用户名: 密码: 验证码:
基于单株标识的数字化果园精准管理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以实现果园精准管理为目标,从果树单株标识、果园生产信息获取、果树产量估测、果品质量追溯等方面开展研究,开发数字化果园生产精准管理与溯源系统,构建完整的数字化果园精准管理技术体系,主要开展了以下研究:
     (1)设计了一种果树单株标识的新方法
     利用带二维条码的RFID标签对单株果树进行标识,通过测试RFID标签与读写器天线在不同距离、标签悬挂于果树不同垂直高度与水平距离及果树遮挡等4种情况下的读取率,提出了果树单株标识优化策略,测试结果表明本方法可较好实现对果树单株的标识且在果园环境中也便于读取;本研究提出采用带条码的RFID标签,既可利用手持RFID等专用设备读取,也可采用如手机等非专业且低成本的设备读取,解决了果树单株低成本应用的标识问题。
     (2)研究了以手机为载体的果园生产信息双向获取技术
     以果树单株标识中的二维条码为基础,提出了以手机为载体的果园生产信息双向获取技术框架,突破了基于手机扫描条码的生产信息采集技术和基于果树位置的环境信息查询技术,开发了果园生产信息双向获取系统,将系统移植到普通智能手机上,可进行单株农事信息的快速采集和果树周边环境信息的实时获取;系统可大大降低利用专用设备如便携式RFID读写设备等的使用成本,是一种可以实现果园生产信息采集的低成本高效率方案。
     (3)构建了基于树上果实图像识别的产量估测模型
     以富士苹果为研究对象,通过利用普通数码相机获取成熟期果实图像,结合RGB颜色空间和HSV颜色空间进行分割阈值的选取,进行图像识别;研究了采用圆拟合分析构建单个苹果识别判定方法,重点解决了单果被遮挡分离而被误识为多果的情况和多果因重叠覆盖而被误识为单果的情况;以篱壁型或近似篱壁型果树为研究对象,建立了识别出的特征参数与苹果单株产量之间的相关关系,构建了以从东南和西北方向获取的图像识别出的果实个数之和为特征变量的富士苹果产量估测模型,解决了果园精准管理中单株果树产量快速估测的问题。
     (4)开发了数字化果园生产精准管理与溯源系统
     设计了包含三个子系统的数字化果园生产精准管理与溯源系统,重点研究了果品追溯码编码和单株果树精确追溯方法,开发了包含果园采收信息采集子系统、基于WebGIS的数字化果园精准管理子系统、果品质量安全追溯了系统的数字化果园生产精准管理与溯源系统,系统在试验区进行了应用测试,可实现果园生产的精准管理和果品的单株溯源。
With the aim to realize orchard precision management, this paper investigates the identification of single fruit tree, orchard production information collection, fruit tree yield estimation, fruit quality traceability, etc, and develops a digital orchard precision management and traceability system, and then establishes a technology system of digital orchard precision management. The sections below outline the following:
     (1) A new identification method of single fruit tree
     The RFID tags with2D barcodes were used to identify the single fruit tree. The test was conducted in four treatment conditions, which were different distance between RFID tags and reader antennas (condition1), different vertical hanging height on the fruit trees (condition2), different horizontal hanging distance on the fruit trees (condition3) and different shades in the front of tags (condition4). Then the optimization method of single fruit tree identification was proposed, and the results showed that the method could realize identification of single fruit tree with sound application in orchard. The RFID tags with2D barcodes can be read not only by handled RFID readers, but also by the non-professional and low cost equipments, such as cell phones, which realized the identification problem of single fruit tree at low cost.
