用户名: 密码: 验证码:
GDNF基因修饰的嗅鞘细胞对帕金森病的治疗作用及其机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's disease,PD)是一种好发于中老年人并严重影响其生活质量的神经退行性疾病,该病的主要病理变化是黑质多巴胺能神经元的进行性退变和缺失,致使纹状体内多巴胺水平异常降低。迄今为止,PD的病因和发病机制还未完全明确。研究表明,PD与遗传、环境、细胞凋亡、线粒体功能异常等有关。随着老龄社会的来临,我国的PD发病率也在逐年升高,严重威胁着老年人的生活质量和生命安全。目前对该病的预防和治疗虽然有许多方案,但效果都不够理想。近年来,脑内移植技术与转基因技术相结合治疗PD,成为一新的研究热点。
     嗅鞘细胞(olfactory ensheathing cells,OECs)是目前所发现的极少数中枢神经系统可以再生的细胞之一。OECs兼有雪旺氏细胞与星形胶质细胞的双重功能特点,它能伴随轴突从外周神经系统进入中枢神经系统,能在损伤段为再生神经纤维形成髓鞘,保护其不受局部抑制因子的影响;尚可分泌多种神经营养因子(如NGF、BDNF、NT-4、NT-5等)。OECs是当今国际上普遍认为用作细胞移植治疗中枢神经系统损伤与再生修复很有临床应用前景的候选细胞。但是神经损伤或病变后影响神经再生修复的因素极其复杂,OECs本身表达神经营养因子的水平较低,单纯依靠OECs移植难以满足治疗的需要。
     胶质源性神经营养因子(glial cell line-derived neurotrophic factor,GDNF)是目前发现的在体外支持运动神经元生长最有效的神经营养因子。不仅能在体外有效地促进多巴胺能神经元存活和分化,而且在体内,对黑质纹状体多巴胺能系统也有保护和修复作用,是目前防治神经元退化性疾病的最有前途的一种神经营养因子。但由于不能通过血脑屏障,为临床应用带来极大困难。
     本课题用6—羟基多巴(6-OHDA)损伤制作的PD体内和体外模型,观察了GDNF基因修饰的OECs移植对PD大鼠模型的疗效,并利用免疫荧光、RT-PCR、流式细胞分析和Western blot等方法对其机理进行了初步研究。旨在为GDNF基因修饰的OECs移植治疗PD提供实验依据,为PD治疗提供新思路。本实验分为4部分,摘要如下:
     第一部分嗅鞘细胞的培养、纯化和鉴定和生物学特征
     目的:探讨新生大鼠嗅球OECs的分离培养和纯化方法,并观察其形态学变化;观察不同浓度OECs培养上清(conditional medium,CM)对6-OHDA引起的PC12细胞凋亡的抑制作用,探讨其机制。
     方法:采用原代培养技术,从新生大鼠的嗅球分离培养OECs,用差速贴壁和阿糖胞苷抑制相结合方法纯化培养OECs,并用牛垂体提取液(BovinePituitary Extract,BPE)扩增OECs,倒置相差显微镜下观察OECs形态变化特点及生长情况,采用NGFRp75抗体行免疫细胞化学染色鉴定,根据NGFRp75免疫细胞化学染色统计培养的OECs的纯度。收集OECs培养上清,将不同浓度(25%、50%和75%)的OECs培养上清与100μM 6-OHDA共孵育PC12细胞,用MTT法测各组细胞活力;倒置显微镜观察细胞形态变化:Hoechst33342/PI双染观察细胞凋亡的形态学改变;流式细胞技术检测线粒体膜电位的改变;RT-PCR检测各组细胞bcl-2/bax mRNA表达差异。
     结果:成功培养出高纯度的OECs,体外培养的新生大鼠OB-OECs主要为双极或三极细胞,其突起细长。未经纯化则成纤维细胞生长迅速而占据优势。CM(25%、50%和75%)处理组较6-OHDA组相比,细胞活性增强,Hoechst33342/PI双染显示凋亡细胞的比例减少,可稳定线粒体膜电位,bcl-2/bax mRNA比值升高,两者有统计学差异,p<0.05。
     结论:差速贴壁和Ara-C相结合的纯化方法是一种高效率、方便、经济的纯化培养OECs的方法。OECs培养上清对6-OHDA诱导PC12细胞有保护作用,其机理可能是OECs分泌的营养因子,抑制bcl-2/bax mRNA比值降低,稳定线粒体膜电位而发挥细胞保护作用。
     第二部分GDNF基因修饰的嗅鞘细胞的构建和生物学鉴定
     目的:构建pIRES2-EGFP-GDNF载体,建立OEC s-GDNF基因工程细胞。
     方法:用TRIZOL Reagent法从新生大鼠脑组织提取总RNA,用RT-PCR反转录出GDNFcDNA片段,回收纯化,将其与经SacⅠ和SmaⅠ双酶切的pIRES2-EGFP连接,应用分子克隆技术构建载体pIRES2-EGFP-GDNF。将此重组载体用脂质体Lipofectamine~(TM)2000转入OECs细胞,用G418筛选阳性克隆,构建出OECs-GDNF工程细胞。用RT-PCR、ELISA检测OECs-GDNF工程细胞GDNF的表达变化。
     结果:经测序检验,成功构建出pIRES2-EGFP-GDNF,GDNF基因无突变;筛选出OECs-GDNF工程细胞,RT-PCR检测显示OECs-GDNF工程细胞GDNFmRNA表达明显增高,ELISA检测OECs-GDNF工程细胞培养上清中GDNF明显增高,分泌量为15.2ng/10~6细胞/24hr。
     结论:成功构建了pIRES2-EGFP-GDNF表达载体,经测序分析GDNF无突变。Lipofectamine~(TM)2000转染OECs方法简单,转染效率较高,经RT-PCR、ELISA分析OECs-GDNF工程细胞可高表达GDNF。
     第三部分GDNF基因修饰嗅鞘细胞移植对帕金森病大鼠模型的治疗作用
     目的:研究GDNF基因修饰的OECs对PD大鼠模型的治疗作用。
     方法:大鼠脑立体定位仪下,用6-OHDA两点注射右侧内侧前脑束制作单侧PD大鼠模型,注射等剂量的生理盐水的作为假手术组。将实验分为4组,每组6只:A假手术组;BPD模型组(纹状体注入等量生理盐水);C OECs-GDNF组(纹状体内注入OECs-GDNF工程细胞);D OECs组(纹状体内注入OECs)。术后2w、4w、6w和8w,分别观察阿朴吗啡诱导的行为学改变:术后8w用TH免疫荧光染色检测各组大鼠黑质部位TH阳性神经元数量及纹状体TH阳性纤维密度的改变,分析对PD大鼠模型的治疗作用。
     结果:OECs-GDNF工程细胞植入纹状体后,PD大鼠的旋转行为有所改善,细胞移植后4w、6w和8w,旋转圈数较PD模型组明显减少。荧光显微镜下显示移植细胞成活,标记细胞向周围分散,提示细胞移植后可向周围迁移。TH免疫荧光染色结果显示:PD模型毁损侧黑质部位TH阳性细胞明显减少,纹状体部位TH阳性纤维终末密度值明显降低;与模型组相比,OECs-GDNF组大鼠毁损侧黑质多巴胺神经元数量明显增多,纹状体部位TH阳性纤维的相对密度值明显增强,两者有统计学差异,p<0.05;OECs组和PD模型组比较,无统计学差异,p>0.05。
     结论:OECs-GDNF工程细胞对帕金森病模型大鼠有一定的治疗作用:能改善PD模型大鼠的旋转行为,对黑质、纹状体部位多巴胺神经元有一定的保护作用。
     第四部分GDNF基因修饰嗅鞘细胞移植对帕金森病大鼠模型的Bcl-2/Bax表达影响
     目的:研究GDNF基因修饰OECs移植对PD大鼠模型Bcl-2/Bax蛋白表达变化的影响。
     方法:实验分组同第三部分。细胞移植后8w,低温快速取出大鼠中脑腹侧组织,用Western blot方法检测各组大鼠中脑腹侧组织中Bcl-2/Bax蛋白表达的变化。
     结果:与假手术组比较,6-OHDA引起了PD模型组大鼠中脑腹侧组织Bcl-2蛋白表达降低,Bax蛋白升高,p<0.01。与PD模型组比较,OECs-GDNF组中脑腹侧组织Bcl-2蛋白表达增高,Bax蛋白表达降低,Bcl-2/Bax蛋白比值升高,两者有统计学差异,p<0.05。与PD模型组比较,单纯OECs组Bcl-2蛋白表达增高,Bax蛋白表达无变化,但无统计学意义,p>0.05。
     结论:6-OHDA引起了PD模型大鼠中脑腹侧组织Bcl-2表达降低,Bax蛋白升高;OECs-GDNF工程细胞对PD大鼠的治疗作用可能与其抑制Bcl-2蛋白表达的降低、Bax蛋白表达升高,升高Bcl-2/Bax比值有关。
     结论和意义:
     本课题研究发现,OECs培养上清对6-OHDA诱导的PC12细胞有较强的保护作用,其作用机理可能是OECs分泌的细胞因子提高了细胞bcl-2 mRNA的表达,降低bax mRNA的表达,稳定线粒体膜电位,抑制了细胞凋亡;OECs-GDNF工程细胞移植对PD大鼠模型有治疗作用,可改善其旋转行为,其作用机理可能与抑制中脑腹侧组织内Bcl-2蛋白表达的升高、Bax蛋白表达降低,升高Bcl-2/Bax比值有关。
     本课题利用细胞培养、分子克隆、免疫荧光、RT-PCR和Western blot等实验技术,研究了OECs细胞对PC12的保护作用和OECs-GDNF工程细胞对PD大鼠模型的治疗作用,及其机制,在细胞和分子水平上为OECs-GDNF工程细胞治疗PD提供了实验依据。
Parkinson's disease(PD)is a widespread neurodegenerative disorder among the old people,which seriously affects the health of individuals.Pathologically,PD experiences a progressive loss of dopaminergic neurons within the substantia nigra pars compacta and a reduction of dopamine in the striatum.So far,its etiology and etiopathogenesis is still unknown.Researchers proposed that heredity,environment, apoptosis and mitochondrial dysfunction were probably of the main mechanisms. Because of the aged tendency of population,the incidence of PD is growing year by year,threating the quality of life for the elder and forming an increasing economic burden for the society.There is no effective treatment up to date.Cell transplantation is a new therapeutic strategy for PD.However,the therapeutic effect of long time is inconsistent and some immune response often occurred in host brain. Recently,some researchers attempted to combine cells transplantation with gene transfer as a therapeutic application for PD.
     Olfactory ensheathing cells(OECs)are special population of glial cells sharing the properties with both Schwann cells(SCs)in peripheral nervous system(PNS) and astrocytes in central nervous system(CNS),in which they accompany and surround the olfactory sensory axons from their peripheral origin in the olfactory mucosa across the cribriform plate and into the olfactory nerve fiber layer of the olfactory bulb.On one hand,OECs can protect the regeneration of axons from the influence of inhibitors and the remeylinization for axons;on the other hand,OECs can synthesise several trophic factors,such as nerve growth factor(NGF),brain derived neurotrophic factor(BDNF),neurotrophin 4/5(NT-4,NT-5)et al.More and more people are interested in these characters of OECs and look on them as the main transplantable cells.So OECs may be the better candidates for biological implantation,but the number of regenerating axons distal from the injury site was still limited partly because of the limited expression of neurotrophic factors and the differences in the capacity of various axonal populations to regenerate through OECs implants.
