用户名: 密码: 验证码:
内吗啡肽、morphiceptin及其类似物对小鼠结肠运动功能的调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内吗啡肽(endomorphins,EMs)是1997年发现的高激动性、高选择性、内源性的μ-阿片受体(μOR)激动剂。经过十多年的研究发现EMs具有广泛的药理学和生理学活性。我们的研究发现endomorphin 1(10~(-9)-10~(-6)M,EM1),endomorphin 2(10~(-9)-10~(-6)M,EM2)能够剂量依赖地显著增强小鼠结肠的环形肌和纵形肌运动的基础收缩。阿托品(10~(-5)M),L-NAME(10~(-4)M),吲哚美欣(10~(-4)M),酚妥拉明(10~(-5)M),普洛奈尔(10~(-6)M),二甲麦角新甲(3×10~(-5)M),六甲胺(10~(-4)M)不能显著拮抗EMs(10~(-7)M)诱导结肠环形肌和纵形肌的自主收缩,而纳络酮(10~(-5)M)和河豚毒素(10~(-7)M)能完全拮抗此收缩效应。Naltrindole(NTI)(10~(-6)M)并不能显著拮抗EMs诱导的近端结肠环形肌和远端结肠纵形肌收缩。Nor-binaltorphimine(nor-BNI)(3×10~(-6)M)能够显著减弱EMs诱导的结肠纵形肌的收缩作用。值得注意的是,β-funaltrexamine(β-FNA)(6×10~(-6)M)不能完全拮抗EM2引起的结肠环形肌收缩。Naloxonazine(10~(-6)M)完全抑制了EM1,EM2(10~(-7)M)引起的结肠环形肌,纵形肌收缩,但这种抑制收缩作用仅部分可逆。同时,我们利用四氧嘧啶造糖尿病模型的方法研究了EMs对糖尿病小鼠结肠运动功能的调节作用,并发现与非糖尿病小鼠相比,EM1、EM2和carbachol诱导的结肠收缩作用都明显减弱。但是,与非糖尿病小鼠相比其调节机制却没有显著改变。
     另外,我们合成了一系列EMs和morphiceptin的类似物并测定了它们的生理活性。我们发现类似物[D-1-Nal~4]EM2(10~(-8)-10~(-5)M)只能够十分微弱的增强小鼠远端结肠纵行肌的收缩,而且这种作用比EM2弱很多。但是当标本与[D-1-Nal~4]-EM2预孵育5 min之后能够剂量依赖(10~(-8)-10~(-5)M,浓度呈半对数增长)地拮抗EM1和EM2(10~(-7)M)诱导的远端结肠纵行肌的收缩。类似物[1-Nal~3]EM2(10~(-9)-10~(-6)M,浓度呈半对数增长)和[D-1-Nal~3]morphiceptin(10~(-9)-10~(-6)M,浓度呈半对数增长)能够显著地、剂量依赖地增强远端结肠纵行肌和近端结肠环形肌基础收缩作用。由[1-Nal~3]EM2和[D-1-Nal~3]morphiceptin引起的E_(max)分别是50.75±1.53%和56.42±1.48%。[1-Nal~3]EM2和[D-1-Nal~3]morphiceptin的EC_(50)值(分别是34.84±6.06 nM和55.21±11.49 nM)比EM1(8.27±3.21 nM)和EM2(7.97±2.97 nM)稍高但比吗啡(229±31 nM)低。这两个类似物诱导结肠收缩的机理与EMs是类似的。所不同的是,我们发现nor-BNI(10~(-6)M)能够显著减弱类似物[D-1-Nal~3]morphiceptin(10~(-6)M)-诱导的远端结肠纵行肌的收缩作用(与EM2相似),但不能够显著减弱[1-Nal~3]EM2(10~(-6)M)-诱导的远端结肠纵行肌的收缩作用(与EM2不同)。然而与nor-BNI相反,NTI(10~(-6)M)能够显著减弱[1-Nal~3]EM2(10~(-6)M)但不能够显著减弱[D-1-Nal~3]morphiceptin(10~(-6)M)诱导的远端结肠纵行肌的收缩作用。另外,与EMs一样,β-FNA(2.5×10~(-6)M),naloxonazine(10~(-6)M)和naloxone(10~(-5)M)都能够显著减弱[1-Nal~3]EM2-(10~(-6)M)和[D-1-Nal~3]morphiceptin-(10~(-6)M)诱导的远端结肠纵行肌和近端结肠环形肌基础收缩作用。
     这些结果表明,EM1、EM2、[1-Nal~3]EM2、[D-1-Nal~4]EM2和[D-1-Nal~3]morphiceptin对小鼠结肠肠运动具有显著的调节作用,而且这种调节作用是通过激活内源性阿片受体(主要是μOR)而实现的。
EM1 and EM2 are newly discovered endogenousμOR ligands.However,the functional role of these EMs in colonic mobility remains unknown.The present investigation was undertaken to evaluate the effects of the EMs on the colonic mobility in vitro and to determine the mechanisms responsible for the muscle contraction induced by EMs.EMs(10~(-9)-10~(-6)M)caused significantly contractions in longitudinal and circular muscle of isolated colon.EMs-induced longitudinal or circular muscle contractions were not significantly affected by atropine,N~ω-nitro-L-arginine methyl ester(L-NAME),indomethacin,phentolamine,propranolol and methysergide. Tetrodotoxin and naloxone completely abolished EMs-induced longitudinal or circular muscle contractions without affecting contractions in response to carbachol. Surprisingly,EMs(10~(-7)M)-induced longitudinal muscle contractions were significantly attenuated by nor-binaltorphimine(nor-BNI)(3×10~(-6)M).By contrast,pretreatment with naltrindole(NTI)(10~(-6)M)did not significantly affect EMs-induced longitudinal or circular