用户名: 密码: 验证码:
新型炔酚类化合物selaginellin抗内皮细胞衰老及神经生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     动脉粥样硬化(atherosclerosis, AS)是一种慢性、进行性、多发性血管内膜疾病,严重危害人类的健康。AS发病原因及机制十分复杂,目前认为与血脂、吸烟、高血压、糖尿病、肥胖、感染等危险因素密切相关。大量研究证明,同型半胱氨酸(homocysteine, Hcy)也是促进AS形成的重要因素。Hcy能促进动脉粥样斑块形成,增加冠心病患者的病死率,被认为是AS的独立危险因素。
     衰老是AS发生发展的重要危险因素之一。年龄相关的血管疾病的很多改变都与衰老血管细胞的特征性改变相一致。内皮功能紊乱引起血管收缩异常、血小板粘附聚集以及动脉中膜平滑肌增生,被认为是AS发病的始发事件。因此,保护血管内皮细胞,拮抗内皮细胞衰老是防治心血管病特别是动脉粥样硬化的重要研究方向。
     大量研究表明与衰老密切相关的Sirt1基因在维持血管内皮功能方面发挥重要作用。Sirt1是近几年发现的抗衰老长寿基因,参与氧化应激诱导的内皮细胞衰老。研究显示,Hcy致AS作用与其诱导内皮细胞衰老有关。
     卷柏属于蕨类卷柏科卷柏属植物,具有降血压、降血糖、增强人体免疫功能和抑制氧化应激等作用。Selaginellin是从卷柏中提取的一种具有全新结构的单体化合物,体外抗氧化实验结果显示,selaginellin具有较强的抗氧化作用。基于以上研究背景,本实验拟在培养的人脐静脉内皮细胞观察selaginellin对Hcy诱导的细胞衰老的影响并探讨可能涉及的机制。
     方法
     原代培养人脐静脉内皮细胞(HUVECs)。MTS法检测细胞活力;以β-半乳糖苷酶活性(染色法)、端粒酶活性(Real time PCR法)和细胞周期分布(流式)检测细胞衰老;用活性氧荧光试剂盒检测细胞内ROS的生成;实时定量PCR检测细胞内Sirt1 mRNA的表达。
     结果
     (1)Hcy(0.5 M)处理内皮细胞48 h,能显著降低细胞活性;selaginellin(10-7,3×10-7和10-6 M)预处理1 h能显著抑制Hcy诱导的细胞活性下降,且呈浓度依赖性;
     (2)Hcy(0.5 M)处理内皮细胞48 h,能显著增加β-半乳糖苷酶活性,降低细胞端粒酶活性,增加Gl期细胞比例,提示Hcy能诱导内皮细胞衰老;Selaginellin(10-7,3×10-7和10-6 M)预处理1 h能显著抑制Hcy诱导的β-半乳糖苷酶活性增加,端粒酶活性的降低及G1期细胞比例的增加,且呈浓度依赖性;
     (3)Hcy(0.5 M)处理内皮细胞48 h,能显著增加细胞内ROS水平;Selaginellin(10-7,3×10-7和10-6 M)预处理1 h能浓度依赖性地抑制Hcy诱导的细胞内ROS水平增加;
     (4)Hcy(0.5 M)处理内皮细胞48 h,能显著降低Sirt1 mRNA表达;而selaginellin本身能显著上调Sirt1 mRNA表达,且能逆转Hcy诱导的Sirt1 mRNA表达下调。
     结论
     Selaginellin能抑制Hcy诱导的内皮细胞衰老,其机制可能与抑制氧化应激和上调Sirt1表达有关。
     研究背景
     谷氨酸(Glutamate, Glu)是一种兴奋性氨基酸,对神经系统正常的功能活动起着重要的维持作用。然而,在某些病理情况下,如阿尔茨海默病、亨廷顿病及帕金森病等,谷氨酸大量堆积释放,可诱发神经细胞损伤和缺失。谷氨酸主要通过两种途径诱发神经死亡:兴奋性毒性和氧化应激。前者通过谷氨酸离子型受体的过度激活,导致胞内钙超载引发细胞死亡;后者为谷氨酸/胱氨酸转运体介导的细胞死亡途径。卷柏具有降血压、降血糖、增强人体免疫功能和抑制氧化应激等作用,其粗提取物能加速自由基的清除,激活过氧化物岐化酶。Selaginellin是我院从卷柏中提取的一种单体,具有抗氧化作用。本实验在分化的PC12细胞,研究selaginellin对Glu诱导的细胞损伤和凋亡的保护作用。依据Klotho是一个新的抗衰老基因,能延缓多种应激诱导的细胞凋亡过程,其机制与抑制氧化应激有关,因此,我们进一步探讨selaginellin的抗凋亡作用是否与上调Klotho基因有关。
     方法
     实验分设正常对照组、Glu损伤组、Glu+3个浓度的selaginellin(10-7、3×10-7和10-6 M)组和溶媒对照组。各药物处理组预先同分化的PC12细胞孵育1 h后,再用Glu(10 mM)处理24 h。以细胞形态学变化、细胞活性(MTS法)和LDH漏出(比色法)检测细胞损伤;以Hoechst染色和caspase-3活性检测细胞凋亡;用活性氧荧光试剂盒检测细胞内ROS的生成;实时定量PCR检测细胞内Klotho mRNA的表达。