     (2) Cell-phone-based bidirectional service technology for orchard production information
     Based on the2D barcode for identification of single fruit tree, the bidirectional service technology system was proposed using cell phones, and with the cell phone scanning barcode for production information collection technology and fruit-tree-position-based query technology for environmental information, the bidirectional obtaining system for orchard production information was developed. The system can be transferred into common smart phones to realize rapid collection of agricultural information for single tree and real-time obtaining of nearby environmental information for fruit trees. The system could decrease the cost of professional equipments such as portable RFID readers and writers, which was a low-cost and high-efficiency solution for orchard production information collection.
     (3) The yield estimation model of fruit image identification on trees
     Taking Fuji apple as the objects, the matured apple images were photographed using common digital camera, and selected segment threshold combining RGB and HSV color space to identify the images. An identification determination method for single apple was developed based on circle fitting analysis, to solve the problems that single apple was hidden and separated to be misclassitled as multi apples, and multi apples were overlapping to be misclassified as single apple. With hedgerow or similar system of apple trees as the objects, the correlation was established between identified characteristics parameters and single apple tree yield. Taking the identification fruit number sum from images of southeast and northwest directions as the variables, the estimation model was constructed. This method can solve the problem of rapid yield estimation on single fruit tree for orchard precision management.
     (4) Developing a digital orchard precision management and traceability system
     We designed a digital orchard precision management and traceability system including three sub-systems, and mainly studied the fruit traceability coding and precision traceability method for single fruit tree. The sub-systems included orchard harvest information collection, WebGIS-based precision management for digital orchard and traceability of fruit quality safety. The systems were applied in the experiment district and could realize precision management and fruit traceability for single tree in orchard production.
引文
1. 包晓安,张瑞林,钟乐海.基于人工神经网络与图像处理的苹果识别方法研究[J].农业工程学报,2004,20(3):109-112.
    2. 蔡健荣,周小军,李玉良,等.基于机器视觉自然场景下成熟柑橘识别[J].农业工程学报,2008,24(1):175-178.
    3.黎式东,杨芳.一种基于HSV空间和粗糙集的彩色图像分割方法[J].光电子技术,2011,31(1):5-9.
    4. 曹卫星.农业信息学[M].北京:中国农业出版社,2005.
    5. 车明亮,聂宜民,李强,等.基于GIS无线服务的小麦氮肥施肥推荐系统[J].计算机工程,2012,38(5):255-258.
    6. 陈谦,佘江峰,潘森,等.基于RIA方式的WebGIS构建[J].遥感信息,2009,(4):89-94.
    7. 陈树人,张漫,汪懋华.谷物联合收获机智能测产系统设计和应用[J].农业机械学报,2005,36(1):97-99.
    8. 达创条码.自动标识技术的种类方法 在生产过程中的作用[EB/OL].
    9.邓华,薛正平,杨星卫.产量分析技术与系统设计研究[J].中国生态农业学报,2006,14(4):204-207.
    10.冯秀兰,宋铁英,姚建新,等.基于GIS的集体林森林资源信息管理系统的研制与开发[J].北京林业大学学报,2001,23(3):81-85.
    11.辜青青,罗来春,徐回林.我国果业生产现状及发展趋势[J].现式园艺,2009,(8):20-21.
    12.侯建平.精准农业发展模式选择与评价研究[D]:天津大学,2007.
    13.黄锋,郝鹏,吴华瑞.RFID中间件在农产品安全追溯系统中的应用[J].农业工程学报,2008,24(增刊2):177-181.
    14.贾治邦.林业信息化建设目标:回忆林业信息化带动林业现代化[EB/OL].
    15.康瑞娟,张小栓,傅泽田,等.基于PDA和FSM的肉牛养殖可追溯信息采集与传输方法[J].农业工程学报,2010,26(1):227-231.
    16.孔洪亮,李建辉.全球统一标识系统在食品安全跟踪与追溯体系中的应用[J].食品科学,2004,25(6):188-194.
    17.科技部农村科技司,中国农村技术开发中心.中国现代节水高效农业技术发展战略[M]:北京:中国农业科学技术出版社,2006.