     Glial cell line-derived neurotrophic factor(GDNF),a member of transforming growth factor(TGF-β)super-family,which was extracted and purified from B49 cells of adult rats by Lin in 1993,is a new kind of neurotrophic factor.GDNF is the most potent motor neurotrophic factor among neurotrophic factors found so far. GDNF has been reported not only to support the survival and differentiation of dopaminergic neuron,but also to protect and recover the dopaminergic system of substantia nigra and striatum in vivo.Nevertheless,there is a critical restriction on clinical application for GDNF because it can't pass the blood brain barrier(BBB).
     In this study,the models of PD made by 6-hydroxybutyrate(6-OHDA)in vivo were widely utilized.We adopted genetic technology and cell transplantation to treat PD,which is advanced in the world.At first,OECs were primarily cultured and purified in vitro.Then OECs-GDNF was built and transplanted into PD model rats. At last we investigated the mechanism of neurons protection of OECs-GDNF.
     Part 1 Culture,purification and biological characteristics study of OECs
     Objective:To investigate an effective method of purification for establishing primary cultures of OECs from the new born rat olfactory bulb and investigate the morphological changes and biological characteristics of the cultured OECs.
     Methods:OECs were harvested from olfactory bulbs and cultured,purified by the method of combining both the different rates of attachment among the various cells types and the Ara-c inhibition.The morphological changes of cultured OECs were observed at diferent stages and identified by nerve growth factor receptor p75 (NGFRp75)immunohistochemistry staining.We examined the effects of newborn rat OECs CM on PC12 cells treated by 100μM 6-OHDA.Cells were determined by MTT assay,Hoechst 33342/PI staining,Rh 123 staining and the ratio of bcl-2/bax mRNA expression by RT-PCR.
     Results:The cultured OECs presented two morphological types:fusiform, process-bearing multipolar and their processes weaved into net.OECs CM(25%, 50%,75%)was able to reduce the cellular damage in PC12 cells.CM could inhibit the disruption of mitochondrial transmembrane potential,upregulation of bcl-2 and downregulation of bax,compared with 6-OHDA alone,p<0.05.
     Conclusions:The method of purification for OECs through combining both the different rates of attachment among the various cells types and the Ara-c inhibition is simple,inexpensive and practical.CM has a neuroprotective effect on 6-OHDA induced apoptosis of PC12 cells through up-regulation of the Bcl-2/Bax ratio and protection for mitochondrion.
     Part 2 Building engineered OECs-GDNF and its biological assay
     Objective:To construct recombination eukaryotic expression vector pIRES2-EGFP-GDNF and build the engineered OECs-GDNF.
     Methods:GDNF gene encoding fragment was amplified using RT-PCR and was cloned into the eukaryotic expression vector pIRES2-EGFP.After PCR amplification,SmaⅠ,SacⅠdigestion and DNA sequencing confirmation,the recombination eukaryotic expression vector pIRES2-EGFP-GDNF was constructed successfully.Then,we transfected GDNF into OECs with Lipofectamine~(TM)2000 positive-ion liposome,and built OECs-GDNF cells by using G418 culture medium to select positive clones.Finally,we assayed GDNF activation and quantity by ELISA and RT-PCR.So the OECs secreting high quantity of GDNF were genetic engineered cells.
     Results:PCR and DNA sequencing has verfied that the insert sequence was successfully cloned into the vector.ELISA assay demonstrated high GDNF protein secretion in OECs-GDNF conditioned medium.RT-PCR showed OECs-GDNF could up-regulate GDNF mRNA.
     Conclusions:Lipofectamine~(TM)2000 transfected pIRES2-EGFP-GDNF into OECs is convenient and has high transfection efficiency.
     Part 3 Therapeutic effect of OECs-GDNF transplanted into rat model of PD
     Objective:To study the therapeuti effect of OECs-GDNF transplanted into rat model of PD.
     Methods:After injecting 6-OHDA into the right medial forebrain bundle of rat for 2 weeks,we obtained the hemi-lateral model of PD.All rats were induced the rotational behavior after injecting apomorphine subcutaneously.The control group was set up by injecting isodose physiological saline as pseudo-operation rats.All the rats were divided into 4 groups:pseudo-operation group,PD model group, OECs-GDNF transplanted group and OECs transplanted group.The rotational behavior was evaluated by recording the numer of apomorphine-induced turns.We used tyrosine hydroxylase(TH)immunofluorescence staining to investigate the numbers of dopaminergic neurons in substantia nigra compacta(SNc)and the calibrated optic density value of TH positive fiber in striatum.
     Results:OECs-GDNF transplantation could ameliorate the rotational behavior of PD model rats,comparing with PD model group,p<0.05.TH positive neurons in right SNc and TH positive fibers in right striatum of the PD model group significantly decreased,p<0.01.After the transplantation OECs-GDNF,they could partly be restored,p<0.05.
     Conclusions:OECs-GDNF transplantation had partial therapeutic effect on model rats of PD.
     Part 4 Effect of OECs-GDNF transplanted into PD rat on expression of Bcl-2/Bax protein
     Objective:To observe the influence of OECs-GDNF transplantation on expression of Bcl-2/Bax protein in vivo.
     Methods:The experimental rats were divided into 4 groups according to part 3. In deeply anesthetized condition,ventral mesencephalic(VM)tissue were rapidly taken out on the ice,the Bcl-2/Bax protein expression was determined by Western blot.
     Results:Western blot showed protein expression of Bcl-2 in VM tissue of PD model rat decreased,p<0.05.But it increased in OECs-GDNF transplantation group compared with PD model group at 8w.At the same time,protein expression of Bax increased in PD model rat and decreased in OECs-GDNF group.Bcl-2/Bax in OECs-GDNF group obviously increased compared with PD model group,p<0.05.
     Conclusions:OECs-GDNF transplantation can up-regulate Bcl-2 protein and down-regulate Bax protein.OECs-GDNF transplantation could inhibit the depression of Bcl-2/Bax ratio to prevent the dopaminergic neurons from apoptosis.
     Conclusions and significance:
