用户名: 密码: 验证码:
基于几何不变性的鲁棒图像水印方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今,数字图像作为人类获取和交换信息的主要媒体,以其直观、生动和跨语言等优势,广泛地应用于人类生产生活的各个方面。随着人类活动范围的不断扩大,数字图像的应用领域也将随之不断深化。然而,飞速发展的信息技术使得数字图像的信息安全面临严峻挑战。针对这一问题,数字水印技术作为一门新兴的交叉学科应运而生,并且在近二十年里得到了快速发展。由于水印图像在传输过程中会遭受无意或恶意的攻击,这一问题已经成为数字水印技术走向成功应用的重要瓶颈。因此,研究鲁棒的数字图像水印技术成为近年来多媒体内容信息安全领域的热点问题之一。
     本文针对鲁棒图像水印方法所面临的挑战性问题,分别从几何失真校正、水印嵌入与检测模型及水印系统安全性等方面研究了基于几何不变性的鲁棒图像水印的解决之道。本文的主要工作可概括如下:
     (1)提出了一种基于SIFT特征点匹配的图像校正方法。首先通过对原始图像和失真图像的SIFT特征点进行匹配,计算图像几何失真参数;然后对失真图像进行逆变换恢复其内容,实现了几何攻击下失真水印图像的几何校正。
     (2)针对基于特征匹配校正方法仅能处理如旋转、缩放等有限几何攻击类型的问题,运用RANSAC优化迭代算法设计了一种新的图像失真校正方法。在特征点匹配之后,进一步滤除误匹配的特征点对,通过逐步迭代获得精确的几何变换模型,从而对失真图像进行精确校正,不仅提高了图像恢复质量而且扩展了图像几何校正的适应范围。
     (3)鉴于实际应用环境中几何攻击对水印图像的降质影响,将稳定的图像特征与变换域嵌入策略相结合,提出了一种基于特征匹配的Curvelet域抗几何攻击图像水印方法。首先利用特征点匹配对失真图像进行校正,以恢复水印与图像内容的同步性,然后针对校正后的水印图像,以Curvelet系数为载体,实施水印嵌入和检测,不仅增强了水印的鲁棒性而且扩大了水印的嵌入容量。
     (4)为了进一步提高水印方法抵抗几何攻击的鲁棒性,提出了一种基于迭代校正的Zernike矩鲁棒图像水印方法。首先利用基于图论的分割算法和特征区域选择策略构建稳定独立的特征区域,并借助Zernike矩实现水印的嵌入和检测;随后通过RANSAC迭代算法优化水印图像的几何校正模型,使嵌入的水印具有良好的不可感知性与鲁棒性。
     (5)为了进一步增强水印系统的安全性,结合可逆元胞自动机提出了基于元胞自动机的鲁棒水印多重加密方法。首先将水印图像转换成二值序列,然后采用不同的可逆元胞自动机规则分别对辅助信息、水印与水印图像进行级联式加密,最终得到加密水印图像,有效解决了鲁棒图像水印方法存在的安全问题。
     综上所述,本文将模式分类、计算机视觉等领域的基本理论引入到鲁棒数字图像水印的框架中,所提出的五种数字图像水印新方法从不同角度有效解决了现有方法存在的问题,为实现数字图像版权保护与内容认证提供了新途径,为鲁棒水印算法的设计提供了新思路。
Recently, digital images serve as a key media for information acquisition andtransmission and are therefore widely used in different fields due to some characteristics,such as direct viewing, vividness and cross-language. However, the fast development ofthe information technology has brought to forefront security concerns with the use ofdigital images. To solve the above problem, the digital watermarking technique has beenproposed and rapidly developed in the past twenty years. Usually, stego imagesinevitably suffer from the common image processing operations and geometric attacksduring the transmission, which is an important bottleneck to their usage in practicalapplications. Therefore, robust watermarking techniques for digital images haveattracted increasing attention for copyright protection in multimedia informationsecurity.
     To target the challenging problems of the robust image watermarking, this thesismakes an extensive study of robust image watermark based on geometry invariancefrom such aspects as geometry rectification, watermark embedding and detection modeland security analysis of watermark system. The main contents of this paper aresummarized as follows.