muscle contractions.Interestingly,the circular muscle contractions in response to EM2(10~(-7)M)were not fully blocked byβ-funaltrexamine(β-FNA)(6×10~(-6)M). Naloxonazine(10~(-6)M)almost fully abolished the EMs-induced longitudinal or circular muscle contractions,and these effects could be only partially reversed by extensive washing.All the results indicated that activation of multiple subtypes of opioid receptors,possiblyμ_1(naloxonazine-sensitive),μ_2 and even other forms ofμORs(β-FNA-insensitive),was required for EMs-induced mouse colonic mobility.And these results also indicated that the machanisms responsible for the contractile effects induced by EMs in the longitudinal muscle of distal colon and in the circular muscle of proximal colon may be different.
     At 4 weeks and 8 weeks after the onset of diabetes,EMs and carbachol-induced contractions in the longitudinal muscle of distal colon were significantly reduced compared to those of non-diabetic mice.But mechanisms in both diabetes and non-diabetes were similar.All the results indicated that type 1 diabetes significantly attenuated the modulatory effects of EMs on the mouse colonic motility,but the mechanisms responsible for these effects were not significantly altered.
     We also characterized the effects of endomorphin-2(Tyr~1-Pro~2-Phe~3-Phe~4-NH_2, EM2)and morphiceptin(Tyr~1-Pro~2-Phe~3-Pro~4-NH_2)analogs,in which Phe~3 or Phe~4/Pro~4 were substituted by naphthyl group-containing amino acids,on the colonic motility.[D-1-Nal~4]EM2 fail to significantly induce but can dose-dependently antagonize endomorphins(EMs)(10~(-7)M)-induced longitudinal muscle contractions.[1-Nal~3]EM2 and[D-1-Nal~3]morphiceptin displayed strong stimulatory effects(their EC_(50)values were 34.84±6.06 nM and 55.21±11.49 nM,respectively)on the colonic motility,and these were in agreement with the results obtained from binding assays and GPI/MVD assays.Tetrodotoxin(TTX,10~(-7)M)and naloxone(10~(-5)M)but not N~G-nitro-L-arginine methyl ester(L-NAME)(10~(-4)M)completely abolished the[1-Nal~3]EM2-(10~(-6)M)and [D-1-Nal~3]morphiceptin(10~(-6)M)-induced colonic contractions.β-funaltrexamine(β-FNA)(2.5×10~(-6)M)and naloxonazine(10~(-6)M)significantly reduced but not fully blocked longitudinal and circular muscle contractions in response to[1-Nal~3]EM2(10~(-6) M)and[D-1-Nal~3]-morphiceptin(10~(-6)M).Interestingly,nor-binaltorphimine(nor-BNI) (10~(-6)M)significantly attenuated[D-1-Nal~3]morphiceptin(10~(-6)M)-but not[1-Nal~3]EM2(10~(-6)M)-induced colonic contractions.However,naltrindole(NTI)(10~(-6)M) was able to antagonize[1-Nal~3]EM2(10~(-6)M)-but not[D-1-Nal~3]morphiceptin(10~(-6) M)-induced colonic contractions.These results suggest that opoiod receptors especiallyμ-opioid receptor play critical role in the modulation of analogs[1-Nal~3]EM2-and[D-1-Nal~3]morphiceptin-induced mouse colonic motility and the heterocyclic modifications on the position 3 and 4 significantly change the effects and mechanisms of EM2 and morphiceptin on the colonic motility.