     结果
     (1)PC12细胞株在含100 ng/mL NGF的培养液中孵育7 d后,细胞分化为分裂后期神经元样细胞株,生成大量树突;
     (2)MTS结果显示:5-20 mM Glu浓度依赖性地降低PC12细胞活性,其中,10 mM Glu可降低45%的细胞活性;
     (3)形态学结果显示:对照组PC12细胞边缘清晰,胞膜完整,树突完整;10 mM Glu孵育24 h后,胞体皱缩,树突断裂,细胞网状结构消失;Selaginellin预处理可浓度依赖性地减轻Glu对PC12细胞的损伤。与细胞形态学变化相一致,Glu可明显增加LDH漏出和降低细胞活性,selaginellin可浓度依赖性地逆转Glu的上述效应;
     (4) Hoechst 33342染色结果显示:Glu处理24 h显著增加细胞皱缩,胞核碎裂和染色质聚集,Hoechst染色阳性细胞数明显增加。与之一致的是caspase-3活性显著增加。Glu的促凋亡效应可浓度依赖性地被selaginellin所抑制;
     (5) Glu (10 mM)处理细胞24 h可明显增强活性氧水平;预先用selaginellin处理1 h后,能呈浓度依赖性地抑制Glu诱导的活性氧生成增加;
     (6)Glu可显著下调PC12细胞Klotho mRNA的表达,selaginellin预处理能显著抑制Glu所致Klotho mRNA的下调。
     结论
     Selaginellin通过降低氧化应激反应而抑制谷氨酸诱导的PC12细胞损伤和凋亡,其抗凋亡作用可能与上调Klotho基因的表达有关。
     研究背景
     阿尔茨海默病(Alzheimer's disease, AD)是由多种病因引起的神经系统进行性退行性疾病,主要病理学特征为细胞外淀粉样物质沉积、神经纤维缠结和神经元缺失。目前AD的发病机制仍未十分明确。近年来的研究提示,AD发病可能与细胞脂质代谢异常相关。
     脑组织的低密度脂蛋白氧化修饰生成氧化性低密度脂蛋白(oxidized low-density lipoprotein, ox-LDL),引起氧化应激诱导神经元凋亡。许多证据表明,神经细胞凋亡参与脑老化及AD的发生。体外实验证实,ox-LDL可诱导多种细胞的凋亡。Ox-LDL主要通过与其受体结合而发挥其生物学作用。
     植物凝集素样氧化性低密度脂蛋白受体-1(lectin-like oxidized low density lipoprotein receptor-1, LOX-1)是1997年由日本学者首次在牛主动脉内皮细胞发现的新型ox-LDL受体。Ox-LDL激活LOX-1诱导细胞内ROS生成,而ROS在多种生物过程中扮演重要角色。我们推测LOX-1可能参与了ox-LDL诱导的神经细胞凋亡。NADPH氧化酶是超氧阴离子生成的重要催化酶。研究表明AD发病过程中,NADPH氧化酶参与活性氧引起的神经元损伤。
     卷柏具有降血压、降血糖、增强人体免疫功能和抑制氧化应激等作用,其粗提取物能加速自由基的清除,激活过氧化物岐化酶。Selaginellin是从卷柏中提取的一种单体,研究发现selaginellin有明显抗氧化的作用。本研究探讨脂质代谢异常时selaginellin对神经元NADPH氧化酶及其介导的ROS生成的影响,进一步探明其神经保护作用的机制。
     方法
     实验分设正常对照组、ox-LDL损伤组、3个浓度的selaginellin(10-7、3×10-7和10-6 M)+ox-LDL组、anti-LOX-1+ox-LDL组、selaginellin (10-6 M)组和溶媒对照组。各药物处理组预先同分化的PC12细胞孵育l h后,再用ox-LDL (100μg/mL)处理24 h。MTS法检测细胞活性;以Hoechst染色、AnnexinV-FITC/PI双染和caspase-3活性检测细胞凋亡;用活性氧荧光试剂盒检测细胞内ROS的生成;RT-PCR检测LOX-1 mRNA的表达;比色法检测NADPH氧化酶活性;实时定量PCR检测细胞内NOX-1、gp91phox及p47phox mRNA的表达。
     结果
     (1)MTS结果显示:20-100μg/mL ox-LDL浓度依赖性地降低PC12细胞活性,其中,100μg/mL ox-LDL可降低40%的细胞活性;
     (2)Ox-LDL处理PC12细胞24 h,能显著降低细胞活性;Selaginellin(10-3,3×10-7和10-6M)预处理1 h能显著抑制ox-LDL诱导的细胞活性,且呈浓度依赖性;