    18.廖桂平,官春云.油菜优质高产高效栽培管理多媒体专家系统[J].作物学报,2002,28(1):140-142.
    19.刘凤之,汪景彦,王宝亮.我国果树生产现状与果业发展趋势[J].中国果树,2005,(1):51-53.
    20.刘金铜,陈谋询,蔡虹,等.我国精准农业的概念、内涵及理论体系的初步构建[J].农业系统科学与综合研究,2001,17(3):180-182.
    21.刘璐,王景红,屈振江,等.陕西省苹果单产非线性预测模型研究[J].中国农学通报,2012,28(25):248-251.
    22.刘明辉,沈佐锐,高灵旺,等.基于WebGIS的农业病虫害预测预报专家系统[J].农业机械学报,2009,40(7):180-186.
    23.陆昌华,谢菊芳,王立方,等.工厂化猪肉安全生产溯源数字系统的实现[J].江苏农业学报,2006,22(1):51-54.
    24.鲁韧强,王小伟,郭宝林,等.桃树倾斜主干偏展形的光照分布与果实产量品质的关系[J].果树学报,2003,20(6):509-511.
    25.孟志军,赵春江,王秀,等.基于GPS的农田多源信息采集系统的研究与开发[J].农业工程学报,2003,19(4):13-18.
    26.潘瑜春,赵春江.地理信息技术在精准农业中的应用[J].农业工程学报,2003,19(4):1-6.
    27.喷码技术有限公司Domino多米诺.喷码技术手册[S],2004.
    28.彭辉,文友先,吴兰兰,等.采用自适应canny算子的树上柑橘图像边缘检测[J].计算机工程与应用,2011,47(9):163-166.
    29.钱建平,吴晓明,杨信廷,等.果树无线射频标签不同悬挂方式对读取率的影响[J].农业工程学报,2012,28(增刊1):170-174.
    30.钱建平,邢斌,吴晓明,等.数字化果园管理系统[J].计算机系统应用,2012,21(9):14-18.
    31.钱建平,杨信廷,刘学馨,等.农产品快速图形化追溯系统构建[J].农业工程学报,2011,27(3):167-171.
    32.钱建平,杨信廷,吴晓明,等.自然场景下基于混合颜色空间的成熟期苹果识别方法[J].农业工程学报,2012,28(17):137-142.
    33.钱建平,杨信廷,张保岩,等.基于RFID的蔬菜产地追溯精确度提高方案及应用[J].农业工程学报,2012,28(15):234-239.
    34.乔晓军,张馨,王成,等.无线传感器网络在农业中的应用[J].农业工程学报,2005,21(增刊):232-234.
    35.秦浩.离散制造过程在制品标识与信息采集技术研究[D]:重庆大学,2009.
    36.任晰,张小栓,穆维松,等.基于Web的罗非鱼养殖质量安全可追溯系统的设计与实现[J].计算机工程与设计,2009,30(16):3883-3886.
    37.孙明,傅隆生,杨信廷,等.用于QR码自动识读的图像分析方法[J].电子科技大学学报,2009,38(6):1017-1020.
    38.石元春.土壤学的数字化和信息化革命[J].土壤学报,2000,37(3):289-295.
    39.司永胜,乔军,刘刚,等.基于机器视觉的苹果识别和形状特征提取[J].农业机械学报,2009,40(8):161-165.
    40.史舟,李艳,吴曙雯,等.网络化柑橘生产布局与管理决策咨询系统的研制[J].科技通报,2004,20(6):476-480.
    41.唐华俊,伊-范朗斯特.中国土地资源极其农业利用[M]:北京:气象出版社,2004.
    42.屠珺,刘成良,李彦明,等.基于光照无关图的苹果图像识别方法[J].农业工程学报,2010,26(增刊2):26-31.
    43.谭民,刘禹,曾隽芳.RFID技术系统功能及应用指南[M].北京:机械工业出版社,2007.