引文
[1]Hughes J,Smith TW,Kosterlitz,HW,et al.Identification of two related pentapeptides from the brain with potent opiate agonist activity.Nature,1975;258:577-580.
    [2]Li CH,Chung D.Isolation and structure of a triakontapeptide with opiate activity from camel pituitary gland.Proc Natl Acad Sci USA,1976;73:1145-1148.
    [3]Goldstrein A,Yachibana S,Lowey L I,et al.Dynorphin-(1-13),An extraordinarily potent opioid peptide.Proc Natl Acad Sci USA,1979;76:6666- 6670.
    [4]Reinscheid RK,Nothacker HP,Bourson A,et al.Orphain FQ:A neuropeptide that activates an opioid-like G protein coupled receptor.Science,1995;270:792- 794.
    [5]Zadina JE,Hackler L,Ge LJ,et al.A potent and selective endogenous agonist for the μ-opiate receptor.Nature,1997;386:499-502.
    [6]韩济生,罗非:阿片受体与阿片样物质,《神经科学原理,第二版》(韩济生主编)北京,北京医科大学出版社,1999,615-637页。
    [7]Stein C.The control of pain in peripheral tissue by opioids.N Eng J Med 1995;332:1685-1690.
    [8]Mollereau C,Parmentier M,Mailleux P,et al.ORL l,a novel member of the opioid receptor family cloning,functional exprssion and localization.FEBS Letters,1994;341:33-38.
    [9]Martin-Schild S,Gerall AA,Kastin AJ et al.Differential distribution of endomorphin 1 and endomorphin 2 like immunoreactivities in the CNS of the rodent.J Comp Neurol,1999;405(4):450-471.
    [10]Schreff M,Schulz S,Wiborny D et al.Immunofluorescent identification of endomorphin-2 containing nerve fibers and terminals in the rat brain and spinal cord.Neuroreport,1998;9(6):1031-1034.
    [11]Martin-Schild S,Zadina JE,Gerall AA,et al.Localization of endomorphin-2-like immunoreactivity in the rat medulla and spinal cord. Peptides, 1997; 18(10): 1641- 1649.
    [12] Tonini M, Fiori E, Balestra B, et al. Endomorphin-1 and endomorphin-2 activate mu-opioid receptors in myenteric neurons of the guinea pig small intestine. Naunyn Schmiedebergs Arch Pharmcol, 1998; 358(6): 686-689.
    [13] Goldberg IE, Rossi GC, Letchworth SR, et al. Pharmacological characterization of endomorphin-1 and endomorphin-2 in mouse brain. J Pharmacol Exp Ther, 1998, 286(2): 1007-1013.
    [14] Harrison C, McNulty S, Smart D, et al. The effects of endomorphin-1 and endomorphin-2 in CHO cells expressing recombinant mu-opioid receptors and SH-SY5Y cells. Br J Pharmacol, 1999,128(2): 472-478.
    [15] Sakurada S, Zadina J E , Kastin AJ et al . Differential involvement of mu-opioid receptor subtypes in endomorphin-1- and -2- induced antinociception. Eur J Pharmacol, 1999;372 (1) :25-30.
    [16] Yamaguchi T, Kitagwa K, Kuraishi Y, et al. Itch-associated response and antinociception induced by intracisternal endomorphins inmice. Jpn J Pharmacol, 1998; 78 (3): 337-343.
    [17] Przewlocka B, Mika J, Labuz D, et al. Spinal analgesic action of endomorphins in acute, inflammatory and neuropathic pain in rats. Eur J Pharmacol, 1999, 367 (223): 189-196.