     In this study,OECs conditioned medium could afford significant neuroprotection against 6-OHDA-induced injury in PC12 cells via upregulation of bcl-2,downregulation of bax and thus attenuated the mitochondrial transmembrane potential loss,so the apoptosis was inhibited and the viability of PC12 cells was increased.OECs-GDNF transplantation had partial therapeutic effect on model rats of PD,which could up-regulate Bcl-2 protein and down-regulate Bax protein in PD model,inhibit the depression of Bcl-2/Bax ratio to prevent the dopaminergic neurons from apoptosis.
     Using the technology of cell culture,molecular clone,immunofluorescence staining,RT-PCR and Western blot,we research the neuroprotection on PC12 cells of OECs CM and the therapic effect on PD of OECs-GDNF transplantation.On cellular and molecular level,our study provided some experimental evidence on treating PD using OECs-GDNF.
引文
1. Jankovic J: Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008,79(4):368-376.
    2. Repici M, Mariani J, Borsello T: Neuronal death and neuroprotection: a review. Methods Mol Biol 2007, 399:1-14.
    3. Michotte A: Recent developments in the neuropathological diagnosis of Parkinson's disease and parkinsonism. Acta Neurol Belg 2003, 103(3): 155-158.
    4. Lertxundi U, Peral J, Mora O, Domingo-Echaburu S, Martinez-Bengoechea MJ, Garcia-Monco JC: Antidopaminergic therapy for managing comorbidities in patients with Parkinson's disease. Am J Health Syst Pharm 2008,65(5):414-419.
    5. Coelho M, Ferreira J, Rosa M, Sampaio C: Treatment options for non-motor symptoms in late-stage Parkinson's disease. Expert Opin Pharmacother 2008, 9(4):523-535.
    6. Fairless R, Barnett SC: Olfactory ensheathing cells: their role in central nervous system repair. Int J Biochem Cell Biol 2005, 37(4):693-699.
    7. Chuah MI, West AK: Cellular and molecular biology of ensheathing cells. Micmsc Res Tech 2002, 58(3):216-227.
    8. Ramon-Cueto A, Avila J: Olfactory ensheathing glia: properties and function. Brain Res Bull 1998,46(3): 175-187.
    9. Li Y, Field PM, Raisman G: Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J Neurosci 1998, 18(24): 10514-10524.
    10. Lu J, Feron F, Mackay-Sim A, Waite PM: Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain 2002,125(Pt 1):14-21.
    11. Deumens R, Koopmans GC, Honig WM, Hamers FP, Maquet V, Jerome R, Steinbusch HW, Joosten EA: Olfactory ensheathing cells, olfactory nerve fibroblasts and biomatrices to promote long-distance axon regrowth and functional recovery in the dorsally hemisected adult rat spinal cord. Exp Neurol 2006,200(l):89-103.
    12. Sasaki M, Hains BC, Lankford KL, Waxman SG, Kocsis JD: Protection of corticospinal tract neurons after dorsal spinal cord transection and engraftment of olfactory ensheathing cells. Glia 2006, 53(4):352-359.
    13. Barnett SC, Alexander CL, Iwashita Y, Gilson JM, Crowther J, Clark L, Dunn LT, Papanastassiou V, Kennedy PG, Franklin RJ: Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain 2000, 123 ( Pt 8):1581-1588.
    14. Feron F, Perry C, Cochrane J, Licina P, Nowitzke A, Urquhart S, Geraghty T, Mackay-Sim A: Autologous olfactory ensheathing cell transplantation in human spinal cord injury. Brain 2005,128(Pt 12):2951-2960.
    15. Leaver SG, Harvey AR, Plant GW: Adult olfactory ensheathing glia promote the long-distance growth of adult retinal ganglion cell neurites in vitro. Glia 2006,53(5):467-476.
    16. Deumens R, Koopmans GC, Lemmens M, Mollers S, Honig WM, Steinbusch HW, Brook G, Joosten EA: Neurite outgrowth promoting effects of enriched and mixed OEC/ONF cultures. Neurosci Lett 2006, 397(l-2):20-24.
    17. 杨浩,梁哲,王春婷,程华玲,鞠躬. 溴神经鞘细胞在体外培养时对GABA能神经元的作用. 解剖学报 2002; 33(3): 225-229.
    18. Agrawal AK, Shukla S, Chaturvedi RK, Seth K, Srivastava N, Ahmad A, Seth PK: Olfactory ensheathing cell transplantation restores functional deficits in rat model of Parkinson's disease: a cotransplantation approach with fetal ventral mesencephalic cells. Neurobiol Dis 2004, 16(3):516-526.
    19. Johansson S, Lee IH, Olson L, Spenger C: Olfactory ensheathing glial co-grafts improve functional recovery in rats with 6-OHDA lesions. Brain 2005,128(Pt 12):2961-2976.
    20. Schober A, Peterziel H, von Bartheld CS, Simon H, Krieglstein K, Unsicker K: GDNF applied to the MPTP-lesioned nigrostriatal system requires TGF-beta for its neuroprotective action. Neurobiol Dis 2007,25(2):378-391.
    21. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F: GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993,260(5111):1130-1132.
    22. Gill SS, Patel NK, Hotton GR, O'Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med. 2003, 9(5):589-95
    23. Elsworth JD, Redmond DE, Jr., Leranth C, Bjugstad KB, Sladek JR, Jr., Collier TJ, Foti SB, Samulski RJ, Vives KP, Roth RH: AAV2-mediated gene transfer of GDNF to the striatum of MPTP monkeys enhances the survival and outgrowth of co-implanted fetal dopamine neurons. Exp Neurol 2008, 211(1):252-8.
    1.Fairless R,Barnett SC:Olfactory ensheathing cells:their role in central nervous system repair.Int J Biochem Cell Biol 2005,37(4):693-699.
    2.Choi D,Law S,Raisman G,Li D:Olfactory ensheathing cells in the nasal mucosa of the rat and human.Br J Neurosurg 2008,22(2):301-302.
    3.Ruitenberg MJ,Vukovic J,Sarich J,Busfield SJ,Plant GW:Olfactory ensheathing cells:characteristics,genetic engineering,and therapeutic potential.J Neurotrauma 2006,23(3-4):468-478.
    4.Johansson S,Lee IH,Olson L,Spenger C:Olfactory ensheathing glial co-grafts improve functional recovery in rats with 6-OHDA lesions.Brain 2005,128(Pt 12):2961-2976.
    5.Kojima H,Hara K,Mineta-Kitajima R,Taguchi F,Matsutani S,Yamamoto N,Kodate S,Shirataka M,Tamai Y:Isolation of a subclonal cell line of PC12 transfected with dexamethasone-regulated ras oncogene:morphological differentiation,biochemical properties,and tumorigenicity.J Biochem 1993,114(2):194-202.
    6.Chung RS,Woodhouse A,Fung S,Dickson TC,West AK,Vickers JC,Chuah MI:Olfactory ensheathing cells promote neurite sprouting of injured axons in vitro by direct cellular contact and secretion of soluble factors.Cell Mol Life Sci 2004,61(10):1238-1245.
    7.Saito T,Kijima H,Kiuchi Y,Isobe Y,Fukushima K:beta-amyloid induces caspase-dependent early neurotoxic change in PC12 cells:correlation with H2O2 neurotoxicity.Neurosci Lett 2001,305(1):61-64.
    8.Nash HH,Borke RC,Anders JJ:New method of purification for establishing primary cultures of ensheathing cells from the adult olfactory bulb.Glia 2001, 34(2):81-87.
    
