7):3417-3424.
    黄菊莹,余海龙,袁志友,等.氮、磷和水分供给对羊草枯叶分解质量的影响.植物生态学报,2011,35(8):808-815.
    胡承彪,韦源连,梁宏温,等.两种森林凋落物分解及其土壤效应的研究.广西农业大学学报,1992,11(4):47-52.
    姜欢欢,李继红,范文义,等.三峡库区秭归县景观格局变化及模拟预测.应用生态学报,2009,20(2):474-479.
    雷静品,肖文发,黄志霖,等.三峡库区秭归县不同海拔马尾松径向生长对气候的响应.林业科学,2009,45(2):33-39.
    林大仪.土壤学实验指导.北京:中国林业出版社,2004.
    林德生,吴昌广,周志翔,等.三峡库区近50年来的气温变化趋势.长江流域资源与环境,2010,19(9):1037-1043.
    林开敏,章志琴,叶发茂,等.杉木人工林下杉木、楠木和木荷叶凋落物分解特征及营养元素含量变化的动态分析.植物资源与环境学报,2010,19(2):34-39.
    林开敏,章志琴,邹双全,等.杉木与阔叶树叶凋落物混合分解对土壤性质的影响.土壤通报,2006,37(2):258-262.
    林瑞余,陈银秀,黄荣臻,等.杉木观光木混交林凋落物养分特征及动态变化.东北林业大学学报,2002,30(1):17-23.
    李考学.氮沉降对长白山两种主要针叶树种凋落物分解的影响.东北林业大学学报,2007,35(2),17-19.
    李荣华,邓琦,周国逸,等.起始时间对亚热带森林凋落物分解速率的影响.植物生态学报,2011,35(7):699-706.
    李茜,刘增文,杜良贞.黄土高原小叶杨与其他树种枯落物叶混合分解对土壤性质的影响.应用生态学报,2012,23(3):595-602.
    李雪峰,韩士杰,张岩.降水量变化对蒙古栎落叶分解过程的间接影响.应用生态学报,2007,18(2):261-266.
    李雪峰,韩士杰,胡艳玲,等.长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系.应用生态学报,2008,19(2):245-251.
    李艳红,罗承德,杨万勤,等.桉-桤混合凋落物分解及其土壤动物群落动态.应用生态学报,2011,22(4):851-856.
    李志安,林永标,彭少麟.华南人工林凋落物养分及其转移.应用生态学报,2000,11(3):321-326.
    梁宏温.田林老山中山杉木人工林凋落物及其分解作用的研究.林业科学,1993,29(4):355-359.
    刘强,彭少麟.植物凋落物生态学.北京:科学出版社,2010.
    刘强,彭少麟,毕华,等.热带亚热带森林叶凋落物交互分解的研究.中山大学学报,2004,43(4): 86-89.
    刘文利,罗广军.不同林型下土壤理化性质的差异研究.吉林林业科技,2006,25(1):26-28.
    鲁如坤.土壤农业化学分析.北京:中国农业科技出版社,1999.
    鲁显楷,莫江明,董少峰.氮沉降对森林生物多样性的影响.生态学报,2008,28(1):5532-5547.
    逯军峰,王辉,曹靖,等.油松人工林凋落物对土壤理化性质的影响.西北林学院学报,2007,22(3):25-28.
    吕春花,郑粉莉,安韶山.子午岭地区植被演替过程中土壤养分及酶活性特征研究.干旱地区农业研究,2009,27(2):227-232.
    罗辑,程根伟,宋孟强,等.贡嘎山峨眉冷杉林凋落物的特征.植物生态学报,2003,27(1):59-65.
    马元丹,江洪,余树全,等.不同起源时间的植物叶凋落物在中亚热带的分解特性.生态学报,2009,29(10):5237-5245.
    莫江明,布朗,孔国辉,等.鼎湖山生物圈保护区马尾松凋落物的分解及其营养动态研究.植物生态学报,1996,20(6):534-542.