    [18] Obara I, Przewlocki R, Przewlocka B. Local peripheral effects of mu-opioid receptor agonists in neuropathic pain in rats. Neurosci Lett. 2004,360: 85-89.
    [19] Sakurada S, Hayashi T, Yuhki M, et al. Differential antinociceptive effects induced by intrathecally administered endomorphin-1 and endomorphin-2 in the mouse. Eur J Pharmacol, 2001, 427 (3):203-210.
    [20] Przewlocki R , Przewlocka B. Opioids in chronic pain. Eur J Pharmacol, 2001, 429 (1-3): 79-91.
    [21] Csullog E, Joo G, Dobos I, et al. Antinociceptive effect of continuous intrathecal administration of endomorphin-1. Pain, 2001, 94(1): 31-38.
    [22]Mizoguchi H,Narita M,Oji DE,et al.The.mu-opioid receptor gene-dose dependent reductions in G-protein activation in the pons/medulla and antinociception induced by endomorphins in.mu-opioid receptor knockout mice.Neurosci,1999,94,203-207.
    [23]Loh HH,Liu HC,Cavalli A,et al.μ-opioid receptor knockout in mice:effects in ligand-induced analgesia and morphine lethality.Mol Brain Res,1998,54:321-326.
    [24]Han Z,Jiang YH,Wan Y,et al.Endomorphin-1 mediates 2 Hz but not 100 Hz electroacupuncture analgesia in the rat.Neurosci.Lett.1999,274,75-78.
    [25]Tseng LF,Narita M,Suganuma C,et al.Differential antinociceptive effects of endomorphin-1 and endomorphin-2 in the mouse.J.Pharmacol.Exp.Ther.2000,292:576-583.
    [26]Wu HE,Mizoguchi H,Terashvili M,et al.Spinal pretreatment with antisense oligodeoxynucleotides against exon-1,-4,or -8 of mu-opioid receptor clone leads to differential loss of spinal endomorphin-1-and endomorphin-2-induced antinociception in the mouse.J Pharmacol Exp Ther,2002,303:867-873.
    [27]Wang JL,Zhu CB,Cao XD,et al.Distinct effect of intracerebroventricular and intrathecal injections of nociceptin/orphanin FQ in the rat formalin test.Regul Pept.1999,79:159-163.
    [28]Przewlocki R,Labuz D,Mika J,et al.Pain inhibition by endomorphins.Ann.N.Y.Acad.Sci.1999,897:154-164.
    [29]Hao S,Takahata O,Iwasaki H.Isobolographic analysis of interaction between spinal endomorphin-1,a newly isolated endogenous opioid peptide,and lidocaine in the rat formalin test.Neurosci Lett,1999,276:177-180.
    [30]Huang C,Wang Y,Chang JK,Han,JS.Endomorphin and mu-opioid receptor in mouse brain mediate the analgesic effect induced by 2 Hz but not 100 Hz electroacupuncture stimulation.Neurosci Lett,2000,294:159-162.
    [31]Champion HC,Zadina JE,Kastin AJ,et al.The endogenous mu-opioid agonists,endomorphin 1 and 2,have vasodilator activity in the hindquarters vascular bed of the rat.Life Sci,1997,61(26):PL409-415.
    [32]Czapla MA,Champion HC,Zadina JE,et al.Endomorphin 1 and 2,endogenous mu-opioid agonists,decrease systemic arterial pressure in the rat.Life Sci,1998,62(13):PL 175-179.
    [33]Champion HC,Zadina JE,Kastin AJ,et al.Endomorphin 1 and 2,endogenous ligands for the mu-opioid receptor,decrease cardiac out-put,and total peripheral resistance in the rat.Peptides,1997,18(9):1393-1397.
    [34]Champion HC,Zadina JE,Kastin AJ,et al.Endomorphin 1 and 2 have vasodepressor activity in the anesthetized mouse.Peptides,1998,19(5):925-929.
    [35]Czapla MA,Champion HC,Kadowitz PJ.Nociceptin,an endogenous ligand for the ORL1 recepor,has vasodilator activity in the hindquarters vascular bed of the rat.Peptides,1997,18(6):793-795.
    [36]Champion HC,Kadowitz PJ.[Tyr~1]-nociceptin has naloxone-insensitive vasodilator activity in the hindquarters vascular bed of the rat.Life Sci,1997,61(26):PL403-408.
