用户名: 密码: 验证码:
基于特征值优化理论的小干扰稳定约束最优潮流研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电力系统互联规模日益扩大,系统间低频振荡时有发生,小干扰稳定问题日趋突出,对电力系统的安全稳定运行带来了致命的影响。电力系统稳定器PSS等阻尼控制装置虽可有效地抑制振荡,但不能确保低频振荡就此消失。因此在节能调度的同时,运行人员十分期望系统的运行预留一定的稳定裕度,紧急情况下,能通过调整机组出力的方式,消除低频振荡,避免系统瓦解。为此,小干扰稳定约束最优潮流应运而生,作为发电调度的有力工具它将系统的经济性和安全性有机地结合,是抑制低频振荡的重要补充,相关研究正引起各国研究人员的广泛兴趣。
     由于系统状态矩阵谱横坐标函数的隐式特征和非李普希茨特性,小干扰稳定约束最优潮流的建模异常困难,实际上这一问题的数学本质是特征值优化问题。随着半定规划和现代内点理论的发展,特征值优化理论日趋成熟,已在多个领域有着成功的应用。
     基于特征值优化理论,本文提出了一种小干扰稳定约束最优潮流的非线性半定规划模型和算法。所提方法是利用特征值优化理论,解决电力系统的小干扰稳定问题的有益尝试,具有重要的理论和实用价值。主要研究成果如下:
     1.提出了一种小干扰稳定约束最优潮流的非线性半定规划模型,它借助于李雅谱诺夫定理引入正定约束来表达小干扰稳定,是原问题的精确表达,避免了满足小干扰稳定而带来的不必要经济代价。同时,将非对称矩阵的特征值优化问题转换为对称矩阵的半定规划问题,克服了灵敏度算法中由于谱横坐标函数的非李普希茨特性引起的迭代振荡问题。
     2.提出了一种将半定约束等价转换为光滑、凹、非线性约束的方法。所提转换方法将半定规划中半定约束转换为非线性约束后,整个模型变为非线性规划模型,从而可以利用高效的现代内点算法求解。
     3.通过选择控制器参数为变量,提出了阻尼控制器协调优化的非线性半定规划模型,它可以分别或同时对系统内PSS、FACTS参数进行协调优化。在建立模型时还可考虑多种运行方式,使模型解适应更大的运行范围,更具鲁棒性。
     全文分为六章,归纳如下:
     第一章,介绍了小干扰稳定约束最优潮流问题的研究背景,回顾了国内外相关研究现状,指出了各种方法的优缺点,阐述了建立小干扰稳定约束最优潮流精确模型的动机。
     第二章,分别介绍了常规最优潮流问题和及其现代内点算法,回顾了电力系统多机动态模型及小干扰稳定分析问题的数学模型。分析了最优潮流问题和小干扰稳定分析问题的联系,指出研究小干扰稳定约束最优潮流问题的难点,为后续章节的展开奠定基础。
     第三章,详细论述了特征值优化理论,包括其发展历史,介绍了线性半定规划模型、非线性半定规划模型以及求解算法,为后续章节提出的数学模型作理论准备。
     第四章,讨论了小干扰稳定约束最优潮流问题,提出了这一问题的非线性半定规划模型,并采用模型转换的方法将非线性半定规划模型精确转换为非线性规划模型,用现代内点法求解。同时还对WSCC3机9节点系统、Kundur4机10节点系统和IEEE5机14节点系统进行了仿真计算和分析,验证了模型的有效性和算法的正确性及鲁棒性。
     第五章,以第四章的理论成果为基础,提出了阻尼控制器协调优化的非线性半定规划模型,并采用相同的模型转换方法进行求解。通过两个系统的仿真结果,验证了模型的有效性。
     第六章,概括总结了全文的主要研究工作及其创新点,指出了今后有待进一步开展的研究工作。
The interconnections of large regional power network bring more challenges for the security of modern power system. Due to small-signal instability, low frequency oscillations pose a lethal threat to power system. Although the damping controllers can enhance the small signal stability effectively, it cannot guarantee that no oscillations occur. Therefore, it requires dispatchers to schedule the system generation not only based on economic object with the aid of the powerful tool Optimal Power Flow (OPF), but also ensuring a security margin with respect to small signal stability. In this context, it has been proposed to include small signal stability constraints into the optimal power flow model, thus creating Small-Signal Stability Constrained OPF (SSSC-OPF) techniques. They have aroused more and more interest recently.
     For the implicit and non-Lipschitz property of spectral abscissa of system state matrix, it is a big challenge to model the SSSC-OPF directly. In general, SSSC-OPF is an eigenvalue optimization problem naturally. This theory had not made much progress for a long time, until the dramatic breakthrough in the interior point methods for the semi-definite programming (SDP). Nowadays, the therory has been introduced to many fields, having a number of successful applications.
     Based on the eigenvalue optimization, this dissertation presents a nonlinear semi-definite programming (NLSDP) model and algorithm for SSSC-OPF. The research has made important contribution to theory and practicality as well as a good attempt for enhancing small-signal stability using eigenvalue optimization. The main research achievements are as follows:
     1. A nonlinear semi-definite programming (NLSDP) model for SSSC-OPF is proposed. According to the Lyapunov theorem, positive definite constraints are introduced to describe the small signal stability through an accurate equivalent expression. Thus, the SSSC-OPF will not spend more economic cost to meet the small-signal stability constraints. Furthermore, by transforming the eigenvalue optimization of a nonsymmetric matrix to SDP model over a symmetric matrix, the oscillation of the iterations of sensitivity-based algorithm because of the non-Lipschitz of spectral abscissa will not be suffered.
     2. A transforming method which can formulate the positive definite constraints into smooth concave and nonlinear ones is proposed. Then the NLSDP model is transformed into a nonlinear programming (NLP), one which can be solved by the modern interior point method.
     3. By choosing the controller parameters as variables, a NLSDP model for coordinated tuning of damping controller is proposed. It can coordinate the parameters of PSS and FACTS devices simultaneously or respectively. Besides, it can consider a wide range of operating conditions leading to a robust design.
     There are six chapters in this dissertation. The main contents of the dissertation are arranged as follows:
     In chapter1, the background of small-signal stability constrained OPF problem is introduced at first. The literature of the problem is also reviewed and the advantages and disadvantages of the reviewed methods are pointed out. Besides, the motivations of proposing an accurate model of SSSC-OPF based on eigenvalue optimization are analyzed in this chapter as well.
     The conventional optimal power flow model and the modern interior point method are presented respectively in chapter2. Furthermore, multi-machine dynamic models and the small-signal stability analysis model are introduced. The relationships between the OPF problem and small-signal stability analysis are discussed. Meanwhile, the difficulty of SSSC-OPF is analyzed. This chapter is the foundation for the discussions of the coming chapters.
     In chapter3, the eigenvalue optimization is introduced in details including its history, linear semi-definite programming model, nonlinear semi-definite programming model and their algorithm. This chapter provides the theoretical preparation for the coming chapters.
     The small-signal stability constrained OPF problems are discussed in Chapter4, and the nonlinear semidefinite programming model of SSSC-OPF is proposed as well. By using the model transformation method, the NLSDP model is formulated to a NLP model accurately, and then solved by the modern interior point method. Extensive numerical simulations on WSCC3machine9bus system, Kundur4machine10bus system and IEEE5machine14bus system have shown that effectiveness of the model and correctness and robustness of the algorithm.
     The chapter5extends the SSSC-OPF model in chapter and proposes a nonlinear semidefinite programming model for co-ordination of stabilizer parameter settings. It is solved by the same model transformation method. The feasibility is validated by the simulations of two systems.
     The conclusions and remained questions worthy to be studied further are given in chapter6.
引文
[1]Steinmetz C. P. Power control and stability of electric generating stations [J]. AIEE Trans,1920, ⅩⅩⅩⅨ(Part 11):1215-1287.
    [2]Definitions IEEE/CIGRE Joint Task Force on Stability Terms and. Definition and Classification of Power System Stability [J]. IEEE Trans on Power Systems,2004,19(3):1387-1401.
    [3]王康,金宇清,甘德强,鞠平,石立宝,倪以信.电力系统小信号稳定分析与控制综述[J].电力自动化设备,2009,29(05):10-19.
    [4]P. Kundur. Power System Stability and Control [M]. New York:McGraw-Hill,1994.
    [5]Seydel R. Practical Bifurcation and Stability Analysis:From Equilibrium to Chaos [M]. New York: Springer-Verlag,1994.
    [6]Canizares C. A.. Voltage Stability Assessment:Concepts,Practices and Tools [M]. IEEE/PES Power System Stability Subcommittee:Tech.Rep.SP101PSS,2002.
    [7]Canizares C. A., Alvarado F. L., DeMarco C. L., Dobson I., F.Long W. Point of Collapse Method Applied to AC/DC Power Systems [J]. IEEE Trans on Power Systems,1992,7(2):673-683.
    [8]Ajjarapu V., Lee. B. Bifurcation Theory and its Application to Nonlinear Dynamical Phenomena in an Electrical Power System [J]. IEEE Trans on Power Systems,1992,7(1):424-431.
    [9]K.Kim, Schattler H., Venkatasubramanin V., Zaborszkv J., Hirsch P. Methods for calculating oscillations in large power Systems [J]. IEEE Trans on Power Systems,1997,12(4):1639-1648.
    [10]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007.
    [11]薛禹胜,郝思鹏,刘俊勇, LEDWICH Gerard关于低频振荡分析方法的评述[J].电力系统自动化,2009,33(03):1-8.
    [12]王锡凡,方万良,杜正春.现代电力系统分析[M].北京:科学出版社,2003.
    [13]R.T.Byerly, R.J.Bennon, D.E.Sherman. Eigenvalue Analysis of Synchronizing Power Flow Oscillations in Large Electric Power Systems [J]. IEEE Trans on PAS,1982, PAS-101(1):235-243.
    [14]G.C.Verghese, I.J.Perez-Arriaga, F.C.Schweppe. Selective Modal Analysis with Application to Electric Power Systems,Part I:Heuristic Introduction,Part Ⅱ:The Dynamic Stability Problem [J]. IEEE Trans on Power Apparatus and Systems,1982, PAS-101(9):3117-3134.
    [15]Angelidis G., Semlyen A. Improved methodologies for the calculation of critical eigenvalues in small signal stability analysis [J]. IEEE Transactions on Power Systems,1996,11(3):1209-1217.
    [16]L.Wang, A.Semlyen. Application of Sparse Eigenvalue Techniques to the Small-Signal Stability Analysis of Large Power Systems [J]. IEEE Trans on Power Systems,1990,5(2):706-714.
    [17]谷寒雨,陈陈.一种新的大型电力系统低频机电模式计算方法[J].中国电机工程学报,2000,20(09):51-55.
    [18]Zhengchun Du, Wei Liu, Wanliang Fang. Calculation of rightmost eigenvalues in power systems using the Jacobi-Davidson method [J]. IEEE Transactions on Power Systems,2006,21(1):234-239.
    [19]Brochure CIGRE Technical. Advanced Angle Stability Controls [M]. United State:CIGRE TF38.02.17, 1999.
    [20]周双喜,苏小林.电力系统小干扰稳定性研究的新进展[J].电力系统及其自动化学报,2007,19(2):1-8.
    [21]刘涛,宋新立,汤涌,仲悟之,吴国旸,刘楠.特征值灵敏度方法及其在电力系统小干扰稳定分析中的应用[J].电网技术,2010,34(4):82-87.
    [22]Pal B., Chaudhuri B. Robust control in power systems [M]. Springer Verlag,2005.
    [23]Demello F. P., Concordia C. Concepts of Synchronous Machine Stability as Affected by Excitation Control [J]. IEEE Transactions on Power Apparatus and Systems,1969, PAS-88(4):316-329.
    [24]Larsen E. V., Swann D. A. Applying Power System Stabilizers Part I:General Concepts [J]. IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(6):3017-3024.
    [25]Gibbard M. J. Co-ordinated design of multimachine power system stabilisers based on damping torque concepts [J]. Generation, Transmission and Distribution, IEE Proceedings C,1988,135(4):276-284.
    [26]Pourbeik P., Gibbard M. J. Damping and synchronizing torques induced on generators by FACTS stabilizers in multimachine power systems [J]. IEEE Transactions on Power Systems,1996,11(4): 1920-1925.
    [27]Pourbeik P., Gibbard M. J. Simultaneous coordination of power system stabilizers and FACTS device stabilizers in a multimachine power system for enhancing dynamic performance [J]. IEEE Transactions on Power Systems,1998,13(2):473-479.
    [28]Martins N. Impact of interactions among power system controls [J]. CIGRE Special Publication 38.02.16, 2000, Technical Brochure 166
    [29]Gibbard M. J. Co-ordination of multimachine stabiliser gain settings for a specified level of system damping performance [J]. Generation, Transmission and Distribution, IEE Proceedings C,1982,129(2): 45-48.
    [30]Gibbard M. J. Robust design of fixed-parameter power system stabilisers over a wide range of operating conditions [J]. IEEE Transactions on Power Systems,1991,6(2):794-800.
    [31]Gibbard M. J., Vowles D. J. Reconciliation of methods of compensation for PSSs in multimachine systems [J]. IEEE Transactions on Power Systems,2004,19(1):463-472.
    [32]Chung C. Y., Wang K. W., Tse C. T., Bian X. Y., David A. K. Probabilistic eigenvalue sensitivity analysis and PSS design in multimachine systems [J]. IEEE Transactions on Power Systems,2003,18(4): 1439-1445.
    [33]Chow J. H., Sanchez-Gasca J. J. Pole-placement designs of power system stabilizers [J]. IEEE Transactions on Power Systems,1989,4(1):271-277.
    [34]da Cruz Jose"Jaime, Cera Zanetta Jr Luiz. Stabilizer design for multimachine power systems using mathematical programming [J]. International Journal of Electrical Power & amp; Energy Systems,1997, 19(8):519-523.
    [35]Zanetta L. C., Jr., Jose Jaime Da Cruz. An incremental approach to the coordinated tuning of power systems stabilizers using mathematical programming [J]. IEEE Transactions on Power Systems,2005, 20(2):895-902.
    [36]Pal B. C. Robust pole placement versus root-locus approach in the context of damping interarea oscillations in power systems [J].IEE Proceedings Generation, Transmission and Distribution,2002, 149(6):739-745.
    [37]Pal B. C,, Coonick A. H., Jaimoukha I. M., El-Zobaidi H. A linear matrix inequality approach to robust damping control design in power systems with superconducting magnetic energy storage device [J]. IEEE Transactions on Power Systems,2000,15(1):356-362.
    [38]Kamwa I., Trudel G., Gerin-Lajoie L. Robust design and coordination of multiple damping controllers using nonlinear constrained optimization [J]. IEEE Transactions on Power Systems,2000,15(3): 1084-1092.
    [39]Li-Jun Cai, Erlich I. Simultaneous coordinated tuning of PSS and FACTS damping controllers in large power systems [J]. IEEE Transactions on Power Systems,2005,20(1):294-300.
    [40]Jabr R. A., Pal B. C,, Martins N., Ferraz J. C. R. Robust and coordinated tuning of power system stabiliser gains using sequential linear programming [J]. IET Generation, Transmission & Distribution, 2010,4(8):893-904.
    [41]Jabr R. A., Pal B. C., Martins N. A Sequential Conic Programming Approach for the Coordinated and Robust Design of Power System Stabilizers [J]. IEEE Transactions on Power Systems,2010,25(3): 1627-1637.
    [42]Zhang P., Coonick A. H. Coordinated synthesis of PSS parameters in multi-machine power systems using the method of inequalities applied to genetic algorithms [J]. IEEE Transactions on Power Systems, 2000,15(2):811-816.
    [43]Chaturvedi D. K., Malik O. P., Kalra P. K. Experimental studies with a generalized neuron-based power system stabilizer [J]. IEEE Transactions on Power Systems,2004,19(3):1445-1453.
    [44]Hariri A., Malik O. P. A fuzzy logic based power system stabilizer with learning ability [J]. IEEE Transactions on Energy Conversion 1996,11(4):721-727.
    [45]Chung C. Y., Lei Wang, Howell F., Kundur P. Generation rescheduling methods to improve power transfer capability constrained by small signal stability [J]. IEEE Trans on Power Systems,2004,19(1): 524-530.
    [46]Frank Stephen, Steponavice Ingrida, Rebennack Steffen. Optimal power flow:a bibliographic survey I [J]. Energy System,2012,
    [47]Xiaojiao Tong, Yongping Zhang, Wu F. F. A decoupled semismooth Newton method for optimal power flow [C]; proceedings of the Power Engineering Society General Meeting, IEEE,2006.
    [48]Carpentier. Contribution to the economic dispatch problem [J]. Bull Soc Fr Electr,1962,8(3):431-447.
    [49]Dommel H., Tinney W. Optimal power flow solutions [J]. IEEE Trans Power Appar Syst,1968,87(10): 1866-1876.
    [50]Sun D. I., Ashley B., Brewer B., Hughes A., Tinney W. F. Optimal Power Flow By Newton Approach [J].,IEEE Transactions on Power Apparatus and Systems,1984, PAS-103(10):2864-2880.
    [51]Stott Brian, Hobson Eric. Power System Security Control Calculations Using Linear Programming, Part Ⅱ[J]. IEEE Transactions on Power Apparatus and Systems,1978, PAS-97(5):1721-1731.
    [52]Stott Brian, Hobson Eric. Power System Security Control Calculations Using Linear Programming, Part Ⅰ [J]. IEEE Transactions on Power Apparatus and Systems,1978, PAS-97(5):1713-1720.
    [53]Burchett R. C., Happ H. H., Wirgau K. A. Large Scale Optimal Power Flow [J]. IEEE Transactions on Power Apparatus and Systems,1982, PAS-101(10):3722-3732.
    [54]Granville S. Optimal reactive dispatch through interior point methods [J]. IEEE Transactions on Power Systems,1994,9(1):136-146.
    [55]Hua Wei, Sasaki H., Kubokawa J., Yokoyama R. An interior point nonlinear programming for optimal power flow problems with a novel data structure [J]. IEEE Transactions on Power Systems,1998,13(3): 870-877.
    [56]Torres G. L., Quintana V. H. An interior-point method for nonlinear optimal power flow using voltage rectangular coordinates [J]. IEEE Transactions on Power Systems,1998,13(4):1211-1218.
    [57]Torres G. L., Quintana V. H. On a nonlinear multiple-centrality-corrections interior-point method for optimal power flow [J]. IEEE Transactions on Power Systems,2001,16(2):222-228.
    [58]Sousa A. A., Torres G. L., Canizares C. A. Robust Optimal Power Flow Solution Using Trust Region and Interior-Point Methods [J]. Robust Optimal Power Flow,2011,26(2):487-499.
    [59]Bai Xiaoqing, Wei Hua, Fujisawa Katsuki, Wang Yong. Semidefinite programming for optimal power flow problems [J]. International Journal of Electrical Power; Energy Systems,2008,30(6-7):383-392.
    [60]白晓清,韦化,Fujisawa Katsuki求解最优潮流问题的内点半定规划法[J].中国电机工程学报,2008,28(19):56-64.
    [61]Wood A., Wollenberg B. Power Generation Operation and Control [M]. New York:Wiley,1996.
    [62]Rau N. S. Issues in the path toward an RTO and standard markets [J]. Power Systems, IEEE Transactions on,2003,18(2):435-443.
    [63]Lewis Adrian S., Overton Michael L. Eigenvalue optimization [J]. Acta Numerica,1996,5:149-190.
    [64]汪定伟,王俊伟,王洪峰.智能优化方法[M].北京:高等教育出版社,2007.
    [65]J. Kallrath, M. Pardalos P., S. Rebennack. Optimization in the Energy Industry [M]. Berlin:Springer Berlin Heidelberg,2009.
    [66]莫逆.基于PSO求解考虑小干扰稳定约束的最优潮流[M].2008全国博士生学术论坛——电气工程论文集.2008.
    [67]童小娇,周任军,邓学华,杨洪明.电力系统的稳定平衡解模型及计算方法[J].中国电机工程学 报,2008,28(13):58-63.
    [68]郑伟.基于内点法考虑小扰动稳定约束的最优潮流算法研究[D].天津;天津大学,2010.
    [69]邢洁,陈陈,武鹏.考虑小干扰稳定约束的有功优化调度[J].电力系统自动化,2010,34(12):24-28.
    [70]Condren J., Gedra T. W. Expected-Security-Cost Optimal Power Flow With Small-Signal Stability Constraints [J]. IEEE Trans on Power Systems,2006,21(4):1736-1743.
    [71]S. K. M. Kodsi, Canizares C. A. Stability-constrained optimal power flow and its application to pricing power system stabilizers [C]; proceedings of the Proc 37th North Amer Power Symp, Ames, Iowa, F Oct., 2005.
    [72]S. K. M. Kodsi, Canizares C. A. Application of a Stability-Constrained Optimal Power Flow to Tuning of Oscillation Controls in Competitive Electricity Markets [J]. IEEE Trans on Power Systems,2007, 22(4):1944-1954.
    [73]Canizares C. A., Mithulananthan N., Milano F., Reeve J. Linear performance indices to predict oscillatory stability problems in power systems [J]. IEEE Transactions on Power Systems,2004,19(2): 1104-1114.
    [74]Zarate-Minano R., Milano F., Conejo A.J. An OPF Methodology to Ensure Small-Signal Stability [J]. IEEE Trans on Power Systems,2011,26(3):1050-1061.
    [75]Rao P. S., Sen I. Robust pole placement stabilizer design using linear matrix inequalities [J]. IEEE Transactions on Power Systems,2000,15(1):313-319.
    [76]Chaudhuri B., Majumder R., Pal B. C. Wide-area measurement-based stabilizing control of power system considering signal transmission delay [J]. IEEE Transactions on Power Systems,2004,19(4): 1971-1979.
    [77]Ramos R. A., Alberto L. F. C., Bretas N. G. A new methodology for the coordinated design of robust decentralized power system damping controllers [J]. IEEE Transactions on Power Systems,2004,19(1): 444-454.
    [78]Majumder R., Pal B. C., Dufour C., Korba P. Design and real-time implementation of robust FACTS controller for damping inter-area oscillation [J]. Power Systems, IEEE Transactions on,2006,21(2): 809-816.
    [79]Benson H. Y. Interior-Point Methods for Nonlinear,Second-Order Cone, and Semidefinite Programming [D]. Princeton; Princeton University,2001.
    [80]Armijo. L. Minimization of functions having lipschitz continuous first-partial derivatives [J]. Pacific J Mathematics,1966,16(1):1-3.
    [81]Vanderbei Robert J. LOQO:An interior point code for quadratic programming [J]. Optimization Methods and Software,1999,11(1-3):451-484.
    [82]Makarov Y. V., Maslennikov V. A., Hill D. J. Revealing loads having the biggest influence on power system small disturbance stability [J]. IEEE Transactions on Power Systems,1996,11(4):2018-2023.
    [83]I.Tadjbakhsh, J.B.Keller. Strongest columns and isoperimetric inequalities for eigenvalues [J]. J. Appl. Mech.,1962,29(159-164.
    [84]N.Olhoff, S.Rasmussen. On single and bimodal optimum buckling loads of clamped columns [J]. Int. J. Solids Struct,1977,13(7):605-614.
    [85]SJ.Cox, M.L.Overton. The optimal design of columns against buckling [J]. SIAM J. Math. Anal,1992, 23(2):287-325.
    [86]Donath W.E., Hoffman A.J. Lower bounds for the partitioning of graphs [J]. IBM Journal of Research and Development,1973,17(5):420-425.
    [87]R.Fletcher. Semi-definite matrix constraints in optimization [J]. SIAM J. Control Optim,1985,23(4): 493-513.
    [88]M.L.Overton, R.S.Womersley. Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices [J]. Mathematical Programming,1993,62(1-3):321-357.
    [89]Lewis A.S. The mathematics of eigenvalue optimization [J]. Math Program,2003, Ser.B(97):155-176.
    [90]Bellman R., Fan K. On systems of linear inequalities in Hermitian matrix variables [J]. Convexity,1963, 7:1-11.
    [91]Karmarkar N. A new polynomial time algorithm for linear programming [J]. Combinatorica,1984,4: 373-395.
    [92]Y.Nesterov, A.Nemirovskii. Interior Point Polynomial Methods in Convex Programming [M]. Philadelphia:SIAM,1994.
    [93]Boyd S., Ghaoui L. El, Feron E., Balakrishnan V. Linear Matrix Inequalities in System and Control Theory [M]. Philadelphia:SIAM,1994.
    [94]Fuentes-Loyola R., Quintana V. H. Medium-term hydrothermal coordination by semidefinite programming [J]. IEEE Transactions on Power Systems,2003,18(4):1515-1522.
    [95]韦化,吴阿琴,白晓清.一种求解机组组合问题的内点半定规划方法[J].中国电机工程学报,2008,28(01):35-40.
    [96]Benson S. J., Ye Y., Zhang X. Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization [J]. SIAM Journal on Optimization,2000,10(2):443-461.
    [97]J. F. Sturm. Using SeDuMi 1.02, a Matlab Toolbox for Optimization over Symmetric Cones [J]. Optimization Methods and Software,1999,11(1-4):625-653.
    [98]Toh K.C., Todd M.J., Tutiincil R.H. SDPT3—a MATLAB software package for semidefinite programming, version 1.3 [J]. Optimization Methods and Software,1999,11(1-4):545-581.
    [99]Yamashita M., Fujisawa K., Kojima M. Implementation and evaluation of SDPA 6.0 (semidefinite programming algorithm 6.0) [J]. Optimization Methods and Software,2003,18(4):491-505.
    [100]Wolkowicz H., Saigal R., Vandenberghe L. Handbook of semidefinite programming:theory, algorithms, and applications [M]. Springer,2000.
    [101]Fares B., Noll D., Apkarian P. Robust Control via Sequential Semidefinite Programming [J]. SIAM J Control Optim,2002,40(6):1791-1820.
    [102]Shapiro A. First and second order analysis of nonlinear semidefinite programs [J]. Mathematical Programming,1997,77(1):301-320.
    [103]Forsgren A. Optimality conditions for nonconvex semidefinite programming [J]. Mathematical Programming,2000,88(1):105-128.
    [104]Grana Drummond LM, Iusem A.N., Svaiter BF. On the central path for nonlinear semidefinite programming [J]. RAIRO-Operations Research,2000,34(03):331-345.
    [105]Kanzow Christian, Nagel Christian, Kato Hirokazu, Fukushima Masao. Successive linearization methods for nonlinear semidefinite programs [J]. Comput Optim Appl,2005,31:251-273.
    [106]李成进,孙文瑜.解非线性半定规划的过滤集-逐次线性化方法[J].中国科学A,2009,39(8):977-995.
    [107]Correa Rafael, C Hector Ramirez. A global algorithm for nonlinear semidefinite programming [J]. SIAM Journal on Optimization,2004,15(1):303-318.
    [108]Sun J., Sun D., Qi L. A squared smoothing Newton method for nonsmooth matrix equations and its applications in semidefinite optimization problems [J]. SIAM Journal on Optimization,2004,14(3): 783-806.
    [109]Jarre F. An interior method for nonconvex semidefinite programs [J]. Optimization and Engineering, 2000,1(4):347-372.
    [110]Yamashita Hiroshi, Yabe Hiroshi, Harada Kouhei. A primal-dual interior point method for nonlinear semidefinite programming [J]. Math Program,2011, Ser.A(
    [111]Stingl Michael. On the Solution of Nonlinear Semidefinite Programs by Augmented Lagrangian Methods [D]; University of Erlangen,2005.
    [112]Burer Samuel, Monteiro Renato D.C., Zhang Yin. Solving a class of semidefinite programs via nonlinear programming [J]. Math Program,2002, Ser. A(93):97-122.
    [113]Benson Hande Y., Vanderbei Robert J. Solving problems with semidefinite and related constraints using interior-point methods for nonlinear programming [J]. Math Program,2003, Ser. B(95):279-302.
    [114]Burer Samuel, Monteiro Renato D.C. A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization [J]. Math Program,2003, Ser. B(95):329-357.
    [115]Nesterov Y., Nemirovskii A. Interior-point polynomial algorithms in convex programming [M]. Philadelphia; Society for Industrial and Applied Mathematics,1994.
    [116]Kocvara Michal, Stingl Michael. A Code for Convex Nonlinear and Semidefinite Programming [J]. Optimization Methods and Software,2003,18(3):317-333.
    [117]Freund RolandW., Jarre Florian, Vogelbusch Christoph H. Nonlinear semidefinite programming: sensitivity,convergence, and an application in passive reduced-order modeling [J]. Math Program,2007, Ser. B(109):581-611.
    [118]Martin RS, Peters G., Wilkinson JH. Symmetric decomposition of a positive definite matrix [J]. Numerische Mathematik,1965,7(5):362-383.
    [119]Kamwa I., Grondin R., Asber D., Gingras J. P., Trudel G. Large-scale active-load modulation for angle stability improvement [J]. IEEE Transactions on Power Systems,1999,14(2):582-590.
    [120]刘明波,谢敏,赵维兴.大电网最优潮流计算[M].北京;科学出版社.2010.
    [121]Wei Hua, H.Sasaki, J.Kubokawa, RYokoyama. An interior point nonlinear programming for optimal power flow problems with a novel data structure [J]. IEEE Trans on Power Systems,1998,13(3): 870-877.
    [122]Burer Samuel, Monteiro Renato D.C., Zhang Yin. A computational study of a gradient-based log-barrier algorithm for a class of large-scale SDPs [J]. Math Program,2003, Ser.B(95):359-379.
    [123]LLC AMPL Optimization. AMPL:A Modeling Language for Mathematical Programming [M]. http://www.ampl.com.
    [124]Griva Igor, Shanno David F., Vanderbei Robert J., Benson Hande Y. Global convergence of a primal-dual interior-point method for nonlinear programming [J]. Algorithmic Operations Research, 2008,3(1):12-19.
    [125]P. W. Sauer, M. Pai. Power System Dynamics and Stability [M]. Upper Saddle River, NJ:Prentice-Hall, 1998.
    [126]Wright Thomas G. EigTool. http://www.comlab.ox.ac.uk/pseudospectra/eigtool/.2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700