    9. Li Q, He XJ, Rao GZ, Dong EX, Fan P, Wang B, Zhu ZZ, Zang QJ: [Culture and purification of olfactory ensheathing cells from human fetal using different attachment rates combined with the technique of using NT3 intermittently]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2007,23(10):923-925.
    
    10. Li SB, Zhang W, Ding Y, Peng J, Zhu ZD, Zhou X: [Primary culture and identification of olfactory ensheathing cells from adult rat]. Sichuan Da Xue Xue Bao Yi Xue Ban 2007, 38(4):717-719.
    
    11. Barnett SC, Roskams AJ: Olfactory ensheathing cells: isolation and culture from the neonatal olfactory bulb. Methods Mol Biol 2008,438:85-94.
    
    12. Gudino-Cabrera G, Pastor AM, de la Cruz RR, Delgado-Garcia JM, Nieto-Sampedro M: Limits to the capacity of transplants of olfactory glia to promote axonal regrowth in the CNS. Neuroreport 2000,11(3):467-471.
    
    13. Chuah MI, Au C: Cultures of ensheathing cells from neonatal rat olfactory bulbs. Brain Res 1993, 601 (1-2):213-220.
    
    14. Blum D, Torch S, Nissou MF, Benabid AL, Verna JM: Extracellular toxicity of 6-hydroxydopamine on PC12 cells. Neurosci Lett 2000,283(3): 193-196.
    
    15. Meng H, Li C, Feng L, Cheng B, Wu F, Wang X, Li Z, Liu S: Effects of Ginkgolide B on 6-OHDA-induced apoptosis and calcium over load in cultured PC12. Int J Dev Neurosci 2007,25(8):509-514.
    
    16. Sonigra RJ, Brighton PC, Jacoby J, Hall S, Wigley CB: Adult rat olfactory nerve ensheathing cells are effective promoters of adult central nervous system neurite outgrowth in coculture. Glia 1999, 25(3):256-269.
    
    17. Lipson AC, Widenfalk J, Lindqvist E, Ebendal T, Olson L: Neurotrophic properties of olfactory ensheathing glia. Exp Neurol 2003, 180(2): 167-171.
    
    18. Yamaguchi H, Bhalla K, Wang HG: Bax plays a pivotal role in thapsigargin-induced apoptosis of human colon cancer HCT116 cells by controlling Smac/Diablo and Omi/HtrA2 release from mitochondria. Cancer Res 2003, 63(7): 1483-1489.
    19.Wei H,Kang B,Wei W,Liang G,Meng QC,Li Y,Eckenhoff RG:Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently.Brain Res 2005,1037(1-2):139-147.
    1.Lin LF,Doherty DH,Lile JD,Bektesh S,Collins F:GDNF:a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons.Science 1993,260(5111):1130-1132.
    2.Jollivet C,Aubert-Pouessel A,Clavreul A,Venier-Julienne MC,Remy S,Montero-Menei CN,Benoit JP,Menei P:Striatal implantation of GDNF releasing biodegradable microspheres promotes recovery of motor function in a partial model of Parkinson's disease.Biomaterials 2004,25(5):933-942.
    3.Duan D,Yang H,Zhang J,Xu Q:Long-term restoration of nigrostriatal system function by implanting GDNF genetically modified fibroblasts in a rat model of Parkinson's disease.Exp Brain Res 2005,161(3):316-324.
    4.Bensadoun JC,Deglon N,Tseng JL,Ridet JL,Zurn AD,Aebischer P:Lentiviral vectors as a gene delivery system in the mouse midbrain:cellular and behavioral improvements in a 6-OHDA model of Parkinson's disease using GDNF.Exp Neurol 2000,164(1):15-24.
    5.卢圣栋 主编.现代分子生物学实验技术(第二版).中国协和医科大学出版社.2001年12月.
    6.Mochizuki H,Yasuda T,Mouradian MM:Advances in gene therapy for movement disorders.Neurotherapeutics 2008,5(2):260-269.
    7.Schatz DS,Kaufmann WA,Saria A,Humpel C:Dopamine neurons in a simple GDNF-treated meso-striatal organotypic co-culture model.Exp Brain Res 1999,127(3):270-278.
    8.Clavreul A,Sindji L,Aubert-Pouessel A,Benoit JP,Menei P,Montero-Menei CN:Effect of GDNF-releasing biodegradable microspheres on the function and the survival of intrastriatal fetal ventral mesencephalic cell grafts.Eur J Pharm Biopharm 2006,63(2):221-228.
    9.Kirik D,Georgievska B,Rosenblad C,Bjorklund A:Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of Parkinson's disease.Eur J Neurosci 2001,13(8):1589-1599.
    10.Chen YH,Harvey BK,Hoffman AF,Wang Y,Chiang YH,Lupica CR:MPTP-induced deficits in striatal synaptic plasticity are prevented by glial cell line-derived neurotrophic factor expressed via an adeno-associated viral vector.FASEB J 2008,22(1):261-275.
    11.Melega WP,Lacan G,Desalles AA,Phelps ME:Long-term methamphetamine-induced decreases of[(11)C]WlN 35,428 binding in striatum are reduced by GDNF:PET studies in the vervet monkey.Synapse 2000,35(4):243-249.
    12.Plotnikov AN,Shlapakova I,Szabolcs M J,Danilo P,Jr.,Lorell BH,Potapova IA,Lu Z,Rosen AB,Mathias RT,Brink PR et al:Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation 2007, 116(7):706-713.
    
    13. Eberhardt O, Schulz JB: Gene therapy in Parkinson's disease. Cell Tissue Res 2004,318(1):243-260.
    
    14. Tenenbaum L, Chtarto A, Lehtonen E, Blum D, Baekelandt V, Velu T, Brotchi J, Levivier M: Neuroprotective gene therapy for Parkinson's disease. Curr Gene Ther 2002, 2(4):451-483.
    
    15. Dalby B, Cates S, Harris A, Ohki EC, Tilkins ML, Price PJ, Ciccarone VC: Advanced transfection with Lipofectamine 2000 reagent: primary neurons, siRNA, and high-throughput applications. Methods 2004, 33(2):95-103.
    
    16. Clements BA, Incani V, Kucharski C, Lavasanifar A, Ritchie B, Uludag H: A comparative evaluation of poly-L-lysine-palmitic acid and Lipofectamine 2000 for plasmid delivery to bone marrow stromal cells. Biomaterials 2007, 28(31):4693-4704.
    
    17. Lindvall O, Aquilonius SM: [Cell transplantation in Parkinson disease]. Lakartidningen 2001, 98(46):5193-5195.
    
    18. Polentes J, Gauthier P: [Transplantation of olfactory glial cells after spinal injury. I--From experimental data to repair strategy after central injury]. Neurochirurgie 2005,51(5):421-434.
    
    19. Lakatos A, Franklin RJ, Barnett SC: Olfactory ensheathing cells and Schwann cells differ in their in vitro interactions with astrocytes. Glia 2000,32(3):214-225.
    
    20. Ao Q, Wang AJ, Chen GQ, Wang SJ, Zuo HC, Zhang XF: Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries. Med Hypotheses 2007, 69(6): 1234-1237.
    