    44.吴炳方,张峰,刘成林,等.农作物长势综合遥感监测方法[J].遥感学报,2004,8(6):498-514.
    45.吴保国,丁全龙,胡波.基于Web的造林专家咨询系统研究[J].林业科学,2006:85-89.
    46.吴保国,李成赞,马驰,等.森林培育专家决策支持系统的研究[J].北京林业大学学报,2009:1-8.
    47.吴保国,温亮宝.森林重大病虫害诊治专家咨询系统的研究[J].北京林业大学学报,2006,28(6):113-118.
    48.王华明.金属材料激光表面改性与高性能金属零件激光快速成形技术研究进展[J].航空学报,2002,23(5):473-478.
    49.王纪华,赵春江,黄文江.农业定量遥感基础与应用[M].北京:科学出版社,2008:280-284.
    50. 王立方,陆昌华,谢菊芳,等.家畜和畜产品可追溯系统研究进展[J].农业工程学报,2005,21(7):168-174.
    51.汪懋华.“精细农业”发展与工程技术创新[J].农业工程学报,1999,15(1):7-14.
    52.王霓虹.基于WEB与3S技术的森林防火智能决策支持系统的研究[J].林业科学,2002,38(3):114-119.
    53. 王晓丹.基于GPS的玉米测产数据采集与处理单元研究[D]:吉林大学,2009.
    54.王小伟,尚志华,张强,等.樱桃透光和郁闭树冠相对光照强度及其果实品质和产量的差异[J].园艺学报,2009,36(2):157-162.
    55.王秀,赵春江,孟志军,等.精准变量施肥机的研制与试验[J].农业工程学报,2004,20(5):114-117.
    56.王衔安,李明,王丽辉,等.果树病虫害诊断与防治专家系统知识库的构建[J].山东农业大学学报(自然科学版),2005,36(3):154-159.
    57.武向良,高聚林,赵于东,等.农业专家系统研究进展及发展方向[J].农机化研究,2008,(1):235-238.
    58.魏钦平,鲁韬强,张显川,等.富士苹果高干开心形光照分布与产量品质的关系研究[J].园艺学报,2004,31(3):291-296.
    59.项荣,应义斌,蒋焕煜,等.基于边缘曲率分析的重叠番茄识别[J].农业机械学报,2012,43(3):157-162.
    60.熊本海,傅润亭,林兆辉,等.生猪及其产品从农场到餐桌质量溯源解决方案——以天津市为例[J].中国农业科学,2009,42(1):230-237.
    61.熊雪梅.精确农业中的产量监测方法[J].农机化研究,2001,(1):75-76.
    62.许彦平,姚晓红,袁雅萍,等.农业气象灾害对甘肃天水苹果生产的影响[J].果树学报,2009, 26(5):597-602.
    63.薛正平,邓华,杨星卫,等.基于决策树和图层叠置的精准农业产量图分析方法[J].农业工程学报,2006,22(8):140-144.
    64.荀一,陈晓,李伟,等.基于轮廓曲率的树上苹果自动识别[J].江苏大学学报:自然科学版,2007,28(6):461-464.
    65.于昊,赵乃良,陈小雕.类曲率在曲线相似性判定中的应用[J].中国图象图形学报,2012,17(5):701-714.
    66.远望谷.XCRF-860型读写器快速入门指南[Z].2010.
    67.杨信廷,钱建平,孙传恒,等.蔬菜安全生产管理及质量追溯系统设计与实现[J].农业工程学报,2008,24(3):162-166.
    68.杨信廷,钱建平,张正,等.基于地理坐标和多重加密的农产品追溯编码设计[J].农业工程学报,2009,25(7):131-135.
    69.杨信廷,孙传恒,钱建平,等.基于UCC/EAN-128条码的农产品质量追溯标签的设计与实现[J].包装工程,2006,27(3):113-114.
    70.游战清,李苏剑.无线射频识别技术(RFID)理论与应用[M].北京:电子工业出版社,2005.