    [37]Giuliani S,Tramontana M,Lecci A,et al.Effect of nociceptin on heart rate and blood pressure in anaesthetized rats.Eur J Pharmacol,1997,333(2):177-179.
    [38]Akil H,Watson SJ,Yongg E,et al.Endogenous opioids:biology and function.Annu Rev Neurosci,1984;7:223-255.
    [39]邹冈主编。基础神经药理学。北京,科学出版社:1988,250-280页。
    [40]Champion HC,Bivalacqua TJ,Zadina JE,et al.Role of nitric oxide in mediating vasodilator responses to opioid peptide in the rat.Clin and Exp Pharmacol and Physiol,2002,29:229-232.
    [41]Bhargava HN,Villar VM,Cortijo J,Morcillo EJ.Binding of[~3H][D-Ala~2,MePhe~4,Gly-ol~5]enkephalin,[~3H][D-Pen~2,D-Pen~5]enkephalin,and[~3H]U-69,593 to airway and pulmonary tissues of normal and sensitized rats.Peptides,1997;18:1603-1608.
    [42]Neidle A,Manigault I,Wajda IJ.Distribution of opiate-like substances in rat tissues.Neurochem Res,1979,4:399-410.
    [43] Stein C. The control of pain in peripheral tissue by opioids. N Engl J Med, 1995, 332: 1685-90.
    [44] Shimosegawa T, Foda HD, Said SI. Immunohistochemical demonstration of enkephalin-containing nerve fibers in guinea pig and rat lung. Am Rev Respir Dis, 1989,40:441-8.
    [45] Fischer A, Undem BJ. Naloxone blocks endomorphin-1 but not endomorphin-2 induced inhibition of tachykinergic contractions of guinea-pig isolated bronchus. Br J Pharmacol, 1999,127:605-8.
    [46] Misawa M, Sato J, Furukawa Y, Chiba Y, Hosokawa T. Abnormal modulation of cholinergic neurotransmission by opioid in hyperresponsive bronchus of rats. Gen Pharmacol, 1996,27:441-4.
    [47] Patel HJ, Venkatesan P, Halfpenny J, et al. Modulation of acetylcholine release from parasympathetic nerves innervating guinea-pig and human trachea by endomorphin-1 and-2. Eur. J. Pharmacol, 1999, 374, 21-24.
    [48] Allescher HD, Storr M, Brechmann C, et al. Modulatory effect of endogenous and exogenous opioids on the excitatory reflex pathway of the rat ileum. Neuropeptides, 2000, 34:62-68.
    [49] McConalogue K, Grady EF, Minnis J, et al. Activation and interanlization of the mu-opioid receptor by the newly discovered endogenous agonists, endomorphin-1 and endomorphin-2. Neurosci, 1999, 90 (3): 1051-1059.
    [50] Storr M, Gaffal E, Schusdziarra V, et al. Endomorphins land 2 reduce relaxant non-adrenergic, non-cholinergic neurotransmission in rat gastric fundu. Life Sci, 2002, 71(4):383 -389.
    [51] Asakawa A, Inui A , Momose K, et al. Endomorphins have orexigenic and anxiolytic activities in mice. Neuroreport, 1998, 9(10):2265-2267.
    [52] Ukai M, Katoh T, Mamiya T. Endomorphin-1 improves scopolamine-induced impairment of short-term memory via mu1-opioid receptor in mice. Neuroreport. 2001,12(17):3723-3727.
    [53] Horvath G, Szikszay M, Tomboly C, et al. Antinociceptive effects of intrathecal endomorphin-1 and -2 in rats. Life Sci, 1999, 65(24): 2635-2641
    [54] Peterson PK, Gekker G, Hu S et al. Endomorphin 1 potentiates HIV-1 expression in human brain cell cultures: implication of an atypical mu-opioid receptor. Neuropharmacol, 1999, 38(2) :273-278
    [55] Bonn LM , Belcheva MM , Coscia CJ . Mu-opioid agonist inhibition Kappa- opioid receptor-stimulated extracellular signal-regulated kinase phosphorylation is dynamin-dependent in C6 glioma cells. J Neurochem , 2000,74 (2) :574-581
    [56] Ukai M, Watanabe Y, Kameyama. Effect of endomorphin-1 and -2, endogenous mu-opioid receptor agonists, on spontaneous alternation performance in mice. Eur J Pharmacol, 2000, 395(3): 211-215
    [57] Sternini C, Patierno S, Selmer IS, Kirchgessner A. The opioid system in the gastrointestinal tract. Neurogastroenterol Motil, 2004,16:3-16.