    21. Agrawal AK, Shukla S, Chaturvedi RK, Seth K, Srivastava N, Ahmad A, Seth PK: Olfactory ensheathing cell transplantation restores functional deficits in rat model of Parkinson's disease: a cotransplantation approach with fetal ventral mesencephalic cells. Neurobiol Dis 2004, 16(3):516-526.
    1.Litvan I,Halliday G,Hailer M,Goetz CG,Rocca W,Duyckaerts C,Ben-Shlomo Y,Dickson DW,Lang AE,Chesselet MF et al:The etiopathogenesis of Parkinson disease and suggestions for future research.Part I.J Neuropathol Exp Neuro12007,66(4):251-257.
    2.Jankovic J:Parkinson's disease:clinical features and diagnosis.J Neurol Neurosurg Psychiatry 2008,79(4):368-376.
    3.Goya RL,Kuan WL,Barker RA:The future of cell therapies in the treatment of Parkinson's disease.Expert Opin Biol Ther 2007,7(10):1487-1498.
    4.诸葛启钏 主译.大鼠脑立体定位图谱.人民卫生出版社.2005年7月.
    5.Rodriguez Diaz M,Abdala P,Barroso-Chinea P,Obeso J,Gonzalez-Hernandez T:Motor behavioural changes after intracerebroventricular injection of 6-hydroxydopamine in the rat:an animal model of Parkinson's disease.Behav Brain Res 2001,122(1):79-92.
    6.Langui D,Lachapelle F,Duyckaerts C:[Animal models of neurodegenerative diseases].Med Sci(Paris)2007,23(2):180-186.
    7.Glinka Y,Gassen M,Youdim MB:Mechanism of 6-hydroxydopamine neurotoxicity.J Neural Transm Suppl 1997,50:55-66.
    8.Au WW,Treloar HB,Greer CA:Sublaminar organization of the mouse olfactory bulb nerve layer.J Comp Neurol 2002,446(1):68-80.
    9.Franssen EH,de Bree FM,Verhaagen J:Olfactory ensheathing glia:their contribution to primary olfactory nervous system regeneration and their regenerative potential following transplantation into the injured spinal cord.Brain Res Rev 2007,56(1):236-258.
    10.Dewar D,Bentley D,Barnett SC:Implantation of pure cultured olfactory ensheathing cells in an animal model of parkinsonism.Acta Neurochir(Wien)2007,149(4):407-414.
    11.Schapira AH:Progress in neuroprotection in Parkinson's disease.Eur J Neurol 2008,15 Suppl 1:5-13.
    12.Peterson AL,Nutt JG:Treatment of Parkinson's Disease with Trophic Factors.Neurotherapeutics 2008,5(2):270-280.
    13.Miller G:Parkinson's disease.Signs of disease in fetal transplants.Science 2008,320(5873):167.
    14.Woodlee MT,Kane JR,Chang J,Cormack LK,Schallert T:Enhanced function in the good forelimb of hemi-parkinson rats: Compensatory adaptation for contralateral postural instability? Exp Neurol 2008.
    
    15. Agrawal AK, Shukla S, Chaturvedi RK, Seth K, Srivastava N, Ahmad A, Seth PK: Olfactory ensheathing cell transplantation restores functional deficits in rat model of Parkinson's disease: a cotransplantation approach with fetal ventral mesencephalic cells. Neurobiol Dis 2004, 16(3):516-526.
    
    16. Johansson S, Lee IH, Olson L, Spenger C: Olfactory ensheathing glial co-grafts improve functional recovery in rats with 6-OHDA lesions. Brain 2005,128(Pt 12):2961-2976.
    1.Chin MH,Qian WJ,Wang H,Petyuk VA,Bloom JS,Sforza DM,Lacan G,Liu D,Khan AH,Cantor RM et al:Mitochondrial dysfunction,oxidative stress,and apoptosis revealed by proteomic and transcriptomic analyses of the striata in two mouse models of Parkinson's disease.J Proteome Res 2008,7(2):666-677.
    2.Lev N,Melamed E,Often D:Apoptosis and Parkinson's disease.Prog Neuropsychopharmacol Biol Psychiatry 2003,27(2):245-250.
    3.Tatton WG,Chalmers-Redman R,Brown D,Tatton N:Apoptosis in Parkinson's disease:signals for neuronal degradation.Ann Neurol 2003,53Suppl 3:S61-70;discussion S70-62.
    4.Horowitz JM,Pastor DM,Goyal A,Kar S,Ramdeen N,Hallas BH,Torres G.BAX protein-immunoreactivity in midbrain neurons of Parkinson's disease patients.Brain Res Bull.2003 15;62(1):55-61.
    5.Tompkins MM,Basgall EJ,Zamrini E,Hill WD:Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons.Am J Pathol 1997,150(1):119-131.
    6.Becker EB,Bonni A:Cell cycle regulation of neuronal apoptosis in development and disease.Prog Neurobiol 2004,72(1):1-25.
    7.Kowaltowski AJ,Cosso RG,Campos CB,Fiskum G:Effect of Bcl-2overexpression on mitochondrial structure and function.J Biol Chem 2002,277(45):42802-42807.
    8.Wang HG,Reed JC:Mechanisms of Bcl-2 protein function.Histol Histopathol 1998,13(2):521-530.
    9. Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM: Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson's disease. Prog Neurobiol 2001, 65(2): 135-172.
    
    10. Repici M, Mariani J, Borsello T: Neuronal death and neuroprotection: a review. Methods Mol Biol 2007, 399:1-14.
    
    11. Gorman AM, McGowan A, O'Neill C, Cotter T: Oxidative stress and apoptosis in neurodegeneration. J Neurol Sci 1996, 139 Suppl:45-52.
    
    12. Ziv I, Barzilai A, Offen D, Stein R, Achiron A, Melamed E: Dopamine-induced, genotoxic activation of programmed cell death. A role in nigrostriatal neuronal degeneration in Parkinson's disease? Adv Neuro1 1996, 69:229-233.
    
    13. Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prigent A, Ruberg M, Hirsch EC, Agid Y: Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease. Histol Histopathol 1997, 12(1):25-31.
    
    14. Bouillet P, Purton JF, Godfrey DI, Zhang LC, Coultas L, Puthalakath H, Pellegrini M, Cory S, Adams JM, Strasser A: BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 2002,415(6874):922-926.
    
    15. Jerry DR, Baverstock PR: Consequences of a catadromous life-strategy for levels of mitochondrial DNA differentiation among populations of the Australian bass, Macquaria novemaculeata. Mol Ecol 1998, 7(8): 1003-1013.
    
    16. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD: The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997, 275(5303):1132-1136.
    
    17. Cao G, Minami M, Pei W, Yan C, Chen D, O'Horo C, Graham SH, Chen J: Intracellular Bax translocation after transient cerebral ischemia: implications for a role of the mitochondrial apoptotic signaling pathway in ischemic neuronal death. J Cereb Blood Flow Metab 2001, 21(4):321-333.
    18. Mishra OP, Randis T, Ashraf QM, Delivoria-Papadopoulos M: Hypoxia-induced Bax and Bcl-2 protein expression, caspase-9 activation, DNA fragmentation, and lipid peroxidation in mitochondria of the cerebral cortex of newborn piglets: the role of nitric oxide. Neuroscience 2006, 141(3): 1339-1349.
    1. Hammond C, Bergman H and Brown P. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci. 2007; 30(7):357-364.
    
    2. Lev N, Melamed E, Offen D. Apoptosis and Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry. 2003; 27: 245-250.
    
    3. Hartmann A, Michel PP, Troadec JD, Mouatt-Prigent A, Faucheux BA, Ruberg M, Agid Y, Hirsch EC. Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson's disease? J. Neurochem. 2001; 76: 1785-1793.
    
    4. Ramon-Cueto A, Avila J. Olfactory ensheathing cells: properties and function. Brain Res. Bull.1998; 46: 175-187.
    
    5. Barnett SC. Olfactory ensheathing cells: unique glial cell types? J Neurotrauma. 2004; 21: 375-382.
    
    6. Lipson AC, Widenfalk J, Lindqvist E, Ebendal T, Olson L. Neurotrophic properties of olfactory ensheathing glia. Exp Neurol. 2003; 180: 167-171.
    