    71.赵春江.对我国未来精准农业发展的思考[J].农业网络信息,2010,(4):5-8.
    72.赵春江.精准农业研究与实践[M].北京:科学出版社,2009.
    73.赵春江,薛绪掌,王秀,等.精准农业技术体系的研究进展与展望[J].农业工程学报,2003,19(4):7-12.
    74.赵国罡,赵丽,陈桂芬,等.基于J2ME的农业生产履历采集系统[J].农业工程学报,2009,25(增刊2):190-193.
    75.赵丽,邢斌,李文勇,等.基于手机二维条码识别的农产品质量安全追溯系统[J].农业机械学报,2012,43(7):124-129.
    76.诸德辉,赵春江.小麦管理专家系统(ESWCM)的研究及其应用[J].计算机农业应用,1995,(1):1-9.
    77.翟衡,史大川,束怀瑞.我国苹果产业发展现状与趋势[J].果树学报,2007,24(1):355-360.
    78.张建军,朱琳,孙勖.全国森林病虫害防治管理信息系统研制[J].林业资源管理,1995,(2):42-45.
    79.张若宇,坎杂,马蓉,等.基于RGB模型的脱绒棉种颜色特征与发芽状况的关系[J].农业工程学报,2010,26(10):172-177.
    80.张小超,王一鸣,方宪法,等.精准农业的信息获取技术[J].农业机械学报,2002,33(6):125-128.
    81.张小超,王一鸣,汪友祥,等.GPS技术在大型喷灌机变量拧制中的应用[J].农业机械学报,2004,35(6):102-105.
    82.张彦娥,张漫,张文革,等.采棉机测产系统数据采集与处理的试验研究[J].农业机械学报, 2005,36(4):95-98.
    83.张亚静,邓烈,李民赞,等.基于图像处理的柑橘测产方法[J].农业机械学报,2009,40(增刊):97-99.
    84.张亚静,李民赞,乔军,等.一种基于图像特征和神经网络的苹果图像分割算法[J].光学学报,2008,28(11):2104-2108.
    85.朱西存.苹果花期冠层高光谱特征及营养元素含量估测研究[D]:山东农业大学,2010.
    86. Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless sensor networks:a survey[J]. Computer Networks,2002,38(4):393-422.
    87. Amiama C, Bueno J, alvarez C J, et al. Design and field test of an automatic data acquisition system in a self-propelled forage harvester[J]. Computers and Electronics in Agriculture,2008, 61(2):192-200.
    88. Ampatzidis Y G, Vougioukas S G. Field experiments for evaluating the incorporation of RFID and barcode registration and digital weighing technologies in manual fruit harvesting[J]. Computers and Electronics in Agriculture,2009,66(2):166-172.
    89. Ampatzidis Y, Vougioukas S, Bochtis D, et al. A yield mapping system for hand-harvested fruits based on RFID and GPS location technologies:field testing[J]. Precision Agriculture,2009,10(1): 63-72.
    90. Annamalai P, Lee W S, Burks T F. Color vision system for estimating citrus yield in real-time. ASAE/CSAE Meeting Presentation,2004.
    91. Antonopoulou E, Karetsos S T, Maliappis M, et al. Web and mobile technologies in a prototype DSS for major field crops[J]. Computers and Electronics in Agriculture,2010,70(2):292-301.
    92. Barnes, M. E, Sudduth, J W, Hummel, S M, et al. Remote-and ground-based sensor techniques to map soil properties[J]. Photogram metric Engineering & Remote Sensing,2003,69(6):619-630.
    93. Basso B, Ritchie J T, Pierce F J, et al. Spatial validation of crop models for precision agriculture[J]. Agricultural Systems,2001,68(2):97-112.
    94. Bazzani G M. An integrated decision support system for irrigation and water policy design: DSIRR[J]. Environmental Modelling & Software,2005,20(2):153-163.