    [58] Kurz A, Sessler DI. Opioid-induced bowel dysfunction: pathophysiology and potential new therapies. Drugs, 2003,63:649-671.
    [59] De Luca A, Coupar IM. Insights into opioid action in the intestinal tract. Pharmacol Ther, 1996,69:103-115.
    
    [60] Bodnar RJ. Endogenous opiate and behavior: 2006.Peptides.2007,28: 2435- 2513.
    [61] Osinski MA, Bass P, Gaumnitz EA. Peripheral and central actions of orphanin FQ (nociceptin) on murine colon. Am J Physiol 1999,276:125-131.
    [62] Yazdani A, Takahashi T, Bagnol D, Watson SJ, Owyang C. Functional significance of a newly discovered neuropeptide, orphanin FQ, in rat gastroenterology motility. Gastroenterology 1999,116:108-117.
    [63] Krowicki ZK, Kapusta DR, Hornby PJ. Orphanin FQ/nociceptin and [Phe(1)psi(CH(2)-NH)Gly(2)]nociceptin(1-13)-NH(2) stimulate gastric motor function in anaesthetized rats. Br J Pharmacol 2000,130:1639-1645.
    [64] Broccardo M, Guerrini R, Petrella C, Improta G. Gastrointestinal effects of intracere-broventricularly injected nociceptin/orphanin FQ in rats. Peptides 2004, 25: 1013-20.
    [65] Fontaine J, Reuse J. Contractor responses of the isolated colon of the mouse to morphine and some opioid peptides.Br J Pharmacol 1985,85:861-867.
    [66]Nijkamp FP,Van Ree JM.Effects of endorphins on different parts of the GI tract of rat and guinea-pig in vitro.Br J Pharmacol 1980,68:599-606.
    [67]Gillan MG,Pollock D.Acute effects of morphine and opioid peptides on the motility and responses of rat colon to electrical stimulation.Br J Pharmacol 1980,68:381-392.
    [68]Sengupta JN,Su X,Gebhart GF.Kappa,but not mu or delta,opioids attenuate responses to distention of afferent fibers innervating the rat colon.Gastroenterology 1996,111:968-980.
    [69]Storr M,Hahn,Gaffal E,Saur D,Allescher HD.Effects of endomorphin-1 and -2on mu-opioid receptors in myenteric neurons and in the peristaltic reflex in rat small intestine.Clin Exp Pharmacol Physiol 2002,29:428-434.
    [70]Nishiwaki H,Saitoh N,Nishio H,Takeuchi T,Hata F.Inhibitory effect of endomorphin-1 and -2 on acetylcholine release from myenteric plexus of guinea pig ileum.Jpn J Pharmacol 1998,78:83-86.
    [71]Yokatani K,Osumi Y.Involvement of mu-receptor in endogenous opioid peptidemediated inhibition of acetylcholine release from the rat stomach.Jpn J Pharmacol 1998,78:93-95.
    [72]Storr M,Geisler F,Neuhuber WL,Schusdziarra V,Allescher HD.Endomorphin-1and -2,endogenous ligands for the mu-opioid receptor,inhibit striated and smooth muscle contraction in the rat esophagus.Neurogastroenterol Motil 2000,12:441-448.
    [73]严祥,王金羊,刘永铭,等.内吗啡肽对“泻剂结肠”大鼠离体肠肌条收缩反应的影响.临床消化病杂志.2005,17:226-229。
    [74]Kruszynski R,Fichna J,do-Rego JC,Chung NN,Schiller PW,Kosson P,Costentin J,Janecka A.Novel endomorphin-2 analogs with μ-opioid receptor antagonist activity.J Peptide Res,2005,66:125-131.
    [75]Fichna J,do-Rego JC,Costentin J,Chung NN,Schiller PW,Kosson P,Janecka A.Opioid receptor binding and in vivo antinociceptive activity of position 3- substituted morphiceptin analogs. Biochem Biophys Res Commun. 2004, 320: 531-536.
    [76] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976,72,248-254.