     (1) An image rectification method based on SIFT feature points matching isproposed. Firstly, the geometric distortion parameters of stego images are computed bymatching SIFT feature points from original images and stego versions. Following this,the invert transform is employed to restore image content. Based on these properties, theproposed method can accomplish geometry rectification for distorted stego images.
     (2) Since the rectification method based on feature matching can only handlelimited kinds of geometric attacks such as rotation and scaling transformations, a novelrectification method using RANSAC iteration algorithm is designed in this thesis.Following the feature matching process, the feature point pairs matched wrongly arefurther removed and the geometric transform model can be accurately determined byiteration procedure. In this way, the distorted images can be restored, which not onlyenhances the image quality but also improves the adaptibiliby of image geometricrectification.
     (3) By considering the effects of geometric attacks on stego images in practicalapplications, an image watermarking method based on feature matching in the Curvelet domain is proposed against geometric attacks, which combines the stable image featuresand embedding strategy in transform domain. The distorted image is firstly restoredusing feature matching in order to resynchronize the watermarks and images.Watermarks are embedded into the restored stego images by modifying Curveletcoefficients, which leads to an improvement of robustness and capacity of watermarks.
     (4) To further enhance the robustness against geometric attacks, an imagewatermarking method based on iteration optimization and Zernike moment is proposed.Firstly, both the graph-based segmentation algorithm and selection strategy of featureregions are used to obtain the stable and non-overlapping feature regions. Then, thewatermark embedding and detection algorithm based on the Zernike moment isdesigned. Finally, the geometry rectification model is optimized by the RANSACiteration algorithm, which is helpful for the improvement of imperceptibility androbustness of watermarks.
     (5) To further improve the security of the watermarking system, a multipleencryption algorithm based on cellular automata (CA) for robust watermarking isproposed. Firstly, the watermarked image is converted into binary sequences. Secondly,different CAs rules are used for encryption of side information, watermarks and stegoimages. Finally, the encrypted stego images can be obtained. The proposed methodeffectively solves the security problem of the watermarking system.
     Generally, we integrate the basic theories of pattern classification and computervision into robust image watermarking mechanism and propose five novel methods indifferent aspects. The proposed methods can overcome the drawbacks of the existingmethods and provide new ways for copyright protection and content authentication ofdigital images.
引文
[1] Kenneth R. Castleman, Digital Image Processing. The Prentice Hall, Inc.,1996.
    [2]王鑫.数字图像盲取证技术研究.解放军信息工程大学,博士学位论文,2009.
    [3]徐青. NIH日本博士后被发现伪造论文数据[Online].科学网,2009-2-18.
    [4]马丽. PS挑战科学期刊图像真实图像伪造日益严重[Online].人民网,2009-10-20.
    [5]邓成.基于局部特征的鲁棒图像水印技术研究.西安电子科技大学,博士学位论文,2009.
    [6] Cox I., Miller M., and Bloom J.著,王颖,黄志蓓等译.数字水印.北京:电子工业出版社,2003.
    [7]钟桦,张小华,焦李成.数字水印与图像认证——算法及应用.西安:西安电子科技大学出版社,2006.
    [8]钮心忻.信息隐藏与数字水印.北京:北京邮电大学出版社,2004.
    [9]杨义先.数字水印基础教程.北京:人民邮电出版社,2007.
    [10] Queluz M. Authentication of digital images and video: generic models and a new contribution.Signal Processing: Image Commun.,16(5):461-475,2001.
    [11]吴晓云,刘红梅,黄继武.结合Zernike矩和水印的半脆弱图像认证.自动化学报,33(2):145-150,2007.
    [12] Craver S., Memon N., Yeo B., et al. Can invisible watermarks solve rightful ownerships? IBMTechnical Report RC20509, IBM Research,1996.
    [13] Zeng W., and Liu B. A statistical watermark detection technique without using originalimages for resolving rightful ownerships of digital images. IEEE Trans. Image Process.,8(11):1534-1548,1999.
    [14] Wong A. Multimedia transaction tracking from a mutual distrust perspective. Ph.D. Thesis,School of Electrical and Electronic Engineering, Adelaide Univ., Australia,2007.
    [15]孙圣和,陆哲明,牛夏牧.数字水印技术及应用.北京:科学技术出版社,2004.