     (3) Hoechst 33342染色结果显示:ox-LDL处理24 h显著增加细胞皱缩,胞核碎裂和染色质聚集,Hoechst染色阳性细胞数明显增加;流式细胞仪分析结果显示,与正常对照组比较,ox-LDL组PC12细胞的凋亡比例明显升高;Selaginellin预处理组的细胞凋亡比例分别较ox-LDL组明显降低,且呈浓度依赖性;与之一致的是caspase-3活性显著增加;Ox-LDL的促凋亡效应可浓度依赖性地被selaginellin所抑制;
     (4) Ox-LDL (100μg/mL)处理细胞24 h可明显增强活性氧水平;预先用selaginellin处理1 h后,能呈剂量依赖性地抑制ox-LDL诱导的活性氧生成增加;Anti-LOX-1具有相似的作用;
     (5)Ox-LDL可显著上调PC12细胞LOX-1 mRNA的表达;Selaginellin预处理能显著抑制ox-LDL所致LOX-1 mRNA的上调;
     (6) NADPH氧化酶活性检测结果显示,100μg/mL的ox-LDL作用于分化的PC12细胞24 h可增加NADPH氧化酶活性;不同浓度selaginellin可剂量依赖性拮抗ox-LDL诱导的NADPH氧化酶活性升高;Real time PCR的结果显示,100μg/mL ox-LDL可显著上调NOX-1、gp91phox和p47phox mRNA的表达;Selaginellin预处理能显著抑制ox-LDL所致NOX-1、gp91phox和p47phox mRNA表达的下调,且呈浓度依赖性;Anti-LOX-1组具有相似作用。
     结论
     Selaginellin抑制氧化性低密度脂蛋白诱导的PC12细胞凋亡,其抗凋亡作用可能与抑制LOX-1/NADPH氧化酶/R0S通路有关。
     研究背景
     阿尔茨海默病(Alzheimer's disease, AD)是中枢神经系统一种常见的退行性病变。AD病因、发病机制尚不完全清楚,目前认为与遗传因素、细胞凋亡、自由基损伤、铝中毒等因素有关。炎症反应在AD发生中的作用近来受到普遍关注。在AD发生发展过程中,伴随着炎症病理改变。AD患者脑组织中可见大量局限性和弥散性星形胶质细胞增生。在某些刺激下,星形胶质细胞可释放大量的炎症介质,参与中枢神经系统实质炎症反应的触发,加速AD进程。越来越多的证据显示,免疫反应在AD的发生和发展过程中起决定作用。Toll样受体(toll-like receptor, TLR)是介导天然免疫的重要受体,主要参与病原微生物产物的识别以及炎症信号传导,介导固有免疫和获得性免疫。研究显示,TLR4与阿尔茨海默病的发生与发展密切相关。TLR4能激活核因子-κB (nuclear factor-κB, NF-κB)信号通路并介导多种致炎作用。Selaginellin是从卷柏中提取的一种具有全新结构的单体化合物,具有较强的抗氧化作用。研究显示,selaginellin可抑制谷氨酸及氧化性低密度脂蛋白诱导的PC12细胞凋亡。因此,我们推测,selaginellin具有较强神经保护作用。本实验旨在观察selaginellin对星形胶质细胞炎症反应的影响并探讨其作用是否与抑制TLR4-NF-κB信号通路有关。
     方法
     原代培养星形胶质细胞,实验分设正常对照组、LPS损伤组、3个浓度的selaginellin(10-7、3×10-7和10-6 M)+LPS组、TLR4拮抗剂+LPS组、selaginellin(10-6 M)组和溶媒对照组。各药物处理组预先孵育星形胶质细胞1 h后,再用LPS (1μg/ml)处理24 h。MTS法检测细胞活性;实时定量PCR检测细胞TLR4、TNF-α、MCP-1、IL-6及NF-κB p65 mRNA的表达;ELISA法检测细胞培养液中TNF-α、MCP-1及IL-6的含量;电泳迁移率变更分析细胞NF-κB活性。
     结果
     (1)MTS结果显示,星形胶质细胞暴露于1μg/mL的LPS 24 h,细胞活力下降40%;不同浓度selaginellin可剂量依赖性拮抗LPS的细胞毒性作用;
     (2) Real time RCR结果显示,1μg/mL的LPS处理星形胶质细胞24 h,可显著上调TNF-α、MCP-1及IL-6 mRNA的表达;Selaginellin预处理能浓度依赖性地抑制LPS所致TNF-α、MCP-1及IL-6 mRNA表达的上调;TLR4拮抗剂具有相似的作用;