    95. Bertolini M, Bevilacqua M, Massini R. FMECA approach to product traceability in the food industry[J]. Food Control,2006,17(2):137-145.
    96. Boissard P, Martin V, Moisan S. A cognitive vision approach to early pest detection in greenhouse crops[J]. Computers and Electronics in Agriculture,2008,62(2):81-93.
    97. Bulanon D M, Kataoka T, Ota Y, et al. AE-Automation and Emerging Technologies:A Segmentation Algorithm for the Automatic Recognition of Fuji Apples at Harvest[J]. Biosystems Engineering,2002,83(4):405-412.
    98. Cunha C R, Peres E, Morais R, et al. The use of mobile devices with multi-tag technologies for an overall contextualized vineyard management[J]. Computers and Electronics in Agriculture,2010, 73(2):154-164.
    99. Doraiswamy, C. P, Moulin, et al. Crop yield assessment from remote sensing[J]. Photogram metric Engineering & Remote Sensing,2003,69(6):665-674.
    100. Engel, T., Hoogenboom, et al. AEGIS/WIN:A computer program for the application of crop simulation models across geographic areas[J]. Agronomy journal,1997,89(6):919-928.
    101. Fallon R J. The development and use of electronic ruminal boluses as a vehicle for bovine identification[J]. Scientific And Technical Review,2001,20(2):480-490.
    102. Fang H, He Y. A Pocket PC based field information fast collection system[J]. Computers and Electronics in Agriculture,2008,61(2):254-260.
    103. Fortes P S, Platonov A E, Pereira L S. GISAREG--A GIS based irrigation scheduling simulation model to support improved water use[J]. Agricultural Water Management,2005,77(1-3):159-179.
    104. Froschle H K, Gonzales-Barron U, Mcdonnell K, et al. Investigation of the potential use of e-tracking and tracing of poultry using linear and 2D barcodes[J]. Computers and Electronics in Agriculture,2009,66(2):126-132.
    105. Garin D, Caja G, Bocquier F. Effects of small ruminal boluses used for electronic identification of lambs on the growth and development of the reticulorumen[J]. Journal of Animal Science,2003, 81(4):879-884.
    106. Hunt E R, Cavigelli M, Daughtry C S T, et al. Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status[J]. Precision Agriculture,2005, 6(4):359-378.
    107. Jiang J, Tseng C, Lu F, et al. A GSM-based remote wireless automatic monitoring system for field information:A case study for ecological monitoring of the oriental fruit fly, Bactrocera dorsalis (Hendel)[J]. Computers and Electronics in Agriculture,2008,62(2):243-259.
    108. Jimenez R A, Ceres R, Pons L J. A survey of computer vision methods for locating fruit trees[J]. Transactions of the ASAE,2000,43(6):1911-1920.
    109. Krishnan M, Foster C A, Strosser R P, et al. Adaptive modeling and control of a manure spreader for precision agriculture[J]. Computers and Electronics in Agriculture,2006,52(1-2):1-10.
    110. Li M, Qian J, Yang X, et al. A PDA-based record-keeping and decision-support system for traceability in cucumber production[J]. Computers and Electronics in Agriculture,2010,70(1): 69-77.
    111. Lilburne L, Watt J, Vincent K. A prototype DSS to evaluate irrigation management plans[J]. Computers and Electronics in Agriculture,1998,21(3):195-205.
    112. Mckinion J M, Baker D N, Whisler F D, et al. Application of the GOSSYM/COMAX system to cotton crop management[J]. Agricultural Systems,1989,31(1):55-65.
    113. Michihisa lida M U P A. Variable rate fertilizer applicator for paddy field. ASAE Annual International Meeting, Sacramento, California, USA,2001.
    114. Mott P, Sammis T W, Jackson R. Automatic weather data collection and processing[J]. Computers and Electronics in Agriculture,1992,7(4):337-345.