    7. Woodhall E, West AK, Chuah MI. Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res Mol Brain Res. 2001;88(1-2):203-213.
    8. Li Y, Field PM, Raisman G. Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science. 1997; 277 (5334):2000-2002.
    9. Ramon-Cueto A, Nieto-Sampedro M. Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp Neurol. 1994; 127(2) :232-44.
    10. Lu J, Feron F, Mackay-Sim A, Waite PM. Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain 2002; 125: 14-21.
    11. Deumens R, Koopmans GC, Honig WM, Hamers FP, Maquet V, Jerome R, Steinbusch HW, Joosten EA. Olfactory ensheathing cells, olfactory nerve fibroblasts and biomatrices to promote long-distance axon regrowth and functional recovery in the dorsally hemisected adult rat spinal cord. Exp Neurol. 2006; 200(1):89-103.
    12. Li Y, Field PM, Raisman G: Regeneration of adult rat corticospinal axons induced by transplanted olfactory ensheathing cells. J Neurosci. 1998; 18 (24): 10514-10524.
    13. Sasaki M, Hains BC, Lankford KL, Waxman SG, Kocsis JD. Protection of corticospinal tract Neurons after dorsal spinal cord transection and engraftment of olfactory ensheathing cells. Glia. 2006; 53(4): 352-359.
    14. Plant GW, Christensen CL, Oudega M, Bunge MB. Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord. J Neurotrauma. 2003; 20(1):l-16.
    15. Barnett SC, Alexander CL, Iwashita Y, Gilson JM, Crowther J, Clark L, Dunn LT, Papanastassiou V, Kennedy PG, Franklin RJ. Identification of a human olfactory ensheathing cell that can effect transplant-mediated remyelination of demyelinated CNS axons. Brain. 2000 ;123( 8):1581-1588.
    16. Pascual JI, Gudino-Cabrera G, Insausti R, Nieto-Sampedro M: Spinal implants of olfactory ensheathing cells promote axon regeneration and bladder activity after bilateral lumbosacral dorsal rhizotomy in the adult rat. J Urol. 2002; 167: 1522-1526.
    17. Li Y, Sauve Y, Li D, Lund RD, Raisman G. Transplanted olfactory ensheathing cells promote regeneration of cut adult rat optic nerve axons. J Neurosci. 2003; 23: 7783-7788.
    18. Agrawal AK, Shukla S, Chaturvedi RK, Seth K, Srivastava N, Ahmad A, Seth PK. Olfactory ensheathing cell transplantation restores functional deficits in rat model of Parkinson's disease: a cotransplantation approach with fetal ventral mesencephalic cells. Neurobiol Dis. 2004; 16: 516-526.
    19. Johansson S, Lee IH, Olson L, Spenger C. Olfactory ensheathing glial co-grafts improve functional recovery in rats with 6-OHDA lesions. Brain. 2005; 128 (12):2961-2976.
    20. Glinka Y, Gassen M, Youdim MB. Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm Suppl. 1997; 50:55-66.
    21. Blum D, Torch S, Nissou MF, Benabid AL, Verna JM. Extracellular toxicity of 6-hydroxydopamine on PC12 cells. Neurosci. Lett. 2000, 283(3):193-196.
    22. Meng H, Li C, Feng L, Cheng B, Wu F, Wang X, Li Z, Liu S. Effects of Ginkgolide B on 6-OHDA-induced apoptosis and calcium over load in cultured PC12. Int J Dev Neurosci. 2007;25:509-514.
    23. Wang YZ, Meng JH, Yang H, Luo N, Jiao XY, Ju G. Differentiation-inducing and protective effects of adult rat olfactory ensheathing cell conditioned medium on PC12 cells. Neurosci Lett. 2003; 346: 9-12.
    24. Pellitteri R, Spatuzza M, Russo A, Stanzani S. Olfactory ensheathing cells exert a trophic effect on the hypothalamic neurons in vitro. Neurosci Lett. 2007; 417: 24-29.
    25. Chung RS, Woodhouse A, Fung S, Dickson TC, West AK, Vickers JC, Chuah Ml.Olfactory ensheathing cells promote neurite sprouting of injured axons in vitro by direct cellular contact and secretion of soluble factors. Cell Mol Life Sci. 2004; 61 (10): 1238-1245.
    26. Takashi S, Haruko K, Yoichi K, Yoshihiko I, Kiyomi F. P-amyloid induces caspase-dependent early neurotoxic change in PC12 cells: correlation with H_2O_2 neurotoxicity. Neurosci Lett. 2001; 305: 61-64.
    
    27. Hashimoto Y, Shimada Y, Itami A, Ito T, Kawamura J, Kawabe A, Kaganoi J, Maeda M, Watanabe G, Imamura M. Growth inhibition through activation of peroxisome proliferator-activated receptor gamma in human oesophageal squamous cell carcinoma. Eur J Cancer. 2003; 39(15): 2239-2246.
    
    28. Mitrovic B, Ignarro LJ, Vinters HV, Akers MA, Schmid I, Uittenbogaart C, Merrill JE. Nitric oxide induces necrotic but not apoptotic cell death in oligodendrocytes. Neurosci. 1995; 65(2): 531-539.
    
    29. Lee CS, Song EH, Park SY, Han ES. Combined effect of dopamine and MPP+ on membrane permeability in mitochondria and cell viability in PC12 cells. Neurochem Int. 2003; 43 (2): 147-154.
    
    30. Ruitenberg MJ, Levison DB, Lee SV, Verhaagen J, Harvey AR, Plant GW. NT-3 expression from engineered olfactory ensheathing glia promotes spinal sparing and regeneration. Brain. 2005; 128: 839-853.
    
    31. Lopez-Vales R, Fores J, Navarro X., Verdu E. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat. Glia. 2007; 55: 303-311.
    
    32. Lima C, Pratas-Vital J, Escada P, Hasse-Ferreira A, Capucho C, Peduzzi JD. Olfactory mucosa autografts in human spinal cord injury: a pilot clinical study. J Spinal Cord Med. 2006; 29: 191-206.
    
    33. Leaver SG, Harvey AR, Plant GW. Adult olfactory ensheathing glia promote the long-distance growth of adult retinal ganglion cell neurites in vitro. Glia. 2006;53(5):467-476.
    
    34. Reed JC. Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med. 2001; 7(7):314-9.
    
    35. Herr I, Debatin KM. Cellular stress response and apoptosis in cancer therapy. Blood. 2001; 98: 2603-2614.
    36. Cory S, Adams JM. The Bcl-2 family: regulators of cellular life-or-death switch. Nat. Rev.Cancer 2002; 2(9): 647-656.
    
    37. Yamaguchi H, Bhalla K, Wang HG. Bax plays a pivotal role in thapsigargin-induced apoptosis of human colon cancer HCT116 cells by controlling Smac/Diablo and Omi/HtrA2 release from mitochondria. Cancer Res. 2003; 63(7): 1483-1489.
    
    38. Wei H, Kang B, Wei W, Liang G, Meng QC, Li Y, Eckenhoff RG. Isoflurane and sevoflurane affect cell survival and BCL-2/BAX ratio differently. Brain Res. 2005; 1037: 139-147.
    
    39. Fiskum G, Starkov A, Polster BM, Chinopoulos C. Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson's disease. Ann. N. Y. Acad. Sci. 2003; 991:111-119.
    1. de Rijk MC, Launer LJ, Berger K, Breteler MM, Dartigues JF, Baldereschi M, Fratiglioni L, Lobo A, Martinez-Lage J, Trenkwalder C et al: Prevalence of Parkinson's disease in Europe: A collaborative study of population-based cohorts. Neurologic Diseases in the Elderly Research Group. Neurology 2000, 54(11 Suppl 5):S21-23.
    2. de la Fuente-Fernandez R, Calne DB: Evidence for environmental causation of Parkinson's disease. Parkinsonism Relat Disord 2002, 8(4):235-241.
    
    3. Le W, Appel SH: Mutant genes responsible for Parkinson's disease. Curr Opin Pharmacol 2004,4(1):79-84.
    
    4. Nutt JG: Long-term L-DOPA therapy: challenges to our understanding and for the care of people with Parkinson's disease. Exp Neurol 2003, 184(1):9-13.
    
    5. Henchcliffe C, Schumacher HC, Burgut FT: Recent advances in Parkinson's disease therapy: use of monoamine oxidase inhibitors. Expert Rev Neurother 2005, 5(6):811-821.
    
    6. Perlow MJ, Freed WJ, Hoffer BJ, Seiger A, Olson L, Wyatt RJ: Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system. Science 1979, 204(4393):643-647.
    