     (3) ELISA结果显示,1μg/mL的LPS孵育星形胶质细胞24 h,培养上清液中TNF-α、MCP-1及IL-6水平显著升高;预先用selaginellin孵育细胞1h后,再暴露于LPS孵育24 h,可浓度依赖性地下调培养上清液中TNF-α、MCP-1及IL-6的水平;
     (4)LPS处理星形胶质细胞24 h,能显著上调TLR4 mRNA表达;而selaginellin能逆转LPS诱导的TLR4 mRNA表达上调;
     (5) Real time PCR结果显示,1μg/mL的LPS处理星形胶质细胞24h,可显著上调NF-κB p65 mRNA的表达;Selaginellin预处理能浓度依赖性地抑制LPS所致NF-κB p65 mRNA表达上调;EMSA结果显示有明显的信号条带,LPS能显著增加NF-κB的活性;Selaginellin预孵育星形胶质细胞1 h,可浓度依赖性地降低NF-κB的活性,与TLR4拮抗剂具有相似的作用。
     结论
     Selaginellin通过减少炎症因子TNF-α、MCP-1及IL-6合成与释放而抑制LPS诱导的星形胶质细胞炎症反应,其抗炎作用可能与抑制TLR4-NF-κB途径有关。
Atherosclerosis (AS) is recognized as one of the major causes to threaten the life of people. It is considered that pathogenesis of AS is involved in many factors, such as blood fat, smoking, hypertension, diabetes, infection and induced pathological changes of vascular biology. Homocysteine (Hcy) can promote atherogenesis, and plasma level of Hcy are positively correlated with morbidity and mortality from coronary heart diseases, suggesting that Hcy is an independent risk factor for AS.
     Endothelial dysfunction is recognized as all early event in the pathogenesis of AS, which is related to senescence and damages of endothelial cells. Also, the decreased expression of anti-senescent molecules contributes to progression of cell senescence. The down-regulation of Sirtl, an enzyme to remove acetyl groups from specific proteins, has been shown to mediate oxidative stress-induced endothelial senescence. It has been reported that pro-atherogenetic properties of Hcy are related to inducing cell senescence.
     Selaginella Tamariscina (Beauv) spring can lower blood pressure, decrease the level of serum glucose, enhance immune function and inhibit oxidant production and so on. Selaginellin, a compound with novel chemical structure, was extracted from Selaginella Tamariscina. Our preliminary data showed that selaginellin had strong anti-oxidative activity. Based on these data mentioned above, in the present study, we investigated the effects of selaginellin on Hcy-induced senescence of endothelial cells and its underlying mechanisms.