    [77] Cheng YC, Prusoff WH. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 percent inhibition (150) of an enzymatic reaction. Biochem. Pharmacol. 1973,22,3099-3102.
    [78] Hughes J, Kosterlitz HW, Leslie FM. Effect of morphine on adrenergic transmission in the mouse vas deferens. Assessment of agonist and antagonist potencies of narcotic analgesics. Br J Pharmacol. 1975, 53, 371-381
    [79] Rang HP. Stimulant actions of volatile anaesthetics on smooth muscle. Br J Pharmcol, 1964,22: 356-365
    [80] Osinski MA, Bass P, Gaumnitz EA. Peripheral and central actions of orphanin FQ (nociceptin) on murine colon. Am J Physiol, 1999,276: 125-131.
    [81] Fang Q, Guo J, Chang M, et al. Neuropeptide FF receptors exert contractile activity via inhibition of nitric oxide release in the mouse distal colon. Peptides, 2005, 26: 791-797.
    [82] Elliott J, Smart D, Lambert DG., et al. Characterisation of mu-opioid receptors on SH-SY5Y cells using naloxonazine and beta-funaltrexamine. Eur J Pharmacol, 1994,268:447-450.
    [83] Ling GS, Simantov R, Clark JA, et al. Naloxonazine actions in vivo. Eur J Pharmacol, 1986,129: 33-38.
    [84] Kruszynski R, Fichna J, do-Rego JC, et al. Novel endomorphin-2 analogs with μ-opioid receptor antagonist activity. J Peptide Res., 2005;66:125—131.
    [85] Fichna J, do-Rego JC, Costentin J, et al. Opioid receptor binding and in vivo antinociceptive activity of position 3-substituted morphiceptin analogs. Biochem Biophys Res Commun. 2004; 320:531-536.
    [86] Fichna J, do-Rego JC, Kosson P, et al. Characterization of antinociceptive activity of novel endomorphin-2 and morphiceptin analogs modified in the third position.Biochem Pharmacol.2005,69:179-85.
    [87]Yu Y,Cui Y,Wang X,et al.In vitro characterization of the effects of endomorphin-1and -2,endogenous ligands for μ-opioid receptors,on mouse colonic motility.Biochem pharmacol.2007;73:1384-93.
    [88]Resnick J,Greenwald DA,Brandt LJ.Delayed gastric emptying and postoperative ileus after non-gastric abdominal surgery:endogenous and exogenous opioids alter neural in-part Ⅰ.Am J Gastroenterol.1997,92:751-762.
    [89]Bungard TJ,Kale-Pradhan PB.Prokinetic agents for the treatment of postoperative ileus in adults:a review of the literature.Pharmacotherapy,1999,19:416-423.
    [90]Olson GA,Olson RD,Vaccarino AL,et al.Endogenous opiates:1997.Peptides,1998,19:1791-1843.
    [91]Fickel J,Bagnol D,Watson SJ,et al.Opioid receptor expression in the rat gastrointestinal tract:a quantitative study with comparison to the brain.Brain Res Mol Brain Res.,1997,46:1-8.
    [92]Cosentino M,Marino F,Bombelli R,et al.Modulation of neurotransmitter release by opioid μ-and κ-receptors from adrenergic terminals in the myenteric plexus of the guinea-pig colon:effect of α_2-autoreceptor blockade.Neurosci Lett,1997,222:75-78.
    [93]Nishiwaki H,Saitoh N,Nishio H,et al.Relationship between inhibitory effect of endogenous opioid via mu-receptors and muscarinic autoinhibition in acetylcholine release from myenteric plexus of guinea pig ileum.Jpn J Pharrnacol,1998,77:279-286.
    [94]Contreras E,Fernandez E,Villar M.Mechanisms of the contractile responses to morphine of the mouse colon in vitro.Gen Pharmacol.1988,19:669-672.
    [95]Bueno L,Fioramonti J,Ruckebusch M.Comparative effects of morphine and nalorphine on colonic motility in the conscious dog.Eur J Pharmacol,1981,75:239-245.
    [96]Yazdani A,Takahashi T,Bagnol D,et al.Functional significance of a newly discovered neuropeptide, orphanin FQ, in rat gastrointestinal motility. Gastroenterolo. 1999,116: 108-117.