    [16] Deng C., Gao X., Li X., et al. A local Tchebichef moments-based robust image watermarking.Signal Process.,89(8):1531-1539,2009.
    [17] Gao X., Deng C., Li X., et al. Local feature based geometric-resistant image informationhiding. Cogn. Comput.,2(2):68-77,2010.
    [18]张宪海.数字水印技术在版权保护与内容认证中的应用研究.哈尔滨工程大学,博士学位论文,2006.
    [19]王金伟.鲁棒与半脆弱的数字水印研究.南京理工大学,博士学位论文,2006.
    [20] Hartung F., Kutter M. Multimedia watermarking techniques. Proc. The IEEE,87(7):1079-1107,1999.
    [21] Cox I., Miller M. The first50years of electronic watermarking. J. Applied Signal Processing,2:126-132,2002.
    [22] Tirkel A., Rankin G., van Schyndel R., et al. Electronic water mark. Digital Image Computing,Technology and Applications,1:666-673,1993.
    [23] van Schyndel R., Tirkel A., Osborne C. A digital watermark. Proc. IEEE Int. Conf. ImageProcess.,2:86-90,1994.
    [24]楼偶俊.基于特征的第二代图像与视频水印技术研究.吉林大学,博士学位论文,2009.
    [25] Ou B., Zhao Y., Ni R. Reversible watermarking using optional prediction error histogrammodification. Neurocomputing,93:67-76,2012.
    [26] Zhao Y., Ni R., Zhu Z. RST transforms resistant image watermarking based on centroid andsector-shaped partition. SCIENCE CHINA Inform. Sciences,55(3):650-662,2012.
    [27] Cao J., Huang J. Controllable secure watermarking technique for tradeoff between robustnessand security. IEEE Trans. Inform. Forensics Security,7(2):821-826,2012.
    [28] Wang C., Ni J., Huang J. An informed watermarking scheme using hidden markov model inthe wavelet domain. IEEE Trans. Inform. Forensics Security,7(3):853-867,2012.
    [29] Wang S., Niu X. A countermeasure against double compression based image forensic. IEICETrans. Inform. and Systems,95-D(10):2577-2580,2012.
    [30] Jing H, He X., Han Q., et al. Motion vector based information hiding algorithm forH.264/AVC against motion vector steganalysis, LNCS,7197:91-98,2012.
    [31] Xuan G., Shi Y., Chai P., et al. Reversible binary image data hiding by run-length histogrammodification. Int. Conf. Pattern Recognition,2008:1-4.
    [32] Yao H., Wang S., Zhao Y., et al. Detecting image forgery using perspective constraints. IEEESignal Process. Lett.,19(3):123-126,2012.
    [33] Zhang X. Separable reversible data hiding in encrypted image. IEEE Trans. Inform. ForensicsSecurity,7(2):826-832,2012.
    [34] Li L., Li S., Abraham A., et al. Geometrically invariant image watermarking using polarharmonic transforms. Information Science,199(15):1-19,2012.
    [35]袁武钢.鲁棒视频水印技术研究.华中科技大学,博士学位论文,2007.
    [36]谢荣生.盲检测图像数字水印技术研究.哈尔滨工程大学,博士学位论文,2002.
    [37]李京兵.基于变换域抗几何攻击数字水印算法研究.重庆大学,博士学位论文,2007.
    [38]余艳玮.基于特征点的抗几何攻击的图像盲水印技术研究.华中科技大学,博士学位论文,2007.
    [39]赵耀.基于小波变换的抵抗几何攻击的鲁棒视频水印.中国科学E辑,36(2):137-152,2006.
    [40]李雷达.数字水印抗几何攻击理论及应用研究.西安电子科技大学,博士学位论文,2009.
    [41]明细细.抗几何攻击数字图像水印算法研究.湖南大学,硕士学位论文,2010.
    [42] Lichtenauer J., Setyawan I., Kalker T., et al. Exhaustive geometrical search and the falsepositive watermark detection probability. Proc. SPIE,2003,5020:203-214.
    [43] Barni M. Effectiveness of exhaustive search and template matching against watermarkdesynchronization. Signal Process. Lett.,12(2):158-161,2005.