    7. Bjorklund A, Stenevi U: Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res 1979, 177(3):555-560.
    
    8. Brundin P, Bjorklund A: Survival, growth and function of dopaminergic neurons grafted to the brain. Prog Brain Res 1987, 71:293-308.
    
    9. Hagell P, Brundin P: Cell survival and clinical outcome following intrastriatal transplantation in Parkinson disease. J Neuropathol Exp Neurol 2001,60(8):741-752.
    
    10. Bjorklund A, Dunnett SB, Stenevi U, Lewis ME, Iversen SD: Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res 1980, 199(2):307-333.
    
    11. Barker RA, Dunnett SB: Functional integration of neural grafts in Parkinson's disease. Nat Neurosci 1999, 2(12): 1047-1048.
    
    12. Bjorklund A, Stenevi U, Schmidt RH, Dunnett SB, Gage FH: Intracerebral grafting of neuronal cell suspensions. II. Survival and growth of nigral cell suspensions implanted in different brain sites. Acta Physiol Scand Suppl 1983,522:9-18.
    
    13. Dunnett SB, Bjorklund A, Schmidt RH, Stenevi U, Iversen SD: Intracerebral grafting of neuronal cell suspensions. IV. Behavioural recovery in rats with unilateral 6-OHDA lesions following implantation of nigral cell suspensions in different forebrain sites. Acta Physiol Scand Suppl 1983, 522:29-37.
    
    14. Redmond DE, Jr., Vinuela A, Kordower JH, Isacson O: Influence of cell preparation and target location on the behavioral recovery after striatal transplantation of fetal dopaminergic neurons in a primate model of Parkinson's disease. Neurobiol Dis 2008,29(1): 103-116.
    
    15. McLeod M, Hong M, Mukhida K, Sadi D, Ulalia R, Mendez I: Erythropoietin and GDNF enhance ventral mesencephalic fiber outgrowth and capillary proliferation following neural transplantation in a rodent model of Parkinson's disease. EurJ Neurosci 2006, 24(2):361-370.
    
    16. Bartlett LE, Mendez I: Dopaminergic reinnervation of the globus pallidus by fetal nigral grafts in the rodent model of Parkinson's disease. Cell Transplant 2005, 14(2-3):119-127.
    
    17. Wictorin K, Brundin P, Sauer H, Lindvall O, Bjorklund A: Long distance directed axonal growth from human dopaminergic mesencephalic neuroblasts implanted along the nigrostriatal pathway in 6-hydroxydopamine lesioned adult rats. J Comp Neurol 1992, 323(4):475-494.
    
    18. Lindvall O, Brundin P, Widner H, Rehncrona S, Gustavii B, Frackowiak R, Leenders KL, Sawle G, Rothwell JC, Marsden CD et al: Grafts of fetal dopamine neurons survive and improve motor function in Parkinson's disease. Science 1990,247(4942):574-577.
    
    19. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, Dillon S, Winfield H, Culver S, Trojanowski JQ et al: Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N Engl J Med 2001, 344(10):710-719.
    
    20. Ma Y, Feigin A, Dhawan V, Fukuda M, Shi Q, Greene P, Breeze R, Fahn S, Freed C, Eidelberg D: Dyskinesia after fetal cell transplantation for parkinsonism: a PET study. Ann Neurol 2002, 52(5):628-634.
    
    21. Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature 1981, 292(5819): 154-156.
    
    22. Park S, Lee KS, Lee YJ, Shin HA, Cho HY, Wang KC, Kim YS, Lee HT, Chung KS, Kim EY et al: Generation of dopaminergic neurons in vitro from human embryonic stem cells treated with neurotrophic factors. Neurosci Lett 2004, 359(1-2):99-103.
    
    23. Takagi Y, Takahashi J, Saiki H, Morizane A, Hayashi T, Kishi Y, Fukuda H, Okamoto Y, Koyanagi M, Ideguchi M et al: Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 2005, 115( 1): 102-109.
    
    24. Zeng X, Cai J, Chen J, Luo Y, You ZB, Fotter E, Wang Y, Harvey B, Miura T, Backman C et al: Dopaminergic differentiation of human embryonic stem cells. Stem Cells 2004,22(6):925-940.
    
    25. Bjorklund LM, Sanchez-Pernaute R, Chung S, Andersson T, Chen IY, McNaught KS, Brownell AL, Jenkins BG, Wahlestedt C, Kim KS et al: Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl Acad Sci U S A 2002, 99(4):2344-2349.
    
    26. Maitra A, Arking DE, Shivapurkar N, Ikeda M, Stastny V, Kassauei K, Sui G, Cutler DJ, Liu Y, Brimble SN et al: Genomic alterations in cultured human embryonic stem cells. Nat Genet 2005, 37(10):1099-l 103.
    
    27. Carvey PM, Ling ZD, Sortwell CE, Pitzer MR, McGuire SO, Storch A, Collier TJ: A clonal line of mesencephalic progenitor cells converted to dopamine neurons by hematopoietic cytokines: a source of cells for transplantation in Parkinson's disease. Exp Neurol 2001, 171(1):98-108.
    28. Studer L, Tabar V, McKay RD: Transplantation of expanded mesencephalic precursors leads to recovery in parkinsonian rats. Nat Neurosci 1998, 1(4):290-295.
    
    29. Storch A, Paul G, Csete M, Boehm BO, Carvey PM, Kupsch A, Schwarz J: Long-term proliferation and dopaminergic differentiation of human mesencephalic neural precursor cells. Exp Neurol 2001, 170(2):317-325.
    
    30. Woodbury D, Schwarz EJ, Prockop DJ, Black IB: Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000, 61(4):364-370.
    
    31. Dezawa M, Kanno H, Hoshino M, Cho H, Matsumoto N, Itokazu Y, Tajima N, Yamada H, Sawada H, Ishikawa H et al: Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 2004, 113(12): 1701-1710.
    
    32. Hellmann MA, Panet H, Barhum Y, Melamed E, Offen D: Increased survival and migration of engrafted mesenchymal bone marrow stem cells in 6-hydroxydopamine-lesioned rodents. Neurosci Lett 2006, 395(2): 124-128.
    
    33. Ohta M, Suzuki Y, Noda T, Ejiri Y, Dezawa M, Kataoka K, Chou H, Ishikawa N, Matsumoto N, Iwashita Y et al: Bone marrow stromal cells infused into the cerebrospinal fluid promote functional recovery of the injured rat spinal cord with reduced cavity formation. Exp Neurol 2004, 187(2):266-278.
    
    34. Bouchez G, Sensebe L, Vourc'h P, Garreau L, Bodard S, Rico A, Guilloteau D, Charbord P, Besnard JC, Chalon S: Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson's disease. Neurochem Int 2008.
    
    35. Shintani A, Nakao N, Kakishita K, Itakura T: Protection of dopamine neurons by bone marrow stromal cells. Brain Res 2007, 1186:48-55.
    
