用户名: 密码: 验证码:
番茄枯萎病和梨轮纹病生防菌控病机制研究及几丁质酶基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由尖孢镰刀菌番茄专化型[Fusarium oxysporum f.sp.licopersici (sacc) snyderet Hansen]引起的番茄枯萎病和贝伦格葡萄座腔菌梨生专化型Botryosphaeria berengeriana de. Not. f.sp. piricola (Nose)引起的梨轮纹病全国普遍发生。生物防治植物病害能降低农产品表面化学杀菌剂的残留量,保护生态环境和人类健康。
     我们采集不同地区样本,以两种病原菌为靶标菌,分离、筛选对枯萎病菌或轮纹病菌具有很强拮抗作用的菌株,进行种属鉴定。初步研究拮抗细菌产生的抑菌物质及控病促生作用机制,克隆生防相关基因-几丁质酶基因。同时还研究了拮抗菌株之间互作、微生物-化学物质(杀菌剂、NaHCO3)协同作用与防效之间的相关性。研究结果表明:
     1、22株拮抗细菌对番茄枯萎病菌具有较强的室内抑制作用,其中菌株PTS-394、H-70、L-1和SJ-280抑制率最高;22株细菌均能分泌蛋白酶;其中菌株C8-8能分泌几丁质酶;有3株细菌能分泌纤维素酶;3株细菌能分泌嗜铁素。盆栽试验结果表明:拮抗细菌PTS-394对番茄枯萎病的防效最高,为77.40%;菌株H-70、L-1和SJ-280对番茄枯萎病的防效均大于60%。对上述四株拮抗细菌进行16s rRNA种属鉴定,均为枯草芽孢杆菌(Bacillus subtilis).
     2、利用PCR方法从菌株C8-8中克隆到编码几丁质酶的chiA基因。同源性比对发现该基因序列与粘质沙雷氏菌的chiA有97%以上的相似性。酶切后连接到质粒28a中,并转化大肠杆菌DH5α,扩增培养后提取质粒28a(chiA)并转入到表达宿主大肠杆菌DH3中。DH3ChiA菌株在几丁质培养基上能产生透明的水解圈,具有几丁质酶活性,超声波破碎后SDS-PAGE电泳显示为一条相对分子质量约为60KDa的蛋白质,该蛋白具有较强的室内抑菌活性。
     3、拮抗细菌C8-8的最适培养温度为30℃-35℃、最适培养pH值为7.0-8.0。培养时间、初始接种量对菌株C8-8的生长有明显的影响,培养27h后菌液OD值最高;最佳初始接种量应是被接种培养液体积的0.5-1/300。不同通气量对菌株生长无明显影响。不同培养条件(碳源、氮源、诱导物、温度、时间和pH值)下菌株C8-8产几丁质酶的活力差别较大。N-乙酰氨基葡萄糖能完全抑制菌株C8-8产酶;酵母粉和蛋白胨能使菌株C8-8酶活力明显提高;胶体几丁质能诱导菌株C8-8产酶。培养温度为31℃,pH值为7.3,培养6天时菌株C8-8的酶活最高,为485μg GlcNAc·h-1。
     4、接种菌株C8-8能诱导番茄植株产生抗性效应,提高植株体内苯丙氨酸解氨酶(PAL)和过氧化物酶(POD)的酶活性;而且还有利于积累活性氧,进一步激发寄主抗性。采用高效液相色谱HPLC对菌株C8-8代谢产物分析表明:该菌株C8-8在NA培养基中的代谢产物内存在大量的产生GA3,推测可能和促生作用相关,培养2d后产生的GA3为158mg/1,而IAA未测出。在基本培养基中该菌株代谢产物未检测出IAA和GA3。
     5、拮抗细菌之间存在多种互作关系。当混合的2个菌株之间互作关系是亲和的,其生防效果有所提高,如亲和性菌株组合SJ-280+PTS394对番茄枯萎病的防效为47.1%,明显好于单菌株SJ-280(35.3%)和PTS394(38.7%)的防效。当混合的2个菌株之间互作关系是不亲和的,有的菌株组合生防效果下降,如不亲和性菌株组合C8-8+PTS394的防效为23.5%,明显低于单菌株C8-8(52.8%)和PTS394(38.7%)的防效;有的菌株组合生防效果提高,如不亲和性菌株组合L-1+PTS394的防效为50.0%,明显好于单菌株L-1(29.4%)和PTS394(38.7%)的防效。
     6、分离样本,获得21株对梨轮纹病菌菌丝生长有较强的拮抗能力的菌株,其中拮抗性能最好的细菌sf 628抑菌圈直径达45mm,抑制率达59.21%。梨果接种试验结果表明:21株拮抗能力较强的细菌中有5株拮抗细菌对梨轮纹病菌引起的病斑扩展抑制率大于50%,其中菌株sf 628抑制率达60.61%。进一步的理化特性和分子鉴定结果表明,菌株sf628为枯草芽孢杆菌枯草亚种。
     7、常见26种化学药剂对梨轮纹病菌的室内毒力测定结果表明:25%敌力脱能有效抑制梨轮纹病菌菌丝生长,ECso值为0.1522μg/ml。将拮抗细菌sf628与25%敌力脱进行复配,结果表明配比为1:3、1:2、1:1、2:1时增效比均大于1.5,表明有增效作用。其中配比为1:3时对梨轮纹病菌的毒力最强,增效比为2.942。拮抗细菌sf628与25%敌力脱配比为3:1时,增效比为1.071,表明两种单剂复配后有相加作用。
     8、室内抑菌试验结果表明:生防菌单剂对梨轮纹病菌的防效为75.77-85.41%;与NaHCO3协同作用后防效提高,为83.00-90.23%。以生防菌11为例,梨果试验结果表明:先接种病菌再喷施生防菌时,对梨轮纹病的防效为23.83%;与NaHCO3协同作用后防效提高,为48.16-74.57%。先喷施生防菌再接种病菌时,对梨轮纹病的防效为28.72%;与NaHCO3协同作用后防效明显提高,为51.06-80.91%。
Tomato Fusarium Wilt caused by F. oxysporum and pear ring rot caused by B. berengeriana are two serious diseases in many areas of the world. Biological control on plant diseases could reduce the remainder of chemical pesticides and protect natural ecological environment. The aim of this study was to screen and evaluate the antagonistic bacteria against F. oxysporum and B. berengeriana. The results showed that:
     1、There were 367 strains isolated and purified from root and soil of tomato, pepper and watermelon in Ningxia, Jiangsu and Fujian province. Antagonistic examination against F. oxysporum revealed that 22 strains among all tested strains showed strong and steady antagonism and produced protease. The strain C8-8 could produced chitinase. Several strains among the above 22 strains could produce cellulose and siderophore. On pot experiment, strain PTS-394, H-70, L-1 and SJ-280.of 22 strains could control Fusarium Wilt effectively with the control effect 68.64-77.40%. The molecular identification experiments indicated the strain PTS-394, H-70, L-1 and SJ-280 were B. subtilis.
     2、An open reading frame that coding chiA gene putatively was cloned from the strain C8-8 genomic DNA by PCR method. Sequence alignment showed that the sequence was 97% identical with the ChiA of enzymogenes of S. marcescens. The PCR fragment was cloned into vector 28a. A protein about 60KDa, was expressed by the host strain DH3ChiA. The purified protein could form a clear hydrolyzed zone on the colloidal chitin plate and inhibit the growth of the mycelia of F. oxysporum. It showed that chiA gene from C8-8 could be utilized as a potential biological control factor.
     3、The strain C8-8, which could produce high-level chitinase, is an antagonistic bacterium against many pathogenic fungi. The proper cultured temperature, pH value and initial inoculum for growth were 30℃-35℃,7.0-8.0 and 0.5-1/300 of total cultured agar volume, respectively. Ventilation had no influence on the growth of the strain C8-8. Using N-Acetyl-D-glucosamine as carbonic sources could inhibit chitinase activity of strain C8-8 totally, but yeast extract powder and peptone could improve chitinase activity of strain C8-8 greatly. It could reach the highest activity,485μg GlcNAc·h-1 when strain C8-8 was cultured at 31℃, pH 7.3 for 6 days.
     4、The activity of phenylanine ammonia lyase (PAL) and peroxidase(POD) of tomato treated with C8-8 was increased greatly compared with that of non-treated, which implied that the potential function of resistance disease was induced by inoculating strain C8-8. A large amount of GA3 produced by C8-8 in NA medium were measured by HPLC analysis and its value reached 158mg/l. However none of IAA and GA3 was measured in essence medium, which implied that there are likely a tie between plant hormone produced by antagonistic bacterium C8-8 and promoting growth mechanism.
     5、Multiple interactions were involved in the combinations of antagonistic bacteria. The compatible combination of SJ-280 with PTS394 resulted in enhanced disease suppression (47.1%) against Fusarium Wilt of solanaceous vegetables as compared to the single strain SJ-280 (35.3%) or PTS394 (38.7%). The incompatible combination of C8-8 with PTS394 led to reduced disease suppression. However, increased disease suppression was also observed in the biocontrol by the incompatible combination of L-1 with PTS394.
     6、There were 871 strains isolated and purified from the diseased leaves, the diseased pomes, the healthy leaves, the healthy pomes, the diseased tress, the healthy tress and soil from the orchards of Nanjing, Lianyungang and Gaoyou, Jiangsu Province. Antagonistic examination against B. berengeriana revealed that 21 strains of all tested strains showed strong and steady antagonism. Strain sf 628 could inhibit the mycelia growth of B. berengeriana effectively with 45 mm inhibition zone and the inhibition rate 59.21%. The inoculating experiments on pear pomes showed that five strains of 21 tested strains could inhibit effectively necrosis spread of B. berengeriana with the inhibition rate more than 50 %, and the inhibition rate of strain sf 628 reached 60.61%. The physicochemical property and molecular (16S rRNA) identification experiments indicated the strain sf 628 was B. subtilis subsp. subtilis.
     7、Toxicity test of 26 fungicides on B. berengeriana showed 25% Propiconazole could inhibit effectively the mycelia growth of B. berengeriana with EC50 value 0.1522μg/ml. The mixed experiments against B. berengeriana showed that the synergistic ratios(SR) were greater than 1.5 when the mixed ratios were 1:3,1:2,1:1 and 1:2 between antagonistic bacterium sf 628 and Propiconazole and the SR was 1.071 under the mixed ratio was 3:1. The synergism under the ratio of 1:3 between antagonistic bacterium and Propiconazole was the most significant with synergistic ratio 2.942.
     8、We also evaluate influence of sodium bicarbonate (SBC) on effectiveness of biocontrol agents (BA) to control ring rot on postharvest pear fruit. The results indicated that the inhibition rate against B. berengeriana was 42.30%,75.77%-85.41%, and 83.00% 90.23% in vitro when the plates were treated with 2% SBC (w/v), BA (strain 11,2,28 and sf628), and the combination, respectively. On fruit, the control effect was 23.83%,12.79%, 71.09%,48.16%,74.57%, and 57.90% when fruit were first inoculated with B. berengeriana (curative activity), then treated with BA 11 30mL, SBC 30mL, BA 11 15mL +SBC 15mL, SBC 15mL+BA 1115mL, BA 11 30mL+SBC 30mL, and SBC 30mL+BA 11 30mL, respectively. When fruit were treated with the same above, then inoculated with the pathogen (preventive activity), the control effect was 28.72%,17.31%,78.25%,51.06%, 80.91%, and 61.50%.
引文
1. Adhikari T B, Joseph C M.2001. Evaluation of bacteria isolated from ricefor plant growth promotion and biological control of seeding disease of rice. Microbiology,47:916-924.
    2. Alabouvette. C, Enmnceau P, Stein-berg C.1993. Recent advances in the biological control of Fusarium Wilt. Pesticide Science,37:365-373.
    3. Arima K, Kakinuma A, Tamura G.1968. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus stubilis:Isolation, characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communication,31:488-494.
    4. Bacon C W, Yates I E, Hinton D M, et al.2001. Biological control of Fusarium moniliforme in maize. Environ Health Perspect,109(2):325-332.
    5. Bais H P, Fall R, Vivanco J M.2004. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology,134:307-319.
    6. Bankole S A, A debanjo 1996. A.Biocontrol of brown blotch of cowpea caused by Colletotrichum truncatum with Trichoderma viride. Crop Prorecrron,15(7):633-636.
    7. Beatty P H, Jensen S E.2002. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans,the causative agent of blackleg disease of canola. Canadian Journal of Microbiology,48(2):159-169.
    8. Benhamou N, Kloepper J W, Qnadt-Hallman A, et al.1996. Induction of defense-related ultrastructual modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiology,112:919-929.
    9. Datnoff L E, Nemec S, Pernezny K.1995. Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and glumus intraradices. Biological Control, 5:427-431.
    10. Dilleyr A.2004. On why thylakoids energize ATP formation using either delocalized or localized proton gradients-a Ca2+mediated role in thylakoid stress responses. Photosynthesis Research,80: 245-263.
    11. Errampalli D, Leung K, and Cassidy M B, et al.1999. Application of the green fluorescent protein as a molecular in environmental microorganisms. Journal of Microbiology Methods,35:187-199.
    12. Etebarian H R, Sholbergp L, EastwelL K C, et al.2005. Biological control of apple blue mold with Pseudomonas fluorescens. Canadian Journal Microbiology,51(7):591-598.
    13. Ferguson C M J, Boothl N A, Allan E J.2000. An ELISA for the detection of Bacillus subtilis L-form bacteria confirms their symbiosis in strawberry. Letters in Applied Microbiology,31: 390-394.
    14. Fernando W, Nakkeeran S, Zhang Y, et al.2007. biological control of Sclerotinia sclerotiorum (Lib.)de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection,26:100-107.
    15. Frankowski J, Lorito M, Scala F, et al.2001. Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Archive Microbiology,176:421-426.
    16. Gupta C P, Sharma A, Dubey R C, et al.1999. Pseudomonas aeruginosa (GRC1) as a strong antagonist of Macrophomina phaseolina and Fusarium oxysporum. Cytobios,99(392):183-189.
    17. Handelsman J, Stabb E V.1996. Biocontrol of soil-borne Plant Pathogens. The Plant Cell.8: 1855-1869.
    18. Harman G E.2000. Myths and dogmas of biocontrol:changes in perceptions derived from research on Trichoderman harzianum T-22. Plant Disease,84:377-393.
    19. Howell C R, Stipanovic R D.1980. Suppression of Pythium ultimum-induced damping-off of cotton seedings by Pseudomonas fluorescens and its antibiotic pyoluteorin. Phytopathology, 70:712-715.
    20. Johnson F H, Campbell D H.1945. The retardation of protein denaturation by hydrostatic pressure. Journal of Cellular and Comparative Physiology,26:43-46.
    21. Jones E E, Mead A, Whipps J M.2004. Effect of inoculum type and timing of application of Coniothyrium minitans on Sclerotinia:Control of Sclerotinia disease in glasshouse lettuce. Plant Pathology,53:611-620.
    22. Keel C, Schnider U, Maurhofer M, et al.1992. Suppression of root diseases by Pseudomonas fluorescens CHAO:importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Molecular Plant-Microbe Interaction,5:4-13.
    23. Kilian U, Steiner B, Krebs B, et al.2000. FZB24 (r) Bacillus subtilis mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz Nachrichten Bayer,53(1):72-93.
    24. Kloepper J W, Ryu C M, Zhang S.2004. Induce systemic resistance and promotion of plant growth by Bacillus spp.. Phytopathology,94:1259-1266.
    25. Konz D, Doekel S, Marahiel M A.1999. Molecular and biochemical characterization of the protein template controlling biosynthesis of the lipopeptide lichenysin. Journal of Bacteriology,181: 133-140.
    26. Kuske C R, Banton K L, Adorada D L, et al.1998. Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Applied and Environmental Microbiology,64(7):2463-2472.
    27. Larkin R P, Fravel D R.1999. Mechanisms of action and doseresponse relationships governing biological control of Fusarium Wilt of tomato by nonpathogenic Fusarium spp. Phytopathology, 89:1152-1161.
    28. Li J G, Jiang Z Q, Guo J H*, et al.2008. Characterization of Exochitinase Secreted by Bacillus cereus Strain CH2 and Evaluation of its Efficacy against Verticillium Wilt of Eggplant. Biocontrol, 49:512-519.
    29. Li S M, Hua G G, Guo J H*, et al.2007 Analysis of antioxidant enzymes induced by Ralstonia solanacearum antibiotic bacteria Bacillus subtilis strain AR12 in tomato. Annual of Microbiology, 29:186-192.
    30. Lim H S, Kim S D.1991. Pseudomonas stutzeriYPL-1 genetic transformation and antifungal mechanism against Fusarium solani,an agent of plant root rot. Applied Environmental Microbiology, 57:510-516.
    31. Liu Y, Chen Z, Ng T B, et al.2007. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B2916. Peptides,28:553-559.
    32. Magetd R, Peypoux F.1994. Iturins, a special class of pore-forming lipopeptides:biological and physicochemical properties. Toxicology,87:151-174.
    33. Mercado-Blanco J,Rodriguez-Jurado D,Hervas A,et al.2004. Suppression of Verticillium Wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp.. Biological Control, 30:474-486.
    34. Mikani A, Etebarian H R, Sholberg P L.2007. Biogical control apple gray mold caused by Botrytis mali with Pseudomonas fluorescens strains. Postharvest Biology and Technology,26(3):46-53.
    35. Paulitz T C, Belanger R R.2001. Biological control in greenhouse systems. Annual Review of Phytopathology,39:103-133.
    36. Pfender W F, Kraus J, LOPER J E.1993. A Genomic trgion from Pseudomonas fluorescens Pf-5 required for pyrrolnitrin production and inhibition of Pyrenophora tricici-repentis in wheat straw. Phytopathology,83:1223-1228.
    37. Ramos C, Molbak L, Molin S.2000. Bacterial activity in the rhizosphere analyzed at the single-cell level by monitoring ribosome contents and synthesis rates. Applied and Environmental Microbiology,66:801-809.
    38. Raupach G S, Kloepper J W.1998. Mixtures of plant growth-promoting rhizobacteria enhance biological contro of multiple cucumber pathogens. Phytopathoogy,88:1158-1164.
    39. Reva O N, Dixeliu C, Meijer J, et al.2004. Taxonomic characterization and plant colonizing abilities of some bacteria related to Bacillus amyloliquefaciens and Bacillus subtilis. FEMS Microbiology Ecology,48:249-259.
    40. Sheppard J D, Jumarie C, Cooper D G, et al.1991. Ionic channels induced by surfactin in planar lipid bilayer membranes. Biochim Biophys Acta,1064:13-23.
    41. Smith J A, Hammerschmidt R, Fulbright D W.1991. Rapid induction of systemic resistance in cucumber by Pseudomonas syringae pv.Syringae. Physiological and Molecular Plant Pathology, 38(3):223-235.
    42. Stein T.2005. Bacillus subtilis antibiotics:structures, syntheses and specific functions. Moleccular Microbiology,56(4):845-857.
    43. Stover A G, Driks A.1999.Secretion,localization,and antibacterial activity of Tas A,a Bacillus subtills spore-associated protein. Journal of Bacteriology,181:1664-1672.
    44. Thomashow L S,Weller D M.1988. Role of a phenazine antibiotic from Pseudomonas fluorescens biological control of Gaeumannomyces graminis var tritici. Journal of Bacteriology,170:3499-3508.
    45. Tschenj S M.1987. Control of Rizoctonia soanli by Bacillus subtilis. Transactions of the Mycological Society Japan,28:483-493.
    46. Vanittanakom N, Loeffler W, Koch U.1986. Fengycin-a novel anti-fungal lipopeptide antibiotic produced by Bacillus subtilis F2923. The Journal Antibiotics,39:888-901.
    47. Van Loon L C.1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology,36:453-483.
    48. Van Wees S C M, Pieteerse C M J, Trijssenaar A, et al.1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacterial. Mol Plant-microbe interaction,10:716-724.
    49. Wang H, Hwang S F, Chang K F, et al.2003. Suppression of important pea diseases by bacterial antagonists. Biocontrol,48:447-460.
    50. Weisbeek P, Ogeshi A, K.Kobayashi, et al.1997. Plant growth-promoting rhizobacteria-Present status and future prospects.Proc.4th Inter.workshop on plant growth-promoting rhizobacteria, Japan-OECD Joint workshop Sapporo Japan,10(5):102-106.
    51. Whipps, J M, Gerlagh, M.1992. Biology of Coniothyrium minitans and its potential for use in disease biocontrol. Mycological Research,96,897-907.
    52.别小妹,陆兆新,吕凤霞,等2006. Bacllius subtilis fmbR抗菌物质的分离和鉴定.中国农业科学,39(11):2327-2334.
    53.蔡学清,何红,胡方平.2003.双抗标记法测定枯草芽孢杆菌BS22和BS21在辣椒体内的定殖动态.福建农林大学学报,32(1):41-45.
    54.陈延熙等.1985.增产菌的应用与研究.生物防治通讯,1(2):22-23.
    55.陈志谊,高太东,严大富,等.1997.枯草芽孢杆菌B2916防治水稻纹枯病的田间试验.中国生物防治,13(2):75-78.
    56.陈志谊,许志刚,陆凡,等.2001.拮抗菌株B-916对水稻植株的抗性诱导作用.西南农业学报,14(2):44-48.
    57.杜立新,冯书亮,曹克强,等.2004.枯草芽孢杆菌BS2208和BS2209菌株在番茄叶面及土壤中定殖能力的研究.河北农业大学学报,27(6):78-82.
    58.高克祥,刘晓光,郭润芳.2002.木霉菌对五种植物病原真菌的重寄生作用.山东农业大学学报(自然科学版),33(1):37-42.
    59.高学文,姚仕义,Pham H,等.2003.枯草芽孢杆菌B2菌株产生的抑菌活性物质分析.中国生物防治,19(4):175-179.
    60.高学文,姚仕义,Pham H,等.2003.枯草芽孢杆菌B2菌株产生的表面活性素变异体的纯化和鉴定.微生物学报,43(5):647-652.
    61.顾真荣,马承铸,韩长安.2001.产几丁质酶芽孢杆菌的筛选鉴定和酶活力测定.上海农业学报,17(3):92-96.
    62.韩艳霞,陈太政,侯彦喜,等.2007.小麦全蚀病拮抗微生物的分离及其拮抗性能研究.河南农业科学.(8):60-63.
    63.郝晓娟,刘波,谢关林,等.2007.短芽孢杆菌JK22菌株抑菌物质特性的研究.浙江大学学报(农业与生命科学版),33(5):484-489.
    64.黄大昉.2001.生防微生物生物技术研究与发展.植物保护,29(5):3-4.
    65.姜道宏,李国庆,易先宏,等.1996.菌核寄生菌盾壳霉的研究(D)Ⅱ.不同菌株培养特性及寄生致腐菌核能力的比较.华中农业大学学报.
    66.李国庆,杨龙,姜道宏,等.2009.重寄生菌盾壳霉及其防治核盘菌菌核病的研究进展.湖北植保.
    67.李静,冯淑杰,肖晶,等.2007.小白菜内生假单胞菌XBC-PS的生防作用.中国蔬菜,(5):21-23.
    68.李敏,刘润进,李晓林.2004.大田条件下丛枝菌根真菌对西瓜生长和枯萎病的影响.植物病理学报,34(5):472-473.
    69.李湘民,胡白石,许志刚,等.2003,拮抗细菌菌株Pseudomonas fluorescens7-14在水稻植株上的时间、空间定殖型.植物病理学报,33(5):468-473.
    70.林福呈,李德葆.2003.枯草芽孢杆菌(Bacillus subtilis)S9对植物病原真菌的溶菌作用.植物病理学报,33(22):174-177.
    71.刘伊强,王雅平,潘乃,等.1994.拮抗菌TG26的鉴定及其抗菌蛋白BI的纯化和部分特性.植 物学报,36(3):197-203.
    72.刘永峰,陈志谊,张杰,等.2005.枯草芽孢杆菌B2916胞外抗菌蛋白质的性质.江苏农业学报,21(4):288-293.
    73.刘宇,刘建华,刘伟成,等.2007.利迪链霉菌A02诱导番茄抗灰霉病作用机制研究—对植株防御酶系的影响.华北农学报,22(2):152-155.
    74.马艳,赵江涛,常志州,等.2006.西瓜内生枯草芽孢杆菌BS211的拮抗活性及盆栽防效.江苏农业学报,22(4):388-393.
    75.梅汝鸿等.1998.植物生态学[M].北京,中国农业出版社,48-72.
    76.乔宏萍,宗兆峰.2003.重寄生菌F46和PR对苹果采后病害三种致病菌的控制作用.中国生物防治,19(1):47-封三.
    77.邱晓,裴炎,王瑜宁,等.1990.棉花体内的假单胞菌及其对棉苗根病的防效.植物保护学报,17(14):303-306.
    78.石晶盈,刘爱媛,冯淑杰,等.2007.番木瓜内生细菌MG-Y2的鉴定及其生防作用.果树学报,24(6):810-814.
    79.唐丽娟,纪兆林,徐敬友,等.2005.地衣芽孢杆菌W10对灰葡萄孢的抑制作用及其抗菌物质.中国生物防治,21(3):203-205.
    80.田连生,王伟华,石万龙,等.2001.木霉对尖镰孢菌的拮抗机制及生防效果研究.植物保护,27(4):47-48.
    81.田涛,亓雪晨,王琦,等.2004.芽孢杆菌绿色荧光蛋白标记及其在小麦体表定殖的初探.植物病理学报,34(4):346-351.
    82.童有仁,马志超,陈卫良,等.1999.枯草芽孢杆菌B2034拮抗蛋白的分离纯化剂及特性分析.微生物学报,34(4):339-343.
    83.童蕴慧,徐敬友,陈夕军.2001.番茄灰霉病菌拮抗细菌的筛选和应用.江苏农业研究,22(4):25-28.
    84.王虹,胡先文,姜道宏,等.2009.盾壳霉代谢抗白叶枯病菌活性物质的分离.华中农业大学学报.28(2),148-150.
    85.王雅平,刘伊强,潘乃,等.1993.抗真菌蛋白BII的分离纯化及其性质研究.生物化学与生物物理学报,25(4):391-397.
    86.王雅平,刘伊强,潘乃,等.1993.枯草芽孢杆菌TG26防病增产效应的研究.生物防治通报,9(2):63-68.
    87.王雅平,刘伊强,潘乃,等.1992.枯草芽孢杆菌A014菌株防治小麦赤霉病的初步研究.生物防治通报,8(2):54-57.
    88.魏海雷,周洪友,张力群,等.2004.抗生素2,4-二乙酰基间苯三酚作为荧光假单胞杆菌2P24 菌株生防功能因子的实证分析.微生物学报,44(5):663-666.
    89.吴林森.2005.生物农药发展现状与加大研发力度的探讨.中国林副特产,(3):35-38.
    90.肖炎农,程瑜,王明祖,等.2000.假单胞杆菌B301对稻瘟病菌的拮抗性.植物保护学报,27(3):227-230.
    91.薛宝娣,李娟,陈永萱.1995.木霉(TR-5)对病原真菌的拮抗机制和防病效果研究.南京农业大学学报,18(1):31-36.
    92.杨秀芳,刘伟成,卢彩鸽,等.2007.拮抗放线菌A03的生防作用及其分类鉴定.植物保护学报,34(1):73-77.
    93.姚震声,陈中义,陈志谊,等.2003.绿色荧光蛋白基因标记野生型生防枯草芽孢杆菌的研究.生物工程学报,19(5):551-555.
    94.于新,田淑慧,徐文兴,等.2005.木霉菌生防作用的生化机制研究进展.中山大学学报(自然科学版),44(2):86-90.
    95.张广志,文成敬.2005.木霉对玉米纹枯病的生物防治.植物保护学报,32(4):353-356.
    96.张桂英,廖咏梅,张君成.2004.甘蔗黑穗病菌拮抗性芽孢杆菌的抗菌作用与伊枯草菌素A的产生有关.广西科学,11(3):269-272.
    97.张琴芳,代光辉,顾振芳,等.2004.非致病性镰刀菌Fusarium oxysporum菌株47(F047)对番茄枯萎病的防治效果.上海交通大学学报,22(1):17-21.
    98.张淑梅,王玉霞,李晶,等.2006.基因标记枯草芽孢杆菌BS268A在黄瓜上定殖.生物技术,16(4):73-74.
    99.张学君,赵军,王金生.1994.枯草芽孢杆菌B3菌株对小麦根系和茎基部的定殖作用研究.生物防治通报,10(4):171-174.
    100.张玉勋,李光,张光明.2000.拮抗细菌在大棚温室番茄叶片定殖及对灰霉病害的控制效果.植物病理学报,30(1):91.
    101.郑爱萍,李平,王世全,等.2003.水稻纹枯病菌强拮抗菌B34的分离与鉴定.植物病理学报,33(1):81-85.
    102.庄敬华,刘淑花,王传世,等.2005.木霉菌多功能生防菌剂对瓜类枯萎病的防治效果.北方园艺,(5):90-91.
    1. Antomia R, Ulrich M, Roland B, et al.1992. Chitinase of Streptomyces olivaceoviridis and Significance of Processing for Multiplicity. Journal of Bacteriology,174(11):3450-3454.
    2. Akira O, Hirohid M, Masaru M.1990. Action Pattern of Streptomyces griseus Chitinase on Partially N-Acetylated Chitosan. Agricural Biological Chemistry,54(12):3191-3199.
    3. Bliffeld M, Mundy J, Potrykus I, et al.1999. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theoretical Applied Gengtics,98(6-7):1079.
    4. Bormann C, Baier D, Horr I, et al.1999. Characterization of a novel antifungal chitin-binding protein from Streptomyces tendae. Journal of Bacteriology,181(24):7421-7429.
    5. Benecke W.1905. Bacillus chitinovorus, einen Chitin-zersetzenden Spaltpilz. Bot Ztg,63:227.
    6. Broglie K E, Chit I, Holliday M, et al.1991. Transgetic plant with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science,254:1194.
    7. Carlini C R, Grossi D S, Maria F.2002. Plant toxic proteins with insecticidal properties. Toxicon, 40(11):1519-1539.
    8. Chernin L S, Fuente L, Sobolev V, et al.1997. Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans. Applied Environmental Microbiology,63(3):834-839.
    9. Comes R C, Semedo LT, Soares R M, et al.2000. Chitinolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Letters in Applied Microbiology,30(2):146-150.
    10. Dahiya N.2006. Biotechnological aspects of chitinolytic enzymes. Applied Microbiology Biotechnology,7 (1):773-781.
    11. Folpmers T.1921. Der Zersetzung des Chitins and des Spaltungs produktes desselben, des Glucosamins, durch Bakterien. Chem Weekbl,18:249-258.
    12. Fuchs R L, Mcpherson S A, Drahos D J, et al.1986. Cloning of a Serratia marcescens gene encoding chitinase. Applied Environmental Microbiology,51(3):504-509.
    13. Fujii T, Miyashita K.1993. Multiple domain structure in a chitinase gene(chiC)of Sti-eptomyces lividans. Journal of General Microbiology,139:677-686.
    14. Grassman W, Rubenbauer H.1931. Uber Zellulase and Hemizellulase mit besondver Beruchsichti gung ihver therapeutischen Anwendug. Munch Med Wschr,78:1817.
    15. Haki G D, Rakshit S K.2003. Development in industrially important thermostable enzymes. Bioresource Technology,89(1):17-34.
    16. Hiramatsu S, Fujie M, Usami S, et al.2000. Two catalytic domains of Chlorella virus CVK-chitinase. Journal of Bioscience and Bioengineering,89(3):252-257.
    17. Howard M B, Ekborg N A.2003. Genomic analysis and initial characterization of the chitinolytic system of Microbulbifer degradans strain 2-40. Bacteriology,185(11):3352.
    18. Jaques A K, Tamo F.2003. Disruption of the gene encoding the Chibl chitinase of Aspergillus fumigatus and characterization of a recombinant gene product. Microbiology,149:2931.
    19. Jeuilaux C.1950. Broduction dune exechitinase par des bcteries chitinolytiques du contenu intest inal del escargot Arch. International Journal of Physiology,58:352.
    20. Jeuilaux C.1961. Chitinase:An Addition to the List of Hydrolases in the digestive treat of vertebrates. Nature,192:135-136.
    21. Karrer P, Hofmann A.1929. Polysaccharide, ber den enzymatisehen Abbau von Chitin und Chitosan. Helvetica Chimica Acta,12(1):616-637.
    22. Marchant R, Davey M R, Lucas JA, et al.1998. Expression of a chitinase transgetic in rose (Rosa hybrida) reduce development of blackspot disease (Diplocarpon rosae Wolf). Molecular Breeding, 4(3):187.
    23. Nishizawa Y, Nishio Z, Nakazono K, et al.1999. Enhanced resistance to blast (Magnaporthe grisea) in transgetic japonica rice by constitutive expression of rice chitinase. Theoretical Applied Gengtics, 99(3-4):383.
    24. Ohno T, Armand S, Hata T, et al.1996. A modular family chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. Journal Bacteriology,178:5065-5070.
    25. Pelletier A, Sygusch J.1990. Purification and Characterization of Three Chitinases Activities from Bacillus megaterium PI. Applied Environmental Microbiology,56(4):844-848.
    26. Robert BT, Anthony LT, Georgina E, et al.1979. Purificationand Properties of Endo-β-N-Acety-lglucosaminidase L from Streptomyces Plicatus. Journal of Biological Chemistry, 254(19):9707-9713.
    27. Saito A, Fujii T, YoneyanraT, et al.1999. High multiplicity of chitinase genes in Streptomyces coelicolor A3(2). Bioscience Biotechnology Biochemistry,63(4):710-718.
    28. Shinshi H U.1987. Regulation of a plant pathogenesis related enzyme:Inhibition of chitinase and chitinase mRNA accumulation in cultured tobacco tissues hy auxin and cytokinin. Proceedings of the National Academy of Sciences USA,84:89-93.
    29. Souza R F, Gomes R C, Coelho R, et al.2002. Purification and characterization of an endochiitinase produced by Colletrichum gloeosporioides. FEMS Microbiology Letters, 222(1):45-50.
    30. Strit Y, Vorgias C E, Chet I, et al.1995. Cloning and primary structure of the chiA gene from Aeromonas caviae. Journal of Bacteriology,177:4187-4189.
    31. Sundheim L, Poplawsky A R, Elljingboe A H.1988. Molecular cloning of two chitinase genes from Serraria marcescenes and the expression in Pseudomonas species. Physiology and Molecular Plant Pathology,33:483-491.
    32. Svitil A L, Chadhain S M N, Moore J A, et al.1997. Chitin degradation proteins produced by the marine bacterium Vibrio harveyi growing on diferent forms of chitin. Applied Environmental Microbiology,163(2):408-413.
    33. Tabei Y, Kitade S, Nishizawa Y, et al.1997. Transgetic cucumber plants harboring a rice chitinase gene exhibit enhanced resistance to gray mold (Botrytis cinerea). Plant Cell Reports,17(3):159.
    34. TanakaT, Fujiwara S, Nishiori S, et al.1999. A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaroensis KOD. Applied Environmental Microbiology,65(12):5338-5344.
    35. Techkamjanamk S, Goodman A E.1999. Multiple genes involved in chitin degradation from the marine bacterium Pseudomonas sp.strain. Microbiology,145(4):925-934.
    36. Thieny L, Mavromatis K, Vorgias C E, et al.2001. Cloning, sequencing and characterization of two chitinase genes from the Antarctic Arthrohacter sp. strain TAD20:isolation and partial characterization of the enzymes. Journal of Bacterialgy,183(5):1773-1779.
    37. Trachuk L A, Revina L P, Shemyakina T M, et al.1996. Chitinases of Bacillus Licheniformis Bs-6839:Isolation and Properties. Canadian Journal of Microbiology,42(4):307-315.
    38. Tsuya, N, Michio K, Shuzo S, et al.1990. Purification and Characterization of Two Forms of Amylase from Pseudomonus srutzeri. Atca Biol Chem,54(3):737-743.
    39. Ueda M, Kawaguchi T, Arai M, et al.1994. Molecular cloning and nucleotide sequence of the gene encoding chitinase II from Aeromonas sp. No. IOS-24. Journal of Fermentation Bioengineer, 78(3):205-210.
    40. Ujibo H, Orikoshi H, Shiotani K, et al.1998. Characterization of chitinase C from a marine bacterium Alteromonas sp. Strain and its domain structure. Applied Environmental Microbiology, 64(2):472-478.
    41. Wang S L, Chang W T.1997. Purification and characterization of two bi-functional chitinase lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and shell powder medium. Applied Environmental Microbiology,63(2):380-386.
    42. Watanabe T, Suzuki K, Ohnishi K, et al.1990. Gene cloning of chitinase AI from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia Chitinase and to the type III homology units of frbronectin. Journal of Biological Chemistry.265(26):15659-15665.
    43. Watanabe T, Kanai R, Kawase T, et al.1999. Family 19 chitinases of Streptomyces species-. characterization and distribution. Microbiology,145(12):3353-3363.
    44. Watanabe T, Oyanagi W, Suzuki K, et al.1992. Structure of the gene encoding chitinase D of Bacillus circulans WL.-12 and possible homology of the enzyme to other prokaryotic chitinase and classⅢ plant chitinase. Journal of Bacteriology.174(1):408-414.
    45. Zechemister L, Toth G.1938. Uber die chromatographische trennung einiger enzyme des emulsinns. Enzymologia,5:302.
    46. Zhu Q, et al.1991. Isolation and characterization of a rice gene encod ing a basic chitinase. Molecular and General Genetics,226:289-296.
    47. Zhu Q, Maher E A, Masoud S, et al.1994. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgetic tobacco. Bio-Technology,12:807.
    48. Zobell C E, Rittenberg S C.1938. The occurrence and charcteristies of chitinoclastic bacteria in the sea. Journal of Bacteriology,35:275.
    49.蓝海燕,陈正华.1998.几丁质酶及其研究进展.生命科学研究.2(3):163-176.
    50.冯金荣,惠丰立,文祯中.2006.真菌几丁质酶及其在植物真菌病害防治中的作用.河南农业科学,32(8):83-86.
    51.彭辉银,李星,张双民等.1998.中国棉铃虫核型多角体病毒几丁质酶基因的定位与克隆.中国病毒学,13(2):139-143.
    52.彭仁旺,黄秀梨.球孢白僵菌胞内几丁质酶的分离纯化及性质.微生物学报,35(6):427-432.
    53.孙胜利,喻子牛,贾新成.2002.微生物产几丁质酶的研究和应用进展.微生物学杂志,22(5):47.
    54.王关林,方宏筠.2002.植物基因工程(第二版)[M].北京:科学出版社,32-34.
    55.王治伟,刘志敏.2006.微生物几丁质酶研究进展.生物技术通讯,17(3):439-442.
    56.熊国如.枯草芽孢杆菌XF-1防治根肿病及其生防特性研究[D].昆明:云南农业大学,2009.
    57.徐同,柳良好.2002.木霉几丁质酶及其对植物病原真菌的拮抗作用.植物病理学报,32(2):97-102.
    58.肖炎农,王明祖.1998.淡紫拟青霉几丁质酶的纯化和活陛影响因子。植物病理学报,28(3):275-280.
    59.郑洪武,王焰玲,张义正等.1998.环状芽孢杆菌C-2几丁酶基因的克隆.生物工程学报,14(1):28-32.
    60.周樱,王风平,肖湘等.2002.豚鼠气单胞菌CB101中几丁质酶基因的克隆及其异源表达的全酶蛋白和酶片段的功能研究.自然科学进展,12(8):852-856.
    1. Larkin R P, Fravel D R.1999. Mechanisms of action and doseresponse relationships governing biological control of Fusarium Wilt of tomato by nonpathogenic Fusarium spp. Phytopathology,89: 1152-1161.
    2. P. Sabuquillo, A. De Cal, P. Melgarejo.2010. Development of a dried Penicillium oxalicum conidial formulation for use as a biological agent against Fusarium Wilt of tomato:Selection of optimal additives and storage conditions for maintaining conidial viability. Biological control, 54(3):221-229.
    3. Raquel G, Flavia R Alves P, Wagner B.2007. Effect of sewage sludge on suppressiveness to soil-borne plant pathogens. Soil Biology and Biochemistry,39(11):2797-2805.
    4. Rashmi S, Abdul K, U.S. Singh.2010. Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f.sp. lycopersici for the management of tomato Wilt.Biological control,53(1):24-31.
    5. Sebastien A, Christelle C, Claude A.2008. Comparative analysis of PR gene expression in tomato inoculated with virulent Fusarium oxysporum f.sp. Lycopersici and the biocontrol strain F. oxysporum Fo47. Physiological and Molecular Plant Pathology,73(1):9-15.
    6. Sudhamoy M, Nirupama M, Adinpunya M.2009. Salicylic acid-induced resistance to Fusarium oxysporum f.sp. lycopersici in tomato. Plant Physiology and Biochemistry,47(7):642-649.
    7.陈雪丽,王光华,金剑,等.2008.多粘类芽孢杆菌BRF-1和枯草芽孢杆菌BRF-2对黄瓜和番茄枯萎病的防治效果.中国生态农业学报,16(2):358-367.
    8.方中达.2007.植病研究方法(M).中国农业出版社,132.
    9.郝晓娟,刘波,谢关林.2007.短短芽孢杆菌JK-2菌株对番茄枯萎病的抑菌作用及其小区防效.中国生物防治,23(3)233-236.
    10.钱晓雍,沈根祥,黄丽华,等.2007.3株非致病性镰刀菌Fusarium oxysporum菌株对番茄枯萎病的生物防治效果.上海农业学报,23(4):60-62.
    11.肖烨,易图永,黎定军,等.2007.番茄青枯病生物防治研究进展.植物保护,33(2):204-209.
    12.徐艳辉,李烨,许向阳.2008.番茄枯萎病的研究进展.东北农业大学学报,39(11):128-134.
    1. Carlini C R, Grnssi D S, Maria F.2002. Plant toxic proteins with insecticidal properties. Toxicon, 40(11):1519-1539.
    2. Haki G D, Rakshit S K.2003. Development in industrially important thermostable enzymes. Bioresource Techonology,89(1):17-34.
    3. Kobayashi D Y, Reedy R M, Palumbo J D, et al.2005. A gene homologue belonging lo the Crp gene family globally regulates lytic enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes strain C3. Applied and Environmental Microbiology, 71(1):261-269.
    4. Nakayama T, Homma Y, Hashidoko Y, et al.1999. Possible role of Xanthobaccins produced by Stenotrophomonas sp.strain SB-K88 in suppression of sugar beet damping of disease. Applied and Environmental Microbiology,65(10):4334-4339.
    5. Palumbo J D, Yuen G Y, Christine J C, et al.2005. Mutagenesis of genes in Lysobacter enzymgenes strain C3 results in reduced biological control activity toward Bipolaris leaf spot of tall fescue and Pythium damping-of of sugar beet. Phytopathology,95(6):701-707.
    6. Robeas W K, Selitrennikof C P.1998. Plant and bacterial chitinases difer in antifungal activity. Journal of Genenal Microbiology,134:169-176.
    7. Sullivan R F, Hohman M A, Zylstra G J, et al.2003. Taxonomic positioning of two biological control agents for plant diseases as Lysobacter enzymogenes based on phylogenetic analysis of 16S rDNA, fatty acid composition and phenotypie characteristics. Journal of Applied Microbiology,94: 1079-1086.
    8.刘佳,贺淹才,施腾鑫等.2010.重组粘质沙雷氏茵几丁质酶C的纯化及酶学性质.华侨大学学报,31(5):552-556.
    9.施腾鑫,刘嘉,贺淹才.黏质沙雷氏茵产几丁质酶的发酵工艺优化.华侨大学学报,31(6):667-670.
    10.韦新葵,雷朝亮.2002.几丁质酶在植物保护中的研究与应用进展.湖北植保,(1):37-40.
    1. Aver Yanov A A, Lapikova V P, Djawakhia V G.1993. Active oxygen mediates heat-induced resistance of rise plant to blast disease. Plant Science,92:27-34.
    2. Duffy B K, Simon A, Weller D M.1996. Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all wheat. Phytopathology,86:188-194.
    3. Pierson E A, Weller D M.1994. Use of mixtures of fluorescent pseudomonads to suppress take-all and improve the growth of wheat. Phytopathology,84:940-947.
    4. Raupach G S, Kloepper J W.1998. Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology,88:1158-1164.
    5. Sivan A, Chet I.1989. Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum. Journal of Genenal Microbiology,135:675 682.
    6.陈波浪,郑春霞,盛建东,等.2006.HPLC分离和测定棉花中3种植物激素.新疆农业大学学报,29(1):28-30.
    7.陈红,李平,王玲霞,等.2001.混合菌培养提高水稻纹枯病生防效果的研究.中国农学通报,17(5):1-5.
    8.陈捷,蔺瑞明,高增贵,等.2002.玉米弯孢叶斑病菌毒素对寄主防御酶系活性的影响及诱导抗性效应.植物病理学报,32(1):43-48.
    9.陈三风,李季伦.1993.几丁质酶研究历史和发展前景.微生物学通报,(3):156-160.
    10.陈志谊,刘永锋,陆凡,等.2003.井岗霉素和生防菌Bs-916协同控病作用及增效机理初探.植物保护学报,30(4):429-434.
    11.陈志谊,许志刚,陆凡,等.2001.拮抗细菌B-916对水稻植株的抗性诱导作用.西南农业学报,14(2):44-48.
    12.冯俊丽,朱旭芬.2004.微生物几丁质酶的分子生物学研究.浙江大学学报,30(1):102-108.
    13.顾真荣,马承铸,韩长安.2001.产几丁质酶芽孢杆菌对病原真菌的抑菌作用.上海农业学报,17(4):88-92.
    14.谷丽努尔·艾合买提,杨新平,季青,等.1998.微生物代谢产物中植物激素的分析测定.新疆农业科学,(2):81-82.
    15.黄健,唐学玺,刘涛,等.2002.褐藻酸降解菌侵染海带过程中活性氧及抗氧化系统的变化.青岛海洋大学学报,32(4):574-578.
    16.黄先忠,蒋才富,廖立力,等.2006.赤霉素作用机理的分子基础与调控模式研究进展.植物学通报,23(5):499-510.
    17.黄秀梨.1989.几丁质、脱乙酰几丁质:具有广泛应用前景的生物多聚糖.应用微生物,(3):13-15.
    18.华苟根.2004.AR99菌剂诱导的番茄青枯病抗性研究.(D)南京:南京农业大学.
    19.蒋继志,廖祥如,赵丽坤.2002.活性氧与植物系统获得抗病性研究进展.河北农业大学学报,25(5):173-176.
    20.李博强,牛小帆,纪明山,等.2000.黄瓜苗期拮抗菌的筛选与活性测定.沈阳农业大学学报,31(6):546-549.
    21.李智盈,韩宝芹,贾志良,等.1999.海洋弧菌Z010产生儿丁质酶的发酵条件研究.青岛海洋大学大学学报,29(4):643-648.
    23.刘邮洲,陈志谊,刘永锋,等.2004.南京地区蔬菜枯萎病拮抗细菌的筛选与评价.江苏农业学报,20(1):25-29.
    24.刘邮洲,陈志谊,刘永锋,等.2003.拮抗细菌防治茄科类蔬菜常见病害的效果.江苏农业学报,19(2):96-99.
    25.芦光新.2002.活性氧与植物抗病性的关系.青海大学学报,20(4):12-15.
    26.吕泽勋,宋未.2000.高效液相色谱和质谱法对产酸克雷伯氏菌SG-11生物合成吲哚-3-乙酸代谢途径的研究.色谱,18(4):328-331.
    27.孟庆瑞,杨建民,樊英利,等.2002.冰核活性细菌对杏花器官ABA、IAA和可溶性蛋白质含量的影响.果树学报,19(4):243-246.
    28.杨文博,马波,佟树敏,等.1997.产几丁质酶链霉菌S01菌株的筛选及培养条件.天津农业科学,3(3):14.
    29.赵蕾,汪天虹.1999.几丁质,壳聚糖在植物保护中的研究与应用进展.植物保护,25(1):43-44.
    30.赵蕾,杨合同.1999.蔬菜灰霉病拮抗菌的筛选与防效试验初报.应用与环境生物学报,5(1):85-88.
    31.周而勋,叶永武,林如泉.2000.拮抗菌的筛选及其对黄瓜苗期立枯病的防治作用.广东农业科学,(1):44-46.
    1. Brightwell G, Boerema J, Mills J.2006. Identifying the bacterial community on the surface of Intralox belting in a meat boning room by culture-dependent and culture-independent 16SrDNA sequence analysis. International Food Microbiology,109:47-53.
    2. Christensen J J, Andresen K.2005. Ribosomal DNA sequencing:experiences from use in the Danish National Reference Laboratory for Identification of Bacteria. APMIS,9:621-628.
    3. Drancourt M, Bollet A.2000.16S ribosomal DNA sequence analysis of a large collection of environmental and clinical Unidentifiable bacterial isolations. Clinical Microbiology,10:3623-3630.
    4. Eckert J W, Ogawa J M.1985. The chemical control of postharvest disease:subtropical and tropical fruits. Annual Review of Phytopathology,23:421-454.
    5. Lee I M, Bartoszyk I M, Gundersen-Rundersen D E.1997. Phylogeny and classification of bacteria in the genera clavibacter and rathaybacter on the basis of 16SrRNA gene sequence analyses. Applied Environmental Microbiology,63(7):263-266.
    6.董金皋.2001.农业植物病理学[M].北京:中国农业大学出版社,287-290.
    7.东秀珠,蔡妙英.2001.常见细菌系统鉴定手册[M].北京:科学出版社,349-413.
    8.方中达.1998.植病研究方法[M].北京:中国农业出版社,115-163.
    9.纪兆林,凌筝,张清霞,等.2008.地衣芽孢杆菌对苹果轮纹病菌和炭疽病菌的抑制及其对贮藏期苹果轮纹病的防治作用.果树学报,25(2):209-214.
    10.蒋萍,叶健仁.2008.马尾松叶面拮抗细菌NA的分子鉴定.新疆农业大学学报,31(3):39-42.
    11.刘邮洲,陈志谊,刘永锋,等.2004.南京地区蔬菜枯萎病菌拮抗细菌的筛选与评价.江苏农业学报,20(1):18-23.
    12.刘招龙,张绍铃,孙益林,等.2005.木霉菌对抑制梨轮纹菌的生理特性研究中国农学通报,21(9):345-346.
    13.马志强,李红霞,袁章虎,等.2000.苹果轮纹病菌对多菌灵抗药性监测初报.农药学学报,2(3):94-96.
    14.童蕴慧,纪兆林,徐敬友,等.2003.灰葡萄孢拮抗细菌在番茄植株体表的定殖.中国生物防治,19(2):78-81.
    15.杨炜华,刘开启.2002.苹果轮纹病菌对多菌灵和甲基硫菌灵的抗药性监测.植物保护学报,29(2):191.
    16.展丽然,张克诚,冉隆贤,等.2008.苹果轮纹病菌拮抗放线菌的筛选与鉴定.中国农学通报,24(4):341-344.
    17.赵白鸽,孔建,王文夕,等.1997.枯草芽孢杆菌B-903对苹果轮纹菌的抑菌作用及其对病害的控制效果.植物病理学报,27(3):214.
    1. Aharoni Y, Fallik E, Copel A, et al.1997. Sodium bicarbonate reduces postharvest decay development on melons. Postharvest Biology Technology,10:201-206.
    2. Ahimoua F, Jacquesb P, Deleua M.2000. Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity. Enzyme and Microbial Technology,27:749-754.
    3. Angelo G, Maria L G.2004. Control of Penicillium expansum and Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or ethanol application. Postharvest Biology and Technology,33:141-151.
    4. Colgan R J, Johnson D S.1998. The effects of postharvest application of surface sterilizing agents on the incidence of fungal rots in stored apples and pears. Journal of the Horticultural Science and Biotechnology,73:361-366.
    5. Cunningham G P, Harden J.1998. Reducing spray volumes applied to mature citrus trees. Crop Protection,17:289-292.
    6. Droby S, Wisniewski M, EL Ghaouth A, et al.2003. Influence of food additives on the control of postharvest rots of apple and peach and efficacy of the yeast-based biocontrol product Aspire. Postharvest Biology and Technology,27:127-135.
    7. EL Ghaouth A, Wilson C L, Wisniewski M, et al.2002. Biological control of postharvest diseases of citrus fruits. In:Gnanamanickam, S.S. (Ed.), Biological Control of Crop Diseases. Marcel Dekker, Inc., New York, USA,289-312.
    8. EL Ghaouth A, Smilanick J L, Wisniewski M, et al.2000a. Improved control of apple and citrus fruit decay with a combination of Candida saitoana and 2-deoxy-D-glucose. Plant Disease,84:249-253.
    9. EL Ghaouth A, Smilanick J L, Brown G E, et al.2000b. Application of Candida saitoana and glycolchitosan for the control of postharvest diseases of apple and citrus fruit under semi-commercial conditions. Plant Disease,84:243-248.
    10. Fallik E, GrinberG S, Ziv O.1997. Potassium bicarbonate reduces postharvest decay development on bell pepper fruits. Journal of Horticultural Science,72:35-41.
    11. Furness G O, Magarey P A, Miller P M, et al..1998. Fruit tree and vine sprayer calibration based on canopy size and length of row unit canopy row method. Crop Protection,17:639-644.
    12. Gamagaea S U, Sivakumara D S, Wijeratnama R, et al.2003. Use of sodium bicarbonate and Candida oleophila to control anthracnose in papaya during storage. Crop Protection,22:775-779.
    13. Guan J, KerkennAR A, DE Ward M A.1989. Effects of imazalil on sterol composition of sensitive and DMI-resistant isolates of Penicillium italicum. Netherlandish Journal of Plant Pathology, 95:73-86.
    14. Holmes G J, Eckert J W.1999. Sensitivity of Penicillium digitatum and P. italicum to postharvest citrus fungicides in California. Phytopathology,89:716-721.
    15. Janisiewicz W J, Korsten L.2002. Biological control of postharvest diseases of fruits. Annual Review of Phytopathology,40:411-441.
    16. Ji Z L, Ling Z, Hang Q X, et al.2008. Study on the inhibition of Bacillus licheniformis on Botryosphaeria berengeriana f. sp. piricola and Glomerella cingulata and biocontrol efficacy on postharvest apple diseases. Chinese Journal of Fruit Science,25(2):209-214.
    17. Kharbanda P D, Yang J, Tewari J P.1996. Integrated control of blackleg of canola using Tilt and a bio control agent[A]. Tang W H, Cook R J, Rovira A. Advances in Biological Control of Plant Diseases[M].Beijing:China Agricultural University Press,335.
    18. Lanza G, DI Martino E, Strano M C.2004. Evaluation of alternative treatments to control green mold in citrus fruit. Journal of the Horticulture,632:343-349.
    19. Leifert C, Li H, Chidburee S, et al.1995. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. Journal of Applied Bacteriology,78:97-108.
    20. Liu Y F, Chen Z Y, NG T B, et al..2007. Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides,28:553-559.
    21. Mazzini F.2002. Come cambiano le norme sui prodotti fitosanitarie loro coadiuvanti. Inf Tore Fitopatol,52:42-46.
    22. MazzolA M, Cook R J, Thomashow L S.1992. Contribution of Phenazine antibiotic biosynthesis to the ecological competence of Fluorescent Pseudomonas in soil habitats. Applied Environmental Microbiology,58:2616-2624.
    23. Muhammad I A, Yasuhisa S, Seiichi O, et al.2002. Disinfection effects of electrolyzed oxidizing water on suppressing fruit rot of pear caused by Botryosphaeria berengeriana. Food Research International,35:657-664.
    24. Obagwu J, Korsten L.2003. Integrated control of citrus green and blue molds using Bacillus subtilis in combination with sodium bicarbonate or hot water. Postharvest Biology Technology,28:187-194.
    25. Palbais H, Fall R, Vivanco J M.2004. Biocontrol of Bacillus subtilis against infection of arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology,134:307-319.
    26. Punja Z, Gaye M M.1993. Influence of postharvest handling practices and dip treatments on development of black root on fresh carrots. Plant Disease,77:986-995.
    27. Siegel M R, Kerkenaar A, Kaars A.1977. Antifungal activity of the systemic fungicide imazalil. Netherlandish Journal of Plant Pathology,83:121-133.
    28. Similanick J L, Dennis-arrue R, Bosch J R, et al.1993. Control of postharvest rot of nectarines and peaches by Pseudomonas species. Crop Protection,12:513-520.
    29. Similanick J L, Margosan D A, Mlikota F, et al.1999. Control of citrus green mold by carbonate and bicarbonate salts and the influence of commercial postharvest practices on their efficacy. Plant Disease,83:139-145.
    30. Similanick J L, Mansour M F, Margosan D A, et al.2005. Influence of pH and NaHCO3 on effectiveness of imazalil to inhibit germination of Penicillium digitatum and to control postharvest green mold on citrus fruit. Plant Disease,89:640-648.
    31. Similanick J L, Mansour M F, Sorenson D.2006. Pre-and postharvest treatments to control green mold of citrus fruit during ethylene degreening. Plant Disease,90:89-96.
    32. Stelle J M, Vlami J T.2002. Antibiotic production by bacterial biocontrol agents. Antonie van Leeuwenhoek,81:379-407.
    33. Tadashi O, Teruo S, Yukio H.2000. Botryosphaeria spp. isolated from apple and several deciduous fruit trees are divided into three groups based on the production of warts on twigs, size of conidia, and nucleotide sequences of nuclear ribosomal DNA ITS regions. Mycoscience,41:331-337.
    34. Teixido N, Usall J, Palou L, et al.2001. Improving control of green and blue molds of oranges by combining Pantoea agglomerans (CPA-2) and sodium bicarbonate. Europe Journal of Plant Pathology,107:658-694.
    35. Usall J, Similanick J L, Palou L, et al.2008. Preventive and curative activity of combined treatments of sodium carbonates and Pantoea agglomerans CPA-2 to control postharvest green mold of citrus fruit. Postharvest Biology and Technology,50:1-7.
    36. Wilson C L, Wisniewski M E.1994. Biological Control of Postharvest Diseases. Theory and Practice. CRC Press, Boca Raton, FL, USA,182.
    37. Roberts D P, Kobayashi D Y.1996. Behavior of biocontrol bacteria in the spermsphere and rhizosphere. Plant Pathology,1:137-147.
    38. Roberts D P, Kobayashi D Y, Dery P D.1999. An image analysis method for determination of spatial colonization patterns of bacteria in plant rhizosphere. Applied Microbiology Biotechnology, 51:653-658.
    39. Saksirirat W, Boonsakdaporn N, Pisan S.1996. An application of the micro-parasite, Trichoderma hazianum Rifai in combination with mancozeb for control tomato stem rot in north Thailand[A]. Tang W H, Cook R J, Rovira A. Advances in Biological Control of Plant Disease[M]. Beijing: China Agricultural University Press,327-329.
    40.陈志谊,任海英,刘永峰,许志刚.2002.戊唑醇和枯草芽孢杆菌协同作用防治蚕豆枯萎病及增效机理初探.农药学学报,6(4):40-44.
    41.董金皋.2001.农业植物病理学[M].北京:中国农业大学出版社,287-290.
    42.方中达.1998.植病研究方法[M].北京:中国农业出版社,115-163.
    43.韩丽娟,顾中言,王强,等.1994.农药复配与复配农药[M].南京:江苏科学技术出版社,31-51.
    44.纪兆林,凌筝,张清霞,等.2008.地衣芽孢杆菌对苹果轮纹病菌和炭疽病菌的抑制及其对贮藏期苹果轮纹病的防治作用.果树学报,25(2):209-214.
    45.李素英,刘冬青,牛赡光.2004.生物防治菌与多菌灵混用防治棉花黄萎病的效应研究.中国生态农业学报,12(1):114-116.
    46.刘招龙,张绍铃,孙益林,等.2005.木霉菌对抑制梨轮纹菌的生理特性研究.中国农学通报,21(9):345-346.
    47.刘先琴,秦仲麒,李先明,等.2006.武汉地区梨轮纹病发生重的原因与防治技术.湖北农业科学,45(5):606-607.
    48.刘邮洲,陈志谊,刘永锋,等.2004.南京地区蔬菜枯萎病菌拮抗细菌的筛选与评价.江苏农业学报,20(1):18-23.
    49.马志强,李红霞,袁章虎,等.2000.苹果轮纹病菌对多菌灵抗药性监测初报.农药学学报,2(3):94-96.
    50.魏景超.1982.真菌鉴定手册[M].上海:上海科学技术出版社,143-144.
    51.王向阳,黄娟,刘家成,等.2004.梨轮纹病测报方法研究.安徽农业科学,32(2):337-338.
    52.文克俭,周玉锋.2001.几种常用杀菌剂对梨轮纹病的室内毒力测定.湖北植保,(1):27-28.
    53.杨丽娟,叶敏,林军.2006.百菌清及其含氟衍生物对梨轮纹病菌的室内抑菌活性.农药,45(10):708-709.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700