    [44] Linnartz J., Kalker T., and Depovere G. Modelling the false-alarm and missed detection ratefor electronic watermarks. Proc. Int. Workshop Inform. Hiding,1998:329-343.
    [45] Pereira S., Pun T. Robust template matching for affine resistant image watermarks. IEEETrans. Image Process.,9(6):1123-1129,2000.
    [46]俞龙江,牛夏牧,孙圣和.一种旋转、尺度变换和平移鲁棒水印算法.电子学报,31(12):2071-2073,2003.
    [47] Lichtenauer J., Setyawan I., Lagendijk R. Hiding correlation-based watermark templatesusing secret modulation. Proc. SPIE,2004,5306:501-512.
    [48] Zitová B. and Flusser J. Image registration methods: a survey. Image and Vision Computing,21(11):977-1000,2003.
    [49] Zhang Y. and Wu L. Rigid image registration by PSOSQP algorithm. Advances in DigitalMultimedia,1(1):4-8,2012.
    [50]凌贺飞,卢正鼎,邹复好.抗几何攻击的数字水印技术综述.计算机工程与科学,28(11):42-47,2006.
    [51] Dong P., Brankov J., Galatsanos N., et a1. Geometric robust watermarking based on a newmesh model correction approach. Proc. Int. Conf. Image Process.,2002,3:493-496.
    [52] Cheng H. A review of video registration methods for watermark detection in digital cinemaapp1ications. Proc. IEEE Int. Symp. Circuits and Systems,2004:704-707.
    [53] Ruanaidh J., Pun T. Rotation, scale and translation invariant spread spectrum digital imagewatermarking. Siginal Process.,66(3):303-317,1998.
    [54] Lin C. Public watermarking surviving general scaling and cropping: an application forprint-and-scan process. Proc. Multimedia and Security Workshop ACM Multimedia,1999:41-46.
    [55] Lin C., Wu M., Bloom J., et al. Rotation, scale, and translation resilient watermarking forimages. IEEE Trans. Image Process,10(5):765-782,2001.
    [56] Simitopoulos D., Kontsonanoe D. Robust image watermarking based on generalized radontransform. IEEE Trans. Circuits Syst. Video Technol.,13(8):732-745,2003.
    [57] Alghoniemy M., Tewfik A. Geometric distortion correction through image normalization.Proc. Int. Conf. Multimedia and Expo.,2000,3:1291-1294.
    [58] Dong P., Galatsanoa N. P. Affine transformation resistant watermarking based on imagenormalization. Proc. Int. Conf. Image Process.,2002,3:489-492.
    [59] Farzam M., Shirani S. A robust multimedia watermarking technique using Zernike transform.Proc. IEEE4thWorkshop Multimedia Signal Process.,2001:529-534.
    [60] Kim H., Lee H., Invariant image watermark using Zernike moments. IEEE Trans. CircuitsSyst. Video Technol.,13(8):766-775,2003.
    [61] Xin Y, Liao S., Pawlak M., A Multibit geometrically robust image watermark based onZernike moments. Proc. Int. Conf. Pattern Recognition,2004:86l-864.
    [62] Chen J., Yao H., Gao W. A robust watermarking method based on wavelet and Zerniketransform. Proc. IEEE Int. Symp. Circuits and Systems,2004:173-176.
    [63] Kutter M., Bhattacharjee S., Ebrhimi T. Towards second generation watermarking schemes.Proc. Int. Conf. Image Process.,1999:320-323.
    [64] Lowe D. Distinctive image features from scale-invariant keypoints, Int. J. Computer Vision,60(2):91-110,2004.
    [65] Bas P., Chassery J., and Macq B. Geometrically invariant watermarking using feature points,IEEE Trans. Image Process.,11(9):1014-1028,2002.
    [66] Tang C., Hang H. A feature-based robust digital image watermarking scheme. IEEE Trans.Signal Process.,51(4):950-959,2003.
    [67] Seo J., Yoo C. Image watermarking based on invariant regions of scale-space representation,IEEE Trans. Signal Process.,54(4):1537-1549,2006.
    [68] Wang X., Wu J., Niu P. A new digital image watermarking algorithm resilient todesynchronization attacks. IEEE Trans. Inf. Forens. Security,2(4):655-663,2007.