    36. Lu L, Zhao C, Liu Y, Sun X, Duan C, Ji M, Zhao H, Xu Q, Yang H: Therapeutic benefit of TH-engineered mesenchymal stem cells for Parkinson's disease.Brain Res Brain Res Protoc 2005,15(1):46-51.
    37.Wang TH,Feng ZT,Wei P,Li H,Shi ZJ,Li LY:Effects of pcDNA3-beta-NGF Gene-modified BMSC on the Rat Model of Parkinson's Disease.J Mol Neurosci 2008.
    38.Kim S,Honmou O,Kato K,Nonaka T,Houkin K,Hamada H,Kocsis JD:Neural differentiation potential of peripheral blood-and bone-marrow-derived precursor cells.Brain Res 2006,1123(1):27-33.
    39.Asanuma M,Miyazaki I,Ogawa N:Dopamine-or L-DOPA-induced neurotoxicity:the role of doparnine quinone formation and tyrosinase in a model of Parkinson's disease.Neurotox Res 2003,5(3):165-176.
    40.McKay BS,Goodman B,Falk T,Sherman SJ:Retinal pigment epithelial cell transplantation could provide trophic support in Parkinson's disease:results from an in vitro model system.Exp Neuro12006,201(1):234-243.
    41.Watts RL,Raiser CD,Stover NP,Cornfeldt ML,Schweikert AW,Allen RC,Subramanian T,Doudet D,Honey CR,Bakay RA:Stereotaxic intrastriatal implantation of human retinal pigment epithelial(hRPE)cells attached to gelatin microcarriers:a potential new cell therapy for Parkinson's disease.J Neural Transm Suppl 2003(65):215-227.
    42.Flores J,Cepeda IL,Cornfeldt ML,O'Kusky JR,Doudet DJ:Characterization and survival of long-term implants of human retinal pigment epithelial cells attached to gelatin microcarriers in a model of Parkinson disease.J Neuropathol Exp Neurol 2007,66(7):585-596.
    43.Cepeda IL,Flores J,Cornfeldt ML,O'Kusky JR,Doudet DJ:Human retinal pigment epithelial cell implants ameliorate motor deficits in two rat models of Parkinson disease.J Neuropathol Exp Neurol 2007,66(7):576-584.
    44.Doudet DJ,Cornfeldt ML,Honey CR,Schweikert AW,Allen RC:PET imaging of implanted human retinal pigment epithelial cells in the MPTP-induced primate model of Parkinson's disease.Exp Neurol 2004,189(2):361-368.
    45. Stover NP, Bakay RA, Subramanian T, Raiser CD, Cornfeldt ML, Schweikert AW, Allen RC, Watts RL: Intrastriatal implantation of human retinal pigment epithelial cells attached to microcarriers in advanced Parkinson disease. Arch Neurol 2005, 62( 12): 1833-1837.
    46. Backlund EO, Granberg PO, Hamberger B, Knutsson E, Martensson A, Sedvall G, Seiger A, Olson L: Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J Neurosurg 1985, 62(2): 169-173.
    47. Lindvall O, Backlund EO, Farde L, Sedvall G, Freedman R, Hoffer B, Nobin A, Seiger A, Olson L: Transplantation in Parkinson's disease: two cases of adrenal medullary grafts to the putamen. Ann Neurol 1987, 22(4):457-468.
    48. Madrazo I, Drucker-Colin R, Diaz V, Martinez-Mata J, Torres C, Becerril JJ: Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson's disease. N Engl J Med 1987, 316(14):831-834.
    49. Goetz CG, Tanner CM, Penn RD, Stebbins GT, 3rd, Gilley DW, Shannon KM, Klawans HL, Cornelia CL, Wilson RS, Witt T: Adrenal medullary transplant to the striatum of patients with advanced Parkinson's disease: 1-year motor and psychomotor data. Neurology 1990,40(2):273-276.
    50. Drucker-Colin R, Verdugo-Diaz L: Cell transplantation for Parkinson's disease: present status. Cell Mol Neurobiol 2004,24(3):301-316.
    51. Barnett SC: Olfactory ensheathing cells: unique glial cell types? J Neurotrauma 2004, 21(4):375-382.
    52. Lipson AC, Widenfalk J, Lindqvist E, Ebendal T, Olson L: Neurotrophic properties of olfactory ensheathing glia. Exp Neurol 2003, 180(2): 167-171.
    53. Woodhall E, West AK, Chuah MI: Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res Mol Brain Res 2001,88(1-2):203-213.
    54. Lu J, Feron F, Mackay-Sim A, Waite PM: Olfactory ensheathing cells promote locomotor recovery after delayed transplantation into transected spinal cord. Brain 2002, 125(Pt 1):14-21.
    
    55. Deumens R, Koopmans GC, Honig WM, Hamers FP, Maquet V, Jerome R, Steinbusch HW, Joosten EA: Olfactory ensheathing cells, olfactory nerve fibroblasts and biomatrices to promote long-distance axon regrowth and functional recovery in the dorsally hemisected adult rat spinal cord. Exp Neurol 2006,200(1):89-103.
    
    56. Sasaki M, Hains BC, Lankford KL, Waxman SG, Kocsis JD: Protection of corticospinal tract neurons after dorsal spinal cord transection and engraftment of olfactory ensheathing cells. Glia 2006, 53(4):352-359.
    
    57. Plant GW, Christensen CL, Oudega M, Bunge MB: Delayed transplantation of olfactory ensheathing glia promotes sparing/regeneration of supraspinal axons in the contused adult rat spinal cord. JNeurotrauma 2003,20(1):l-16.
    
    58. Pascual JI, Gudino-Cabrera G, Insausti R, Nieto-Sampedro M: Spinal implants of olfactory ensheathing cells promote axon regeneration and bladder activity after bilateral lumbosacral dorsal rhizotomy in the adult rat. J Urol 2002, 167(3): 1522-1526.
    
    59. Agrawal AK, Shukla S, Chaturvedi RK, Seth K, Srivastava N, Ahmad A, Seth PK: Olfactory ensheathing cell transplantation restores functional deficits in rat model of Parkinson's disease: a cotransplantation approach with fetal ventral mesencephalic cells. Neurobiol Dis 2004, 16(3):516-526.
    
    60. Johansson S, Lee IH, Olson L, Spenger C: Olfactory ensheathing glial co-grafts improve functional recovery in rats with 6-OHDA lesions. Brain 2005,128(Pt 12):2961-2976.
    
    61. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC: Stem cell characteristics of amniotic epithelial cells. Stem Cells 2005,23(10):1549-1559.
    
    62. Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N: Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res 2000, 62(4):585-590.
    63. Sakuragawa N, Kakinuma K, Kikuchi A, Okano H, Uchida S, Kamo I, Kobayashi M, Yokoyama Y: Human amnion mesenchyme cells express phenotypes of neuroglial progenitor cells. J Neurosci Res 2004, 78(2):208-214.
    64. Fukuchi M, Sakuragawa S, Tabuchi A, Tsuda M: Calcium signal-mediated expression of the vasoactive intestinal polypeptide gene and its small contribution to activity-dependent survival of mouse cerebellar granule cells. J Neurosci Res 2004, 77(1):26-34.
    65. Kakishita K, Nakao N, Sakuragawa N, Itakura T: Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res 2003, 980(1):48-56.
    66. Toledo-Aral JJ, Mendez-Ferrer S, Pardal R, Lopez-Barneo J: Dopaminergic cells of the carotid body: physiological significance and possible therapeutic applications in Parkinson's disease. Brain Res Bull 2002, 57(6):847-853.
    67. Luquin MR, Montoro RJ, Guillen J, Saldise L, Insausti R, Del Rio J, Lopez-Barneo J: Recovery of chronic parkinsonian monkeys by autotransplants of carotid body cell aggregates into putamen. Neuron 1999, 22(4):743-750.
    68. Arjona V, Minguez-Castellanos A, Montoro RJ, Ortega A, Escamilla F, Toledo-Aral JJ, Pardal R, Mendez-Ferrer S, Martin JM, Perez M et al: Autotransplantation of human carotid body cell aggregates for treatment of Parkinson's disease. Neurosurgery 2003, 53(2):321-328; discussion 328-330.
    69. Minguez-Castellanos A, Escamilla-Sevilla F, Hotton GR, Toledo-Aral JJ, Ortega-Moreno A, Mendez-Ferrer S, Martin-Linares JM, Katati MJ, Mir P, Villadiego J et al: Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study. J Neurol Neurosurg Psychiatry 2007, 78(8):825-831.
    70. Fernandez-Espejo E, Armengol JA, Flores JA, Galan-Rodriguez B, Ramiro S: Cells of the sympathoadrenal lineage: biological properties as donor tissue for cell-replacement therapies for Parkinson's disease. Brain Res Brain Res Rev 2005,49(2):343-354.
    
    71. Nakao N, Shintani-Mizushima A, Kakishita K, Itakura T: Transplantation of autologous sympathetic neurons as a potential strategy to restore metabolic functions of the damaged nigrostriatal dopamine nerve terminals in Parkinson's disease. Brain Res Rev 2006, 52(2):244-256.
    
    72. Sortwell CE, Pitzer MR, Collier TJ: Time course of apoptotic cell death within mesencephalic cell suspension grafts: implications for improving grafted dopamine neuron survival. Exp Neurol 2000, 165(2):268-277.
    
    73. Emgard M, Hallin U, Karlsson J, Bahr BA, Brundin P, Blomgren K: Both apoptosis and necrosis occur early after intracerebral grafting of ventral mesencephalic tissue: a role for protease activation. J Neurochem 2003, 86(5): 1223-1232.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700