    115.Naiqian Zhang M W N W. Precision agriculture-a worldwide overview[JJ. Computers and Electronics in Agriculture,2002,(36):113-132.
    116. Oki K, Mitsuishi S, Ito T, et al. An Agricultural Monitoring System Based on the Use of Remotely Sensed Imagery and Field Server Web Camera Data[J]. GIScience & Remote Sensing,2009,46(3): 305-314.
    117. Opara L U. Traceability in agriculture and food supply chain:a review of basic concepts, technological implications, and future prospects[J]. Food, Agriculture and Environment,2003,1(1): 101-106.
    118. Panneton B, Brouillard M, Piekutowski T. Integration of yield data from several years into a single map. Proc. of the 3'd European Conf. on Precision Agriculture, Montpellier, France,2001.
    119. Parsons D J, Benjamin L R, Clarke J, et al. Weed Manager--A model-based decision support system for weed management in arable crops[J]. Computers and Electronics in Agriculture,2009, 65(2):155-167.
    120. Plant R, Roel A, Vayssieres M. Using clustering and data mining techniques to determine the factors underlying crop yield reduction, beijing,China,2003.
    121. Ramos M I, Gil A J, Feito F R, et al. Using GPS and GIS tools to monitor olive tree movements[J]. Computers and Electronics in Agriculture,2007,57(2):135-148.
    122. Regattieri A, Gamberi M, Manzini R. Traceability of food products:General framework and experimental evidence[J]. Journal of Food Engineering,2007a,81(2):347-356.
    123. Schwgele F. Traceability from a European perspective[J]. Meat Science51st International Congress of Meat Science and Technology (ICoMST),2005,71(1):164-173.
    124. Shanahan C, Kernan B, Ayalew G, et al. A framework for beef traceability from farm to slaughter using global standards:An Irish perspective[J]. Computers and Electronics in Agriculture,2009, 66(1):62-69.
    125. Silbaugh J M, Betters D R. Biodiversity Values and Measures Applied to Forest Management[J]. Journal of Sustainable Forestry,1997,5(1):235-248.
    126. Smith G C, Tatum J D, Belk K E, et al. Traceability from a US perspective[J]. Meat Science,2005, 71(1):174-193.
    127. Standard N T. Applying data matrix identification symbols on aerospace parts[S]. NASA technical standard. Applying data matrix identification symbols on aerospace parts[S],2001.
    128. Steinberger G, Rothmund M, Auemhammer Ⅱ. Mobile farm equipment as a data source in an agricultural service architecture[J]. Computers and Electronics in Agriculture,2009,65(2): 238-246.
    129. Tseng C, Jiang J, Lee R, et al. Feasibility study on application of GSM-SMS technology to field data acquisition[J]. Computers and Electronics in Agriculture,2006,53(1):45-59.
    130. Upm. UPM RFID Tags & [Z].2011.
    131. Usery, L. E, Pocknee, et al. Precision farming data management using geographic information systems[J]. Photogram metric Engineering & Remote Sensing,1995,61(11):1383-1391.
    132. Wagenmakers P S. Effects of light and temperature on potential apple production[J]. Acta Hort, 1996,(416):191-198.
    133. Wang N, Zhang N, Wang M. Wireless sensors in agriculture and food industry--Recent development and future perspective[J]. Computers and Electronics in Agriculture,2006,50(1): 1-14.
    134. Yang C, Prasher S O, Whalen J, et al. PA--Precision Agriculture:Use of Hyperspectral Imagery for Identification of Different Fertilisation Methods with Decision-tree Technology[J]. Biosystems Engineering,2002,83(3):291-298.
    135. Ye X, Sakai K, Garciano L O, et al. Estimation of citrus yield from airborne hyperspectral images using a neural network model[J]. Ecological Modelling,2006,198(3-4):426-432.
    136. Zhao C J. Progress of Agricultural Information Technology[M]:International Academy Publisher, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700