    [69] Gao X., Deng C., Li X., et al. Geometric distortion insensitive image watermarking in affinecovariant regions. IEEE Trans. Syst. Man Cybern. C, Appl. Rev.,40(3):278-286,2010.
    [70]章毓晋.图像工程(上册)图像处理(第2版).北京:清华大学出版社,2006.
    [1] Podilchuk C. I. and Delp E. J. Digital watermarking: algorithms and applications. IEEESignal Processing Magazine,18(4):33-46,2001.
    [2] Kundur D. and Hatzinakos D. Digital watermarking using multiresolution waveletdecomposition. Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing,5:2969-2972,1998.
    [3] Nikolaidis N. and Pitas I. Robust image watermarking in spatial domain. Signal Process.,66(3):385-403,1998.
    [4] Lowe D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.,60(2):91-110,2004.
    [5] Fischler M. and Bolles R. Random sample consensus: a paradigm for model fitting withapplications to image analysis and automated cartography. Comm. ACM,24(6):381-395,1981.
    [6] Pritchett, P. and Zisserman, A. Wide baseline stereo matching. Proc. Int. Conf. on ComputerVision (ICCV),1998:754–760.
    [7] Torr, P. H. S. and Zisserman, A. MLESAC: A new robust estimator with application toestimating image geometry. Computer Vision and Image Understanding,78(1):138–1562000.
    [8] Katsaggelos A. K. and Banham M. R. Digital image restoration. IEEE Signal ProcessingMagazine,14(2):24-41,1997.
    [9] Gao J. S., Yang T., and Yu Z. J. Image template matching algorithm for removing uselessfeature points. Advanced Materials Research,271-273:19-23,2011.
    [10] Kang H., Hebert M., and Kanade T. Image matching with distinctive visual vocabulary. IEEEWorkshop on Applications of Computer Vision (WACV),2011:402-409.
    [11] Cong Y., Chen X., and Li Y. Research on the SIFT algorithm in image matching. AppliedMechanics and Materials,121-126:4656-4660,2011.
    [12] Ji F., Huang D., Deng C., and Zhang Y., et al. Robust curvelet-domain image watermarkingbased on feature matching. Int. J. Computer Mathematics,88(18):3931-3941,2011.
    [1]焦李成,侯彪,王爽,刘芳著.图像多尺度几何分析理论与应用.西安电子科技大学出版社,2008.
    [2] Candes E. and Guo F. New multiscale transforms, minimum total variation synthesis:Applications to edge-preserving image reconstruction. Signal Processing,82(11):1519-1543,2002.
    [3] Candes E. and Donoho D. Ridgelets: the key to higher-dimensional intermittency?. Phil.Trans. R. Soc. Lond. A.,357(1760):2495-2509,1999.
    [4] Starek J., Candes E., and Donoho D. The Curvelet Transform for Image Denoising.IEEETransactions on Image Processing,11(6):670-684,2002.
    [5] Starek J. and Lopez B. Image reconstruction by the wavelet transform applied to aperturesynthesis. Astronomy and Astrophysics,283(1):349-360,1994.
    [6] O’Ruanaidh J. and Pun T. Rotation, scale and translation invariant spread spectrum digitalimage watermarking. Signal Process.,66(3):303-317,1998.
    [7] Simitopoulos D., Koutsonanos D., and Strintzis M. Robust image watermarking based ongeneralized radon transformations. IEEE Trans. Circ. Syst. Video Tech.,13(8):732-745,2003.
    [8] Lin C., Wu M., Bloom J., Cox I., Miller M., and Lui Y. Rotation, scale and translationresilient watermarking for images. IEEE Trans. Image Process.,10(5):767-782,2001.
    [9] Jayalakshmi M., Merchant S., and Desai U. Digital watermarking in contourlet domain. Proc.IEEE Int. Conf. Pattern Recognition,2006:861-864.
    [10] Campisi P., Kundur D., and Neri A. Robust digital watermarking in the ridgelet domain. IEEESignal Process. Lett.,11(10):826-830,2004.
    [11] Tao P., Dexter S., and Eskicioglu A. Robust digital image watermarking in curvelet domain.Proc. SPIE,6819:68191B–68191B-12,2008.
    [12] Bas P., Chassery J. M., and Macq B. Geometrically invariant watermarking using featurepoints. IEEE Trans. Image Process.,11(9):1014-1028,2002.
    [13] Lee H., Kim H., and Lee H. Robust image watermarking using local invariant features. Opt.Eng.,45(3)1-11,2006.
    [14] Seo J. and Yoo C. Image watermarking based on invariant regions of scale-spacerepresentation. IEEE Trans. Signal Process.,54(4):1537-1549,2006.
    [15] Gao X., Deng C., Li X., and Tao D. Geometric distortion insensitive image watermarking inaffine covariant regions. IEEE Trans. Syst. Man Cybern. C Appl. Rev.,40(3):278-286,2010.
    [16] Candes E., Demanet L., and Donoho D. Fast discrete curvelet transform. Available:www.curvelet.org
    [17] Lowe D. Object recognition from local scale-invariant features. Proc. IEEE Int. Conf.Computer Vision,2:1150-1157,1999.
    [18] Bezdek J. Pattern recognition with fuzzy objective function algorithms. New York: PlenumPress,1981.
    [19] Hong I., Kim I., and Han S. A blind watermarking technique using wavelet transform. Proc.IEEE Sym. Industrial Electronics,3:1946-1950,2001.
    [20] Petitcolas F. Watermarking schemes evaluation. IEEE Signal Process. Mag.,17(5):58-64,2000.
    [21] Ji F., Huang D., Deng C., et al. Robust curvelet-domain image watermarking based on featurematching. Int. J. Computer Mathematics,88(18):3931-3941,2011.
    [1] O’Ruanaidh J. and Pun T. Rotation, scale and translation invariant spread spectrum digitalimage watermarking. Signal Process.,66(3):303-317,1998.
    [2] Simitopoulos D., Koutsonanos D., and Strintzis M. Robust image watermarking based ongeneralized Radon transformation. IEEE Trans. Circ. Syst. Video Tech.,13(8):732-745,2003.
    [3] Pereira S. and Pun T. Robust template matching for affine resistant image watermarks. IEEETrans. Image Process.,9(6):1123-1129,2000.
    [4] Teh C. and Chin R. On image analysis by the methods of moments. IEEE Trans. PatternAnalysis and Machine Intelligence,10(4):486-513,1998.
    [5] Shu H., Luo L., and Coatrieux J. Moment-based approaches in imaging part1: basic features.IEEE Engineering in Medicine and Biology Magazine,26(5):70-74,2007.
    [6] Shu H., Luo L., and Coatrieux J. Moment-based approaches in imaging part2: invariance.IEEE Engineering in Medicine and Biology Magazine,27(1):81-83,2008.
    [7] Chong C., Raveendran P., and Mukundan R. The scale invariants of pseudo-Zernike moments.Pattern Anal. Appl.,6:176-184,2003.
    [8] Chong C., Raveendran P., and Mukundan R. Translation invariants of Zernike moments.Pattern Recognit.,36:1765-1773,2003.
    [9] Hu M. Visual pattern recognition by moment variants. IEEE Trans. Inform. Theory, vol. IT-8,no.2, pp.179-187,1962.
    [10] Teague M. R. Image analysis via the general theory of moments. J. Opt. Soc. Am., vol.70, pp.920-930,1980.
    [11] Seo J. and Yoo C. Local image watermarking based on feature points of scale-spacerepresentation. Pattern Recogn.,37(7):1365-1375,2004.
    [12] Deng C., Gao X., Li X., and Tao D. A local Tchebichef moments-based robust imagewatermarking. Signal Process.,89(8):1531-1539,2009.
    [13] Bas P., Chassery J., and Macq B. Geometrically invariant watermarking using feature points.IEEE Trans. Image Process.,11(9):1014-1028,2002.
    [14] Tang C. and Hang H. A feature-based robust digital image watermarking scheme. IEEE Trans.Signal Process.,51(4):950-959,2003.
    [15] Gao X., Deng C., Li X., and Tao D. Geometric distortion insensitive image watermarking inaffine covariant regions. IEEE Trans. Syst. Man Cybern. C Appl. Rev.,40(3):278-286,2010.
    [16] Deng C., Gao X., Li X., and Tao D. Local histogram based geometric invariant imagewatermarking. Signal Process.,90(12):3256-3264,2010.
    [17] Wang X., Hou L., and Wu J. A feature-based robust digital image watermarking againstgeometric attacks. Image Vis. Comput.,26(7):980-989,2008.
    [18] Tsai J., Huang W., Kuo Y., and Horng M. Joint robustness and security enhancement forfeature-based image watermarking using invariant feature regions. Signal Process.,92(6):1431-1445,2012.
    [19] Zheng D., Wang S., and Zhao J. RST invariant watermarking algorithm with mathematicalmodeling and analysis of the watermarking processes. IEEE Trans. Image Process.,18(5):1055-1068,2009.
    [20] Lowe D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis.,60(2):91-110,2004.
    [21] Fischler M. and Bolles R. Random sample consensus: a paradigm for model fitting withapplications to image analysis and automated cartography. Comm. ACM,24(6):381-395,1981.
    [22] Felzenszwalb P. and Huttenlocher D. Efficient graph-based image segmentation Int. J.Comput. Vis.,59(2):167-181,2004.
    [23] Li L., Yuan X., Lu Z., and Pan J. Rotation invariant watermark embedding based onscale-adapted characteristic regions. Inform. Sci.,180(15):2875-2888,2010.
    [24] Wang X., Wu J., and Liu P. A new digital image watermarking algorithm resilient todesynchronization attacks. IEEE Trans. Inform. Forensics Security,2(4):655-663,2007.
    [25] Elshoura S. and Megherbi D. Comparison of Zernike and Tchebichef moments for imagetampering detection sensitivity and watermark recovery. Proc. IEEE Int. Conf. Technologiesand Homeland Security,2008:615-619.
    [26] Xin Y., Liao S., and Pawlak M. Circularly orthogonal moments for geometrically robustimage watermarking. Pattern Recogn.,40(12):3740-3752,2007.
    [27] Petitcolas F. Watermarking schemes evaluation. IEEE Signal Process. Mag.,17(5):58-64,2000.
    [28]Gao X., Deng C., Li X., and Tao D. Local feature based geometric-resistant image informationhiding. Cogn. Comput.,2(2):68-77,2010.
    [29] Ji R., Duan L., and Cheng J., et al. Location discriminative vocabulary coding for mobilelandmark search. Int. J. Comput. Vis.,96(3):290-314,2012.
    [30] Ji R., Yao H., and Liu W., et al. Task-dependent visual-codebook compression. IEEE Trans.Image Process.,21(4):2282-2293,2012.
    [1]黄继武,谭铁牛.图像隐形水印综述.自动化学报,26(5):645-655,2000.
    [2] Gao X., Deng C., Li X., and Tao D. Geometric distortion insensitive image watermarking inaffine covariant regions. IEEE Trans. Systems, Man, and Cybernetics, Part C: Applicationsand Reviews,40(3):278-286,2010.
    [3]周旭.图形图象中数字水印若干技术的研究.浙江大学,博士学位论文,2008.
    [4]闫屾,赵耀,倪蓉蓉.特征融合的JPEG图像隐写分析方案.中国科技论文在线,6(1):76-82,2011.
    [5] Kari J. Theory of cellular automata: A survey. Theoretical Computer Science,334(1-3):3-33,2005.
    [6]冀峰,安玲玲,邓成,高新波.基于多重元胞自动机的图像水印加密算法.自动化学报,To be published,2012.
    [7] Wolfram S. Cellular automata as models of complexity. Nature,311:419-424,1984.
    [8] Zhai Y., Yi Z., Deng P. On behavior of two-dimensional cellular automata with anexceptional rule. Information Sciences,179(5):613-622,2009.
    [9] Feng Z., Zhang Y., and Liu Y. Image encryption based on reversible cellular automata.Advances in Information and Systems Sciences,2:178-186,2007.
    [10] Chatzichristofis S., Mitzias D., Sirakoulis G., and Boutalis Y. A novel cellular automatabased technique for visual multimedia content encryption. Optics Communications,283(21):4250-4260,2010.
    [11] CVG-UGR Image Database. Available: http://decsai.ugr.es/cvg/dbimagenes/index.php.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700