    [97] Cherubini E, North RA. Mu- and kapa-opioids inhibit transmitter release by different mechanisms. Proc Natl Acad Sci U.S.A, 1985, 82: 1860-1863.
    [98] Garaulet JV, Milanes MV, Laorden ML. Cross-tolerance between mu and kappa opioid agonists in the guinea pig ileum myenteric plexus, J Pharmacol Exp Ther. 1995, 272: 658-662.
    [99] Tseng LF, Narita M, Suganuma C, et al. Differential antinociceptive effects of endomorphin-1 and endomorphin-2 in the mouse. J Pharmacol Exp Ther. 2000, 292: 576-583.
    [100] Rothman RB, Jacobson AE, Rice KC, Herkenham M. Autoradiographic evidence for 2 classes of mu-opioid binding sites in rat brain using [~(125)I]FK33824. Peptides, 1987, 8:1015-1021.
    [101] Franklin TG, Traynor JR. Alkylation with β-funaltrexamine suggests differences between μ-opioid receptor systems in guinea-pig brain and myenteric plexus. Br J Pharmacol. 1991, 102(3): 718-722
    [102] Holte K, Kehlet H. Postoperative ileus: a preventable event. Br J Surg, 2000, 87: 1480-1493.
    [103] Brix-Christensen V, Goumon Y, Tonnesen E, et al. Endogenous morphine is produced in response to cardiopulmonary bypass in neonatal pigs. Acta Anaesthesiol Scand, 2000, 44:1204-1208.
    [104] Clark SJ, Smith TW. Peristalsis abolishes the release of methionine- enkephalin from guinea-pig ileum in vitro. Eur J Pharmacol. 1981, 70: 421-424.
    [105] Storr M, Geisler F, Neuhuber WL, et al. Autonomic modulation of vagal input to the rat esophageal muscle: Influence of opiates, in Neurogastroenterology:From the Basics to the Clinics (Krammer HJ and Singer MV eds), 2000, Kluwer Academic Publishers, London.
    [106] Taguchi A, Sharma N, Saleem RM, et al. Selective postoperative inhibition of gastrointestinal opioid receptors. N Engl J Med. 2002, 345: 935-940.
    [107] Ferraz AA, Cowles VE, Condon RE, et al. Opioid and nonopioid analgesic drug effects on colon contractions in monkeys. Dig Dis Sci. 1995, 40: 1417-1419
    [108] Wang CL, Wang X, Yu Y, et al. Type 1 Diabetes attenuates the modulatory effects4 of endomorphins on mouse colonic motility. Neuropeptides. 2008 ,42(1):69-77.
    [109] Fichna J, Piestrzeniewicz M, Gach K, Poels J, Burgeon E, Vanden Broeck J, Janecka A. [D-1-Nal~4]endomorphin-2 is a potent μ-opioid receptor antagonist in the aequorin luminescence-based calcium assay. Life Sci 2006, 79: 1094-1099.
    [110] Benabdallah H, Messaoudi D, Gharzouli K. The spontaneous mechanical activity of the circular smooth muscle of the rabbit colon in vitro. Pharmacol Res 2008, 57: 132-141.
    [111] Hruby VJ, Gehrig CA. Recent developments in the design of receptor specific opioid peptides. Med Res Rev. 1989, 9:343-401.
    [112] Yu Y, Shao X, Cui Y, et al. Structure-Activity Study on the Spatial Arrangement of the Third Aromatic Ring of Endomorphins 1 and 2 Using an Atypical Constrained C Terminus. ChemMedChem. 2007, 2:309-317.
    [113] Yamazaki T, Ro S, Goodman M, et al. A topochemical approach to explain morphiceptin bioactivity. J Med Chem 1993, 36:708-719.
    [114] Lengyel I, Orosz G, Biyashev D, et al. Side chain modifications change the binding and agonist properties of endomorphin-2. Biochem Biophys Res Commun 2002;290:153-161.
    [115] Jessop DS, Major GN, Coventry TL, et al. Novel opioid peptides endomorphin-1 and endomorphin-2 are present in mammalian immune tissues. J Neuroimmunol, 2000,106(1-2): 53-59
    [116] Seale JV, Jessop DS, Harbuz MS. Immunohistochemical staining of endomorphin 1 and 2 in the immune cells of the spleen. Peptides. 2004, 25(1):91-94.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700