     METHODS
     Human umbilical vein endothelial cells (HUVECs) were cultured and used for all these studies. Cell viability was analyzed by using MTS assay. Cell senescence was evaluated by usingβ-galactosidase staining, telomerase activity detected by real time PCR and cell cycle distribution determined by staining DNA with propidium iodide. The level of intracellular reactive oxygen species (ROS) was determined by using fluorescent ROS detection kit and the level of Sirtl mRNA was detected by real time PCR.
     RESULTS
     (1) Treatment with Hcy (0.5 M) for 48 h markedly decreased the viability of endothelial cells. Pretreatment with selaginellin for 1 h prior to exposure to homocysteine concentration-dependently reversed the decrease in cell viability induced by Hcy.
     (2) Treatment with Hcy (0.5 M) for 48 h markedly induced the senescence of endothelial cells shown by the decrease in telomerase activity, the increase inβ-galactosidase activity and the increase in the percentage of cells in G0/G1 phage, which could be attenuated by pretreatment with selaginellin in a concentration-dependent manner.
     (3) Treatment with Hcy (0.5 M) significantly increased the level of intracellular ROS in endothelial cells. However, selaginellin could significantly inhibit Hcy-induced elevation of intracellualr ROS level.
     (4) The mRNA expression of Sirt1, an important anti-senescent protein, was markedly decreased in Hcy-incubated endothelial cells. However, selaginellin could significantly upregulate the mRNA expression of Sirtl in the absence or presence of Hcy.
     CONCLUSION
     Selaginellin attenuates Hcy-induced senescence of endothelial cells, and such effects may be related to inhibiting oxidative stress and up-regulating Sirtlexpression.
     L-glutamate, an excitatory amino acid, has been identified as the principal transmitter mediating excitatory synaptic responses and neuronal development via glutamate receptor activation in the central nervous system. However, excessive excitatory transmission can be transformed into an implement of neuronal destruction resulting in CNS disorder, such as cerebral ischemia, hypoxia, alcoholism, autoimmune encephalomyelitis, and Alzheimer's, Huntington's and Parkinson's diseases. Glutamate can induce cell death by two different pathways: excitotoxicity and oxytosis. The excitotoxicity of glutamate is mediated through the activation of several types of excitatory amino acid receptors, and subsequently massive influx of extracellular Ca2+. The oxytosis of glutamate is mediated by competitive inhibition of cystine uptake. Selaginellin is a component extracted from S.pulvinata (Hooket Grev.) Maximo. Selaginellin contains hydroxy group, we therefore presumed that it would have the ability of binding free radicals. In the present study, we therefore studied the protective effect of selaginellin on glutamate-induced cytotoxicity and apoptosis in differentiated rat pheochromocytoma (PC 12) cells. Because Klotho, an anti-aging protein with anti-oxidative property, has been shown to have anti-apoptotic function in a variety of cell types, we also investigated whether the anti-apoptotic effect of selaginellin on PC 12 cells is related to regulation of Klotho gene expression.
     METHODS
     After cultured with the serum-free medium for 24 h, the differentiated PC 12 cells were pretreated with various concentrations (10-7,3×10-7 or 10-6 M) of selaginellin for 1 h prior to exposure to L-glutamate. Cell viability was analyzed by using MTS assay. Cell injury was evaluated using observation of morphologic changes, cell viability and LDH release. Cell apoptosis was determined by Hoechst staining and caspase-3 activity. The level of intracellular reactive oxygen species (ROS) was determined using fluorescent ROS detection kit and the level of Klotho mRNA was detected by real time PCR.
     (1) Treatment of PC 12 cells with 100 ng/mL nerve growth factor for 1 week successfully induced differentiation as shown by round cell bodies with fine dendritic networks.
     (2) MTS assay showed that the cell viability was inhibited by glutamate in a concentration-dependent manner. Glutamate at 10 mM led to about 45% inhibition of cell viability. We therefore chose 10 mM of glutamate for the subsequent experiments.
     (3) Under a phase-contrast microscopy, normal differentiated PC 12 cells showed round cell bodies with fine dendritic networks, and the cell edges were intact and clear. In contrast, incubation of cells with 10 mM of L-glutamate for 24 h induced shrinkage of the cell bodies, disappearance in cell reticular formation and disruption of the dendritic networks. Pretreatment with selaginellin dramatically alleviated morphological manifestations of cell damage in a concentration-dependent manner. Glutamate significantly increased the release of LDH and decreased the cell viability. These effects of glutamate were reversed by selaginellin in a concentration-dependent manner.