    莫江明,薛璟花,方运霆.鼎湖山主要森林植物凋落物分解及其对N沉降的响应.生态学报,2004,24(7):1413-1420.
    潘辉,黄石德,洪伟,等.3种相思人工林凋落物量及其碳归还动态.福建林学院学报,2010,30(2):104-108.
    潘开文,何静,吴宁.森林凋落物对林地微生境的影响.应用生态学报,2004,15(1):153-158.
    彭少麟,刘强.森林凋落物动态及其对全球变暖的响应.生态学报,2002,22(9):1534-1544.
    曲浩,赵学勇,赵哈林,等.陆地生态系统凋落物分解研究进展.草业科学,2010,27(8):44-51.
    沈海龙,丁宝永,沈国舫.樟子松人工林下针阔叶凋落物分解动态.林业科学,1996,32(5):393-402.
    宋新章,江洪,马元丹,等.中国东部气候带凋落物分解特征—气候和基质质量的综合影响.生态学报,2009,29(10):5219-5226.
    宋新章,江洪,张慧玲,等.全球环境变化对森林凋落物分解的影响.生态学报,2008,28(9):4414-4423.
    宋学贵,胡庭兴,鲜骏仁,等.川西南常绿阔叶林凋落物分解及养分释放对模拟氮沉降的响应.应用生态学报,2007,18(10):2167-2172.
    隋跃宇,焦晓光,高崇生,等.土壤有机质含量与土壤微生物量及土壤酶活性关系的研究.土壤通报,2009,40(5):1036-1039.
    谭波,吴福忠,杨万勤,等.冻融末期川西亚高山/高山森林土壤水解酶活性特征.应用生态学报,2011,22(5):1162-1168.
    田大伦,宁晓波.不同龄组马尾松林凋落物量及养分归还量研究.中南林学院学报,1995,15(2):163-169.
    涂利华,胡庭兴,张健,等.模拟氮沉降对两种竹林不同凋落物组分分解过程养分释放的影响.生态学报,2011,31(6):1547-1557.
    涂利华,胡红玲,胡庭兴,等.华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应.植物生态学报,2012,36(2):99-108.
    汪思龙,陈楚莹.森林残落物生态学.北京:科学出版社,2010.
    汪思龙,黄志群,王清奎,等.凋落物的树种多样性与杉木人工林土壤生态功能.生态学报,2005,25(3),474-480.
    王清奎,汪思龙,于小军,等.杉木与阔叶树叶凋落物混合分解对土壤活性有机质的影响.应用生态学报,2007,18(6):1203-1207.
    王光军,田大伦,闫文德,等.去除和添加凋落物对杉木人工林土壤氮矿化的影响.中南林业科技大学学报,2009,29(3):6-10.
    王果.土壤学.北京:高等教育出版社,2009.
    王丽丽,宋长春,郭跃东,等.三江平原不同土地利用方式下凋落物对土壤呼吸的贡献.环境科学,2009,30(11):3130-3135.
    王邵军.武夷山不同海拔土壤动物对凋落物分解的影响.南京林业大学博士学位论文,2009.
    王星丽,殷秀琴,宋博,等.羊草草原主要凋落物分解及土壤动物的作用.草业学报,2011,20(6):143-149.
    尉海东,马祥庆.不同发育阶段马尾松人工林生态系统碳贮量研究.西北农林科技大学学报(自然科学版),2007,35(1):171-174.
    吴承祯,洪伟,姜志林,等.我国森林凋落物研究进展.江西农业大学学报,2000,3(3):405-410.
    吴仲民,李意德,周光益,等.”非正常凋落物”及其生态学意义.林业科学,2008,44(11):28-31.
    夏磊,吴福忠,杨万勤,等.川西亚高山森林凋落物分解初期土壤动物对红桦凋落物叶质量损失的贡献.应用生态学报,2012,23(2):301-306.
    项文化,田大伦.不同年龄阶段马尾松人工林养分循环的研究.植物生态学报,2002,26(1):89-95.
    肖慈英,黄青春,阮宏华.松、栎纯林及混交林凋落物分解特性研究.土壤学报,2002,39(5):763-767.
    肖辉林.大气N沉降对森林土壤酸化的影响.林业科学,2001,37(4):111-116.
    肖文发,李建文,于长青,等.长江三峡库区陆生动植物生态.西南师范大学出版社,重庆,2000.
    徐国良,莫江明,周国逸,等.氮沉降下鼎湖山森林凋落物分解及与土壤动物的关系.生态环境,2005,14(6):901-907.
    徐国良,莫江明,周国逸.模拟氮沉降增加对南亚热带主要森林土壤动物的早期影响.应用生态学报,2005,16(7):1235-1240.
    徐国良,莫江明,周国逸.N沉降下土壤动物群落的响应:1年研究结果总述.北京林业大学学报,2006,28(3):1-7.
    徐小锋,田汉勤,万师强.气候变暖对陆地生态系统碳循环的影响.植物生态学报,2007,31(2):175-188.
    徐振锋,唐正,万川,等.模拟增温对川西亚高山两类针叶林土壤酶活性的影响.应用生态学报,2010,21(11):2727-2733.
    徐振锋,尹华军,赵春章,等.陆地生态系统凋落物分解对全球气候变暖的响应.植物生态学报,2009,33(6):1208-1219.
    杨会侠,汪思龙,范冰,等.不同林龄马尾松人工林年凋落物量与养分归还动态.生态学杂志,2010,29(12):2334-2340.
    杨清伟.贡嘎山峨眉冷杉原始林及其更新群落凋落物的特征.植物资源与环境学报,2001,37(1):35-38.
    杨万勤,邓仁菊,张健.森林凋落物分解及其对全球气候变化的响应.应用生态学报,2007,18(12):2889-2895.
    杨万勤,王开运.森林土壤酶的研究进展.林业科学,2004,40(2):152-159.
    杨玉盛,陈光水,郭剑芬,等.杉木观光木混交林凋落物分解及养分释放的研究.植物生态学报,2002,26(3):275-282.
    杨玉盛,俞白楠,谢锦升,等.杉木观光木混交林凋落物数量、组成及动态.林业科学,2001,37(1):30-34.
    姚瑞玲,丁贵杰,王胤.不同密度马尾松人工林凋落物及养分归还量的年变化特征.南京林业大学学报(自然科学版),2006,30(5):83-86.
    殷秀琴,张桂荣.森林凋落物与大型土壤动物相关关系的研究.应用生态学报,1993,4(2):167-173.
    曾锋,邱治军,许秀玉.森林凋落物分解研究进展.生态环境学报,2010,19(1):239-243.
    曾立雄,肖文发,黄志霖,等.兰陵溪小流域主要退耕还林植被土壤渗透特征.水土保持学报,2010,24(3):199-202.
    曾立雄,王鹏程,肖文发,等.三峡库区植被生物量和生产力的估算及分布格局.生态学报,2008,28(8):3808-3816.
    张东来,毛子军,张玲,等.森林凋落物分解过程中酶活性研究进展.林业科学,2006(1):105-109.
    张晓鹏,潘开文,王进闯,等.栲-木荷林凋落叶混合分解对土壤有机碳的影响.生态学报,2011,31(6):1582-1593.
    张莉.微地形改造促进凋落物分解方法.中国科学院新疆生态与地理研究所,专利号:200910113498,2010-4-21.
    邹碧,李志安,丁永祯,等.南亚热带4种人工林凋落物动态特征.生态学报,2006,26(3):715-721.
    郑万钧.中国树木志(第一卷).北京:中国林业出版社,1985.
    周武,郭明,仲强,等.天童常绿阔叶林主要演替阶段的土壤剖面及碳密度特征.华东师范大学学报(自然科学版),2009(2):11-20.
    周正贤.中国马尾松.北京:中国林业出版社,2000.
    朱双燕,王克林,曾馥平,等.桂西北喀斯特次生林凋落物养分归还特征.生态环境学报,2009,18(1):274-279.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700