用户名: 密码: 验证码:
计及机组启停的动态最优潮流问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国节能减排政策的实施、温室气体减排清晰量化目标的出台、市场化改革的不断深入,众多基础产业(电力、航空、铁路等)在引入市场化竞争机制的同时,纷纷采取了提高能源效率、节能减排的措施,电力产业尤是如此。在保证电力系统安全稳定运行和可靠供电的前提下,改革和优化现行的发电调度模式,实现节能环保目标,具有显著现实意义。
     本文以最优潮流、动态最优潮流、机组组合和计及机组启停的动态最优潮流问题为研究对象;采用离散域提升-投影紧松弛技术和连续域快速内点方法等数学方法,对研究对象展开理论与数值模拟研究工作。基于混合整数规划可行域的连续松弛构造其一个好的紧松弛来逼近其凸包,并通过求解紧松弛问题可很好逼近混合整数规划的解,而提升-投影技术可在高维空间构造混合整数集的紧松弛。内点算法是求解凸规划的多项式时间复杂度算法,各种内点算法及其相关算法在求解最优潮流和动态最优潮流问题上得到了广泛的应用。随着系统规模的增加以及计算速度要求的提高,并行内点算法也开始引入电力系统计算领域。
     本文基于最优中心参数技术、改进多中心校正技术以及解耦技术,设计了新的快速内点算法,并将该方法应用于最优潮流和动态最优潮流问题的求解。再基于提升-投影技术,建立机组组合问题的紧混合整数规划模型,通过求解紧模型的连续松弛问题,实现机组组合问题求解。最后采用分层方式对计及机组启停的动态最优潮流问题进行求解,其中的核心子问题则采用本文所建立的新型快速内点算法和提升-投影紧松弛方法求解。全文共分为8章,归纳如下:
     第1章主要对最优潮流、动态最优潮流、机组组合和计及机组启停的动态最优潮流问题进行介绍和分析,论述了研究计及机组启停的动态最优潮流问题的必要性和重要性,并简要回顾了以上几类问题的求解算法以及在实际中的应用情况,为后续章节的讨论奠定了基础。
     第2章讨论本文使用的数学理论基础。讨论了内点算法基本理论与算法框架,并以线性规划内点算法为例,分析了内点算法的并行计算思想与方法。阐述了提升-投影的技术框架,并分析了其在混合整数规划中的推广应用。
     第3章基于最优中心参数及改进多中心校正技术,提出一种求解最优潮流问题的新型内点算法。结合均衡距离-评价函数,给出了最优中心参数评价模型,采用线性化技术对模型近似,以降低模型计算量。利用线搜索技术实现近似模型求解以确定最优中心参数,该参数使得所提算法具有更多的优势步和更少的迭代次数。
     第4章基于改进的多中心校正和解耦技术,提出一种求解动态最优潮流问题的并行算法。结合内点算法框架与动态最优潮流问题修正方程的分块箭形结构,给出修正方程的并行解耦-分解-回代解法。并结合这一解法特点,提出动态步长拉大技术及自适应最大校正次数技术,使得迭代步长增大,迭代点中心性提高,总迭代次数和计算时间显著减少。解耦技术的使用,使得所提算法的核心计算都可并行完成。
     第5章基于凸包变换和提升-投影锥松弛技术,在超立方空间内构造了计及爬坡约束机组组合问题的紧连续松弛模型,提出一种通过求解紧松弛模型而获得UC问题次优解的新方法。
     第6章基于凸包变换和提升-投影技术构造了计及爬坡约束机组组合问题的提升投影紧混合整数规划模型,通过逐次求解不断缩紧的连续松弛问题获得UC问题高质量的次优解,所提算法对爬坡约束的处理十分有效,计算速度快,可扩展性好。
     第7章基于所提的新型快速内点算法以及提升-投影技术,实现了计及机组启停的动态最优潮流问题的分层求解。对分层后的两个连续子问题:动态最优潮流可行性子问题和确定机组启停后的动态最优潮流问题,采用新型快速内点算法实现并行计算。对分层后的离散子问题则采用提升-投影紧松弛技术求解。
     第8章概括总结了本文的主要研究工作和成果,指出了今后有待进一步开展的研究工作。
With the emergence of policies in saving energy, quantitative goal in reducing greenhouse gas emissions and innovation in power markets, market competition mechanism and measures have been introduced for many basic industries, including power, aviation and railway etc., to improve the energy efficiency. Under this background, it is important in theoretical and practical to study the operation and dispatch of power system for energy saving and environment protection.
     Based on the quickly interior point method in continuous domain and the lift-and-project in discrete domain, this thesis aims to study the optimal power flow, dynamic optimal power flow, unit commitment and dynamic optimal power flow with unit commitment in models and methods. A tight relaxation of a mixed integer programming feasible region can be gotten by using the relaxation of the feasible region, and the solutions of the tight relaxation problem are the good approximations of the solutions of the origin mixed integer programming. The tight relaxation of the mixed integer set can be constructed in high dimension space with lift-and-project. Interior point method is a polynomial time complexity algorithm for solving convex programming, and this method and many related algorithms have been widely used in power system. With the increasing in the size of problems and the demand for computing speed, parallel interior point methods have been introduced into power system computing.
     This thesis proposes a new quickly interior point method based on the techniques of optimal centering parameter and improved multiple centrality corrections, and the optimal power flow, dynamic optimal power flow problems all can be solved with this new method. Then, several tight mixed integer programming models for the unit commitment problems are presented by using lift-and-project, and the continuous relaxations of these proposed models can be solved to achieve the sub-optimal solutions for the unit commitment problems. At last, the complicated dynamic optimal power flow with unit commitment problems can be solved in3steps; all the important sub problems can be solved with the aforementioned method. This thesis contains8chapters as follows:
     In chapter1, the optimal power flow, dynamic optimal power flow, unit commitment and dynamic optimal power flow with unit commitment problems are discussed briefly at first. The necessity and importance of studying the dynamic optimal power flow problems with unit commitment problems are presented. Meanwhile, some methods, solving the aforementioned problems, are reviewed briefly for the following discussion.
     Theory and practice of interior point method are discussed in chapter2, and parallel interior point method has been shown too. In this chapter, the procedure of life-and-project has been explained and extended to mixed integer programming problem.
     In chapter3, a new quickly interior point algorithm was presented for solving optimal power flow problem based on the techniques of optimal centering parameter and improved multiple centrality corrections. The proposed method involves integrating equilibrium distance-quality function to establish a mathematical model for evaluating centering parameter, and the approximate expression of this model, which can be solved with fewer computations than the original one, was proposed using the linearization technique. After solving the approximate model with the line search technique, the optimal centering parameters can be obtained for the proposed method to own more dominant steps and less number of iterations than other interior point methods.
     Chapter4presents a new parallel algorithm to solve dynamic optimal power flow based on the methods of improved multiple centrality corrections and decoupling. A parallel decoupling-factorization-substitution method for the correction equation of dynamic optimal power flow was proposed by integrating interior point method framework and the block arrow correction equation, and then, the methods of dynamic increasing step length and adaptive corrections were given. A longer iteration step length and a better central point, which can be obtained by the proposed algorithm, give on the reduction in the number of iterations and savings in computing time than other interior point methods. Most of operations in proposed method can be processed in parallel with decoupling.
     In chapter5, a new tighter continuous relaxation model of the ramp rate constrained unit commitment problem is presented by integrating the techniques of convex hull transformation and lift-and-project cone relaxation. The proposed model can be solved directly to get the sub-optimal solutions of the unit commitment problem.
     In chapter6, a novel method for the ramp rate constrained unit commitment problem is presented by solving a sequence of increasingly tight continuous relaxations based on the techniques of convex hull transformation and lift-and-project tight relaxation. The proposed method provides excellent performance and sub-optimal solutions.
     A method with3steps based on proposed quickly interior point method and lift-and-project method for solving dynamic optimal power flow with unit commitment problem has been discussed in chapter7. The two continuous sub problems, feasible problem for dynamic optimal power flow and classic dynamic optimal power flow problem, can be solved using the parallel improved multiple center corrections interior point method, and the discrete sub problem can be solved with the lift-and-project method.
     The conclusions and remained questions are given in chapter8.
引文
[1]刘欢,牛琪,王建华.中国首次宣布温室气体减排清晰量化目标.http://news.xinhuanet.com/ politics/2009-11/26/content_12545939.htm,2009-11-26.
    [2]喻洁,李杨,夏安邦.兼顾环境保护与经济效益的发电调度分布式优化策略.中国电机工程学报,2009,29(16):63-68.
    [3]Carpentier J. Contribution to the economic dispatch problem[J]. Bulletin de ls Societe Francaise des Electriciens,1962,8(3):431-437.
    [4]王锡凡.现代电力系统分析[M].北京:科学出版社,2003.
    [5]韦化,李滨,杭乃善,等.大规模水-火电力系统最优潮流的现代内点理论分析[J].中国电机工程学报,2003,23(4):5-8.
    [6]韦化,李滨,杭乃善,等.大规模水-火电力系统最优潮流的现代内点算法实现[J].中国电机工程学报,2003,23(6):13-18.
    [7]Momoh J A, El-Hawary M E, Adapa R. A review of selected optimal power flow literature to 1993[J]. IEEE Transactions on Power Systems,1999,14(1):96-111.
    [8]Momoh J A, Koessler R J, Bond M S, et al. Challenges to optimal power flow[J]. IEEE Transactions on Power Systems,1997,12(1):444-455.
    [9]赵晋泉,侯志俭,吴际舜.改进最优潮流牛顿算法有效性的对策研究[J].中国电机工程学报,1999,19(12):70-75.
    [10]万黎,袁荣湘.最优潮流算法综述.继电器,2005,33(11):80-87.
    [11]Pandya K S, Joshi S K. A survey of optimal power flow methods[J]. Journal of Theoretical and Applied Information Technology,2008,1:450-458.
    [12]Wells D W. Method for Economic Secure Loading of a Power System[J]. Proceedings of IEEE, 1968,115(8):606-614.
    [13]Shern C M, Laughton M A. Power Systen Load Scheduling with Security Constraints Using Dual Linear Programming [J]. Proceedings of IEEE,1970,117(1)2714-2127.
    [14]Chung T S, Ge S Y. A recursive LP-based approach for optimal capacitor allocation with cost-benefit consideration[J]. Electric Power Syst. Research,1997,39:129-136.
    [15]Lobato E, Rouco L, Navarrete M I, et al. An LP-based optimal power flow for transmission losses and generator reactive margins minimization[C]. Proc. of IEEE porto power tech conference, Portugal, Sept.2001.
    [16]Lima F, Galiana F D, Kockar I, et al. Phase shifter placement in largescale systems via mixed integer linear programming[J]. IEEE Trans. Power Syst,2003,18(3):1029-1034.
    [17]Sun D I, Ashley B, Brewer B, et al. Optimal Power Flow by Newton Approach [J]. IEEE Trans on PAS,1984,103(10):2864-2880.
    [18]Chen S D, Chen J F. A new algorithm based on the Newton-Raphson approach for real-time emission dispatch[J]. Electric Power Syst. Research,1997,40:137-141.
    [19]Lo K L, Meng Z J, Newton-like method for line outage simulation[J]. IEE proc. Gener. Transm. Distrib.,2004,151(2):225-231.
    [20]Tong X, Lin M. Semismooth Newtontype algorithms for solving optimal power flow problems[C]. Proc. of IEEE/PES Transmission and Distribution Conference, Dalian, China,2005: 1-7.
    [21]Momoh J A. A generalized quadratic-based model for optimal power flow[C]. IEEE International Conference on Systems, Man and Cybernetics, Cambridge, USA,1989:261-267.
    [22]Grudinin N. Reactive power optimization using successive quadratic programming method[J]. IEEE Trans. Power Syst.,1998,13(4):1219-1225.
    [23]Lin X, David A K, Yu C. W. Reactive power optimization with voltage stability consideration in power market systems [J]. IEE proc Gener. Transm. Distrib.,2003,150(3):305-310.
    [24]Momoh J A, Zhu J. Multi-area power systems economic dispatch using nonlinear convex network flow programming[J]. Electric Power Syst. Research,2001,59:13-20.
    [25]Pudjianto D, Ahmed S, Strbac G. Allocation of VAR support using LP and NLP based optimal power flows[C]. IEE proc.-Gener. Transm. Distrib.,2002,149(4):377-383.
    [26]Karmarker N K. A New Polynomial Time Algorithm for Linear Programming[J]. Combinatorica 1984,4:373-395.
    [27]Wei H, Sasaki H, KubokawaJ, et al. An interior point nonlinear programming for optimal power flow problems with a novel data structure[J]. IEEE Transactions on Power Systems,1998,13(3): 870-877.
    [28]Jabr R A, Coonick A H, Cory B J. A primal-dual interior point method for optimal power flow dispatching[J]. IEEE Transactions on Power Systems,2002,17(3):654-662.
    [29]Wu Y C, Debs A S, Marsten R E. A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows [J]. IEEE Transactions on Power Systems,1994,9(2):876-883.
    [30]余娟,颜伟,徐国禹,等.基于预测-校正原对偶内点法的无功优化新模型[J].中国电机工程学报,2005,25(11):146-151.
    [31]Torres G L, Quintana V H. On a nonlinear multiple centrality-corrections interior point method for optimal power flow[J]. IEEE Transactions on Power Systems,2001,16(2):222-228.
    [32]蔡广林,张勇军,任震.基于非线性多中心校正内点法的最优潮流算法[J].电工技术学报,2007,22(12):133-138.
    [33]刘盛松,候志俭,邰能灵,等.基于滤波器-信赖域方法的最优潮流算法[J].中国电机工程学报,2003,23(6):1-6.
    [34]刘明波,李健,吴捷.求解无功优化的非线性同伦内点法[J].中国电机工程学报,2002,22(1):1-7.
    [35]Wei H, Sasaki H, Yokoyama R. An Application of Interior Point Quadratic Programming Algorithm to Power System Optimization Problems [J]. IEEE Transactions on Power Systems,1996,11(1): 260-267.
    [36]Schenk O, Wachter A, Hagemann M. Solution of KKT systems in large-scale interior-point optimization[R/OL].2006-04-12[2008-01-21]. http://knoppix.epfl.ch/colloqnum06/posters/59_Schenk.pdf.
    [37]Kallrath J, Pardalos P M, Rebennack S. lynnetwwwdagriorglynnet. Optimization in the Energy Industry[M]. Berlin:Springer Berlin Heidelberg,2009.
    [38]邱阿瑞.遗传算法及其在电工领域中的应用[J].电工电能新技术,1997,(1):21-25.
    [39]陈国良,王煦法,庄镇泉,等.遗传算法及其应用[M].北京:人民邮电出版社,1996.
    [40]Bakirtzis A, Biskas P, Zoumas C, et al. Optimal power flow by enhanced genetic algorithm. IEEE Transactions on Power Systems,2002,17(2):229-236.
    [41]周文华,赵登福.基于模糊控制遗传算法的电力系统最优潮流[J].西北电力技术,2001,(5):23-25.
    [42]Chen L, Suzuki H, Katou K. Mean field theory for optimal power flow[J]. IEEE Transcations on Power System,1997,12(4):1481-1486.
    [43]陈巍,吴捷.静止无功发生器的递归神经网络建模[J].电力系统自动化,1999,23(4):10-14.
    [44]陈巍,吴捷.静止无功发生器递归神经网络自适应控制[J].电力系统自动化,1999,23(9):33-37.
    [45]岑文辉,戴文祥,万宝麟,等.应用人工神经网络的无功/电压控制新方法[J].上海交通大学学报,1993,27(2):8-14.
    [46]Miranda V, Saraiva J T. Fuzzy modeling of power system optimal load flow[J]. IEEE Transactions on Power System,1992,7(2):843-849.
    [47]孙红波,徐国禹,秦翼红.多目标模糊优化潮流模型及其基于神经网络的算法[J].重庆大学学报,1995,18(3):52-58.
    [48]Raglend I J, Padhy N P. Solutions to practical unit commitment problems with operational power flow and environmental constraints[C]. Power Engineering Society General Meeting,2006.
    [49]刘明波,段晓军,赵艳.多目标最优潮流问题的模糊建模及内点解法[J].电力系统自动化,1999,23(14):37-40.
    [50]Miranda V, Saraiva J P. Fuzzy Modeling of Power System Optional Load Flow[J]. IEEE Transactions on Power Systems,1992,7(2):843-849.
    [51]Yu I K, Song Y H. A novel short-term generation scheduling technique of thermal units using ant colony search algorithms[J]. Electrical power and energy system,2001,23:471-479.
    [52]罗中良,李先祥,方清城.含阀点效应最优潮流问题的改进原始蚁群算法解[J].中山大学学报(自然科学版),2006,45(6):31-34.
    [53]江全元,耿光超.含高压直流输电系统的内点最优潮流算法[J].中国电机工程学报,2009,29(25):43-49.
    [54]潘炜,刘文颖,杨以涵.概率最优潮流的点估计算法[J].中国电机工程学报,2008,28(16):28-33.
    [55]Yuan Y, KubokawaJ, Sasaki H. A solution of optimal power flow with multicontingency transient stability constrains [J]. IEEE Transactions on Power Systems,2003,18(3):1094-1102.
    [56]Patra S, Goswami S K. Optimum power flow solution using a non-interior point method[J]. International Journal of Electrical Power & Energy Systems,2007,29(2):138-146.
    [57]白晓清,韦化,Katsuki F.求解最优潮流问题的内点半定规划法[J].中国电机工程学报,2008,28(19):56-64.
    [58]Capitanescu F, Glavic M, Ernst D, et al. Interior-point based algorithms for the solution of optimal power flow problems[J]. Electric Power Systems Research,2007,77(5-6):508-517.
    [59]Xie K, Song Y H. Dynamic optimal power flow by interior point methods[J]. IEE Proceedings-Generation, Transmission and Distribution,2001,148(1):76-84.
    [60]王永刚,韩学山,王宪荣,等.动态优化潮流[J].中国电机工程学报,1997,17(3):195-198.
    [61]覃智君,阳育德,吴杰康.矢量化动态最优潮流计算的步长控制内点法实现[J].中国电机工程学报,2009,29(7):52-58.
    [62]陈金富,陈海焱,段献忠.含大型风电场的电力系统多时段动态优化潮流[J].中国电机工程学报,2006,26(3):31-35.
    [63]Uturbey W, Costa A S. Dynamic optimal power flow approach to account for consumer response in short term hydrothermal coordination studies[J]. IET Generation, Transmission &Distribution, 2007,1(3):414-421.
    [64]孙英云,何光宇,梅生伟,等.基于变分模型的动态最优潮流新算法[J].电力系统自动化,2007,31(17):16-20.
    [65]刘方,颜伟,徐国禹.动态最优潮流的预测/校正解耦内点法[J].电力系统自动化,2007,31(14): 38-42.
    [66]Qiu W, Flueck A J, Tu F. A new parallel algorithm for security constrained optimal power flow with a nonlinear interior point method[C]. IEEE Power Engineering Society General Meeting,2005,1: 447-453.
    [67]赖永生,刘明波.电力系统动态无功优化问题的快速解耦算法[J].中国电机工程学报,2008,28(7):32-39.
    [68]缪楠林,刘明波,赵维兴.电力系统动态无功优化并行算法及其实现[J].电工技术学报,2009,24(2):150-157.
    [69]Wang S, Shahidehpour S, Kirschen D, et al. Short-term generation scheduling with transmission and environmental constraints using an augmented Lagrangian relaxation[J]. IEEE Transactions on Power Systems,1995,10(3):1294-1301.
    [70]李文沅.电力系统安全经济运行——模型与方法[M].重庆:重庆大学出版社,1989.
    [71]王喆,余贻鑫,张弘鹏.社会演化算法在机组组合中的应用[J].中国电机工程学报,2004,24(4):12-17.
    [72]马瑞.电力市场中兼顾环境保护和经济效益的双目标模糊优化短期交易计划新模型[J].中国电机工程学报,2002,22(4):104-108.
    [73]Li X B. Study of multi-objective optimization and multi-attribute decision-making for economic and environmental power dispatch[J]. Electric Power Systems Research,2009(79):789-795.
    [74]Yalcinoz T, Koksoy O. A multiobjective optimization method to environmental economic dispatch[J]. Electrical Power and Energy Systems,2007(29):42-50.
    [75]Basu M. An interactive fuzzy satisfying method based on evolutionary programming technique for multiobjective short-term hydrothermal scheduling[J]. Electric Power Systems Research,2004(69): 277-285.
    [76]Gjenged T. Emission Constrained Unit-Commitment [J]. IEEE Trans. on Energy Conversion,1996, 11(1):132-138.
    [77]王欣,秦斌,阳春华.机组短期负荷环境/经济调度多目标混合优化[J].控制理论与应用,2006,23(5):730-734,739.
    [78]康重庆,陈启鑫,夏清.低碳电力技术的研究展望[J].电网技术,2009,33(2):1-7.
    [79]张晓花,赵晋泉,陈星莺.节能减排多目标机组组合问题的模糊建模及优化[J].中国电机工程学报,2010,30(22):71-75.
    [80]Senjyu T, Shimabukuro K, Uezato K. et al. A fast technique for unit commitment problem by extended priority list[J]. IEEE Transactions on Power Systems,2003,18(2):882-888.
    [81]Su C C, Hsu Y Y. Fuzzy dynamic programming:an application to unit commitment[J], IEEE Transactions on power systems,1991,6(3):1231-1237.
    [82]Chen C L, Wang S C. Branch-and-bound scheduling for thermal generating units[J], IEEE Transactions on Energy Convers,1993,8(3):184-189.
    [83]Ongsakul W, Petcharaks N. Unit commitment by enhanced adaptive lagrangian relaxation[J]. IEEE Transactions on Power Systems,2004,19(1):620-628.
    [84]Frangioni A, Gentile A C, Lacalandra F. Tighter approximated MILP formulations for unit commitment problems[J]. IEEE Transactions on Power Systems,2009,24(1):105-113.
    [85]Niknam T, Khodaei, Fallahi F. A new decomposition approach for the thermal unit commitment problem[J]. Applied Energy,2009,86:1667-1674.
    [86]韦化,吴阿琴,白晓清.一种求解机组组合问题的内点半定规划方法[J].中国电机工程学报,2008,28(1):35-40.
    [87]Rodrigo F L, Quintana V H. Medium-term hydrothermal coordination by semidefinite programming[J]. IEEE Transactions on Power Systems,2003,18(4):1515-1522.
    [88]Kazarlis S A, Bakirtzis A G, Petridis V. A genetic algorithm solutionto the unit commitment problem[J]. IEEE Transactions on Power Systems,1996,11(1):83-92.
    [89]胡家声,郭创新,曹一家.一种适合于电力系统机组组合问题的混合粒子群优化算法[J].中国电机工程学报,2004,24(4):24-28.
    [90]王喆,余贻鑫,张弘鹏.社会演化算法在机组组合中的应用[J].中国电机工程学报,2004,24(4):12-17.
    [91]孙力勇,张焰,蒋传文.基于矩阵实数编码遗传算法求解大规模机组组合问题[J].中国电机工程学报,2006,26(2):82-87.
    [92]陈皓勇,张靠社,王锡凡.电力系统机组组合问题的系统进化算法[J].中国电机工程学报,1999,19(12):9-13,40.
    [93]余廷芳,林中达.部分解约束算法在机组负荷优化组合中的应用[J].中国电机工程学报,2009,29(2):107-112.
    [94]Pappala V S, Erlich I. A new approach for solving the unit commitment problem by adaptive particle swarm optimization[C]. IEEE PES General Meeting, Pittsburgh, Pennsylvania, USA,2008.
    [95]全然,韦化,简金宝.求解大规模机组组合问题的二阶锥规划方法[J].中国电机工程学报,2010,30(25):101-107.
    [96]Lai S Y, Baldick R. Unit commitment with ramp multipliers[J]. IEEE Transactions on Power Systems,1999,14(1):58-64.
    [97]Dieu V N, Ongsakul W. Improved merit order and enhanced augmented La grange Hopfield network for unit commitment[J]. IET Generation Transmission & Distribution,2007,1(4):548-556.
    [98]Atamturk A. Savelsbergh M. Integer-programming software systems[J]. Annals of Operations Research,2005,140(1):67-124.
    [99]Karlof J. Integer programming:Theory and Practice[M]. Boca Raton:CRC Press,2005:253-303.
    [100]Nemhauser G, Wolsey L. Integer and combinatorial optimization[M]. New York:John Wiley and Sons,1988.
    [101]Wosely L. Integer programming[M]. New York:John Wiley and Sons,1998.
    [102]Cohen A, Yoshimura M. A branch-and bound algorithm for unit commitment[J]. IEEE Transactions on Power Apparatus and Systems,1983, PAS-102(2):444-451.
    [103]胡运权.运筹学基础及应用(第三版)[M].哈尔滨:哈尔滨工业大学出版社,1998.
    [104]Pang C, Chen H. Optimal short-term thermal unit commitments[J]. IEEE Transactions on Power Apparatus and Systems,1976, PAS-95(4):1336-1346.
    [105]Pang C, Sheble G, Albu F. Evaluation of dynamic programming based methods and multiple area representation for thermal unit commitments[J]. IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(3):1212-1218.
    [106]Li C, Johnson R, Svoboda A. A new unit commitment method[J]. IEEE Transactions on power systems,1997,12(1):113-119.
    [107]Miguel Carrion, Arroyo J. A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem[J]. IEEE Transactions on Power Systems,2006,21(3): 1371-1378.
    [108]Frangioni A, Gentile C, Lacalandra F. Tighter approximated MILP formulations for unit commitment problems[J]. IEEE Transactions on Power Systems,2009,24(1):105-113.
    [109]全然,简金宝,韦化,杨林峰.基于特殊有效不等式求解机组组合问题的内点割平面法[J].中国电机工程学报.2011,31(19): 51-59.
    [110]Westerlund T, Pettersson F. An extended cutting plane method for solving convex MINLP problem[J]. Computers and Chemical Engineering,1995, s:131-136.
    [111]Vandenberghe L, Boyd S. Semidefinite programming[J]. SIAM Review,1996,38(1):49-95.
    [112]OngsakulW, Petcharaks N. Unit commitment by enhanced adaptive lagrangian relaxation[J]. IEEE Transactions on Power Systems,2004,19(1):620-628.
    [113]Cheng C P, Liu C W, Liu C C. Unit commitment by lagrangian relaxation and genetic algorithms [J]. IEEE Transactions on Power Systems,2000,15(2):707-714.
    [114]Benders J. Partitioning procedures for solving mixed-variables programming problems[J]. Numerische Mathematik,1962,4(1):238-252.
    [115]Geoffrion A. Generalized Benders decomposition[J]. Journal of Optimization Theory and Applications,1972,10(4):237-260.
    [116]Duran M, Grossmann I. An outer-approximation algorithm for a class of mixed-integer nonlinear programs[J]. Mathematical Programming,1986,36(3):307-339.
    [117]Fletcher R, Leyffer S. Solving mixed integer nonlinear programs by outer approximation[J]. Mathematical Programming,1994,66(1-3):327-349.
    [118]Quesada I, Grossmann I. An LP/NLP based branch and bound algorithm for convex MINLP optimization problems[J]. Computers and Chemical Engineering,1992,16(10-11):937-947.
    [119]Pierre Bonami, Lorenz Biegler, Andrew Conn, et al. An algorithmic framework for convex mixed integer nonlinear programs [J]. Discrete Optimization,2008,5(2):186-204.
    [120]Fu Y, Shahidehpour M, Li Z. Security-constrained unit commitment with AC constraints [J]. IEEE Transactions on Power Systems,2005,20(3):1538-1550.
    [121]Fu Y, Shahidehpour M, Li Z. AC contingency dispatch based on security-constrained unit commitment[J]. IEEE Transactions on Power Systems,2006,21(2):897-908.
    [122]全然,简金宝,郑海艳.基于外逼近方法的中期机组组合问题[J].电力系统自动化,2009,33(11):24-29.
    [123]Zhuang F, Galliana F. Unit commitment by simulated annealing[J]. IEEE Transactions on Power Systems,1990,5(1):311-318.
    [124]Purushothama G, Jenkins L. Simulated annealing with local search—A hybrid algorithm for unit commitment [J]. IEEE Transactions on Power Systems,2003,18(1):273-278.
    [125]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[C]. Proceedings of the sixth International Symposium on Micro Machine and Human Science, IEEE service center, Nagoya, Japan,1995:39-43.
    [126]吴金华,吴耀武,熊信艮,等.机组优化组合问题的随机tabu搜索算法[J].电网技术,2003,27(10):35-38.
    [127]陈烨,赵国波,刘俊勇,等.用于机组组合优化的蚁群粒子群混合算法[J].电网技术,2008,32(6):52-56.
    [128]郝晋,石立宝,周家启.一种求解最优机组组合问题的随机扰动蚁群优化算法[J].电力系统自动化,2002,26(23):23-28.
    [129]Bai X, Wei H. Semi-definite programming-based method for security-constrained unit commitment with operational and optimal power flow constraints [J]. IET Generation, Transmission & Distribution,2009,3(2):182-197.
    [130]Yamin H Y, Al-Tallaqa K, Shahidehpour S M. New approach for dynamic optimal power flow using Benders decomposition in a deregulated power market[J]. Electric Power Systems Research,2003, 65(2):101-107.
    [131]Cecile C, Hugues M, Richard L, et al. be-opt:a branch-and-cut code for mixed integer Programs[J]. Math. Program., Ser. A,1999,86:335-353.
    [132]Nemhauser G L, Wolsey L A. Integer and Combinatorial Optimization[M], John Wiley & Sons, Hackensack, NJ,1988.
    [133]Sebastian C, Cecile C, Hugues M, et al. Cutting planes for integer programs with general integer variables[J]. Mathematical Programming,1998,81:201-214.
    [134]Linderoth J T, Ralphs T K. Noncommercial Software for Mixed-Integer Linear Programming, Integer Programming:Theory and Practice, John Karlof (ed.), CRC Press Operations Research Series,2005,253-303.
    [135]Balas E, Ceria S, Cornuejols G. A lift-and-project cutting plane algorithm for mixed 0-1 programs[J]. Mathematical Programming,1993,58:295-324.
    [136]Bienstock D, Zuckerberg M. Subset algebra lift operators for 0-1 integer programming. SIAM J. Optim.,2004,15(1):63-95.
    [137]Kojima M, Tuncel L. Cones of matrices and successive convex relaxations of nonconvex sets. SIAM J. Optim.,2000,10(3):750-778.
    [138]Kojima M, Tuncel L. Discretization and localization in successive convex relaxation methods for nonconvex quadratic optimization. Math. Program. (A),2000,89(1):79-111.
    [139]Lasserre J B. Global optimization with polynomials and the problem of moments. SIAM J. Optim., 2001,11(3):796-817.
    [140]Parrilo P A. semidefinite programming relaxations for semialgebraic problems. Math. Program. (B), 2003,96(2):293-320.
    [141]Sherali H D, Adams W P. A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discrete Math.,1990,3(3):411-430.
    [142]Lovasz L, Schrijver A. Cones of matrices and set-functions and 0-1 optimization. SIAM Journal on Optimization,1991,1:166-190.
    [143]Balas E, Perregaard M. A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 programming. Math. Program. (B),2003,94(2-3): 221-245.
    [144]Burer S, Vandenbussche D. Solving lift-and-project relaxations of binary integer programs. SIAM Journal on Optimization,2006,16(3):493-512.
    [145]Alizadeh F, Goldfarb D. Second-order cone programming[J]. Mathematical Programming,2003, 95:3-51.
    [146]Andersen E D, Roos C, Terlaky T. On implementing a primal-dual interior-point method for conic quadratic optimization[J]. Mathematical Programming,2003.95:249-277.
    [147]Kim S, Kojima M. Second order cone programming relaxation of nonconvex quadratic optimization problems. Optim. Methods Softw.,2001,15(3-4):201-224.
    [148]Kim S, Kojima M. Exact solutions of some nonconvex quadratic optimization problems via SDP and SOCP relaxations. Comput. Optim. Appl.,2003,26(2):143-154.
    [149]Kim S, Kojima M, Yamashita M. Second order cone programming relaxation of a positive semidefinite constraint. Optim. Methods Softw.,2003,18(5):535-541.
    [150]Gondzio J. Multiple centrality corrections in a primal-dual method for linear programming[J]. Computational Optimization and Applications,1996,6:137-156.
    [151]Marco C, Jacek G. Further development of multiple centrality correctors for interior point methods[J]. Computational Optimization and Applications,2008,41(3):277-305.
    [152]运筹学编写组,运筹学(第3版)[M],清华大学出版社,2005.
    [153]Mehrotra S. On the implementation of a primal-dual interior point method[J]. SIAM Journal on Optimization,1992,2:575-601
    [154]Wright S J. Primal-Dual Interior-Point Methods [M]. SIAM, Philadelphia, USA,1997.
    [155]Gondzio J, Sarkissian R. Parallel interior point solver for structure linear programs[J]. Mathematical Programming,2003,96(3):561-584.
    [156]Matlab Parallel Computing Toolbox 4 [EB/OL]. [2010.1.10]. http://www.mathworks.com/access/ helpdesk/help/pdf_doc/distcomp/distcomp.pdf.
    [157]Burer S, Chen J Q. A p-cone sequential relaxation procedure for 0-1 integer programs[J]. Optimization Methods and Software,2009,24(4-5):523-548.
    [158]Andersen E D, Roos C, Terlaky T. Notes on duality in second order and p-order cone optimization[J]. Optimization,2002,51(4):627-643.
    [159]Alizadeh F, Goldfarb D. Second-order cone programming[J]. Mathematical Programming,2003, 95:3-51.
    [160]Krokhmal P A, Soberanis P. Risk optimization with p-order conic constraints:A linear programming approach[J]. European Journal of Operational Research,2010,201(3):653-671.
    [161]Paul T. Second-order cone programming relaxation of sensor network localization[J]. SIAM Journal on Optimization,2007,18:156-185.
    [162]Rabih A J, Zouk M. Radial distribution load flow using conic programming[J]. IEEE Transactions on Power Systems,2006,21:1458-1459.
    [163]Jorge N, Andreas W, Richard A W. Adaptive barrier update strategies for nonlinear interior methods[J]. SIAM Journal on Optimization,2009,19(4):1674-1693.
    [164]Vanderbei R J, Shanno D F. An interior point algorithm for nonconvex nonlinear programming[J]. Computational Optimization and Applications,1999,13(1-3):231-252.
    [165]Ulbrich M, Ulbrich S, Vicente L. A globally convergent primal-dual interior-point filter method for nonconvex nonlinear programming[J]. Mathematical Programming,2004,2(100):379-410.
    [166]Bazaraa M S, Sherali H D, Shetty C M. Nonlinear programming:theory and algorithms[M]. New York:John Wiley&Sons, Inc.,1993:266-276.
    [167]Gunliik O, Linderoth J. Perspective reformulations of mixed integer nonlinear programs with indicator variables[J]. Mathematical Programming,2010,124(1-2):183-205.
    [168]MOSEK 6.0, http://www.mosek.com/index.php?id=7.
    [169]Damousis I G, Bakirtzis A G, Dokopoulos P S, A solution to the unit commitment problem using integer-coded genetic algorithm[J]. IEEE Transactions on Power Systems,2004,19:1165-1172.
    [170]Viana A, Sousa J P, Matos M A, Using GRASP to solve the unit commitment problem[J], Annals of Operations Research,2003,120(1):117-132.
    [171]Valenzuela J, Smith A E. A seed memetic algorithm for large unit commitment problems[J]. Journal of Heuristics,2002,8(2):173-195.
    [172]Juste K, Kita H, Tanaka E, et al. An evolutionary programming solution to the unit commitment problem[J]. IEEE Transactions on Power Systems,1999,14(4):1452-1459.
    [173]Balci H, Valenzuela J. Scheduling electric power generators using particle swarm optimization combined with the lagrangian relaxation method[J]. International Journal of Applied Mathematics and Computer Sciences,2004,14(3):411-421.
    [174]郭三刚,管晓宏,翟桥柱.具有爬升约束机组组合的充分必要条件[J].中国电机工程学报,2005,25(24):14-19.
    [175]Tsai M T, Gow H J, Lin W M. Hybrid taguchi-immune algorithm for the thermal unit commitment[J]. International Journal of Electrical Power & Energy Systems,2011,33: 1062-1069.
    [176]Ebrahimi J, Hosseinian S H, Gharehpetian G B. Unit commitment problem solution using shuffled frog leaping algorithm[J]. IEEE Transactions on Power System,2011,26(2):573-581.
    [177]Lau T W, Chung C Y, Wong K. P, et al. Quantum-inspired evolutionary algorithm approach for unit commitment[J]. IEEE Transactions on Power System,2009,24(3):1503-1512.
    [178]Eslamian M, Hosseinian S H, Vahidi B. Bacterial foragingbased solution to the unit-commitment problem[J]. IEEE Transactions on Power Systems,2009,24(3):1478-1488.
    [179]Moosa M H, Behrooz V. A solution to the unit commitment problem using imperialistic competition algorithm[J]. IEEE Transactions on Power Systems,2012,27(1):117-124.
    [180]Simopoulos D, Kavatza S, Vournas C. Unit commitment by an enhanced simulated annealing algorithm[J]. IEEE Trans. on Power Systems,2006,21(1):68-76.
    [181]Patra S, Goswami S, Goswami B. Differential evolution algorithm for solving unit commitment wit ramp constraints[J]. Electric Power Components and Systems,2008,36(18):771-782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700