     (4) Hoechst 33342 staining assay showed that treatment with glutamate (10 mM) for 24 h significantly increased the ratio of cells with a profile of cell shrinkage, chromatin condensation and fragmented fluorescent nuclei. The caspase-3 activity, a marker of apoptosis, was also found to be increased in glutamate-treated cells. The number of Hoechst 33342-positive cells and the activity of caspase-3 induced by glutamate were significantly reduced by selaginellin in a concentration-dependent manner.
     (5) Glutamate increased intracellular ROS generation as indicated by the increase in 2',7'-dichlorofluorescein fluorescence. Selaginellin significantly reduced the increase in ROS generation induced by glutamate in a concentration-dependent manner.
     (6) Incubation of PC 12 cells with glutamate (10 mM) for 24 h led to a significant decrease in Klotho mRNA expression. In contrast, the decreased mRNA expression of Klotho was reversed by pretreatment with selaginellin in a concentration-dependent manner.
     CONCLUSION
     Selaginellin protected against L-glutamate induced cell injury and apoptosis in differentiated PC 12 cells through regulation of ROS/Klotho gene pathway.
     BACKGROUND
     Alzheimer's disease (AD) is a progressive neurodegenerative disorder. The major neuropathological hallmarks of AD are the formation of senile plaques following neurofibrillary tangles and neurons loss. Although the mechanisms of AD pathology are still undefined, lipoprotein dysbolism has been recently reported to be involved in the progress of AD.
     Low-density lipoprotein (LDL) exists within the brain and is highly vulnerable to oxidative modifications. Once formed, oxidized LDL (ox-LDL) is capable of eliciting neurons apoptosis involving in reactive oxygen species (ROS). It has been demonstrated that neurons apoptosis takes part in the progress of AD. In vitro experiments have shown that ox-LDL can induce many kinds of cell apoptosis via combining with its receptors.
     Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1), a novel ox-LDL receptor, was firstly found to be expressed in bovine aortic endothelial cells. Ox-LDL activates LOX-1 followed by the production of intercellular reactive oxygen species (ROS), wherein ROS play an important role in a variety of biological processes. We presumed that LOX-1 might be involved in ox-LDL-induced neurons apoptosis. NADPH oxidases is the major source of ROS in diffirent cell types. Studies have shown that NADPH oxidases are involved in ROS-induced neuronal damage in the AD pathogenesis.
     Selaginellin, a component extracted from S.pulvinata (Hooket Grev.) Maximo. has the ability of binding free radicals. In the present study, we therefore studied the protective effect of selaginellin on ox-LDL-induced apoptosis in differentiated rat pheochromocytoma (PC 12) cells. We also investigated whether the anti-apoptotic effect of selaginellin on PC 12 cells is related to regulation of LOX-1/NADPH oxidase/ROS pathway.
     METHODS
     After cultured with the serum-free medium for 24 h, the differentiated PC 12 cells were pretreated with various concentrations (10-7,3×10-7 or 10-6 M) of selaginellin for 1 h prior to exposure to ox-LDL. Cell viability was analyzed by using MTS assay. Cell apoptosis was determined by Hoechst staining, flow cytometry with annexin V-FITC/PI double staining and caspase-3 activity. The level of intracellular reactive oxygen species (ROS) was determined using fluorescent ROS detection kit. The level of LOX-1 mRNA was detected by RT-PCR. The activity of NADPH oxidase was measured using cell NADPH oxidase detection kit and the expression of NOX-1, gp91phox and p47phox mRNA was detected by real time PCR.
     RESULTS
     (1) MTS assay showed that the cell viability was inhibited by ox-LDL in a concentration-dependent manner. Ox-LDL at 100μg/mL led to about 40% inhibition of cell viability. We therefore chose 100μg/mL of ox-LDL for the subsequent experiments.
     (2) Ox-LDL significantly decreased the cell viability. These effects of ox-LDL were reversed by selaginellin in a concentration-dependent manner.
     (3) Hoechst 33342 and annexin V-FITC/PI staining assay showed that treatment with ox-LDL (100μg/mL) for 24 h significantly increased the ratio of cells with a profile of cell shrinkage, chromatin condensation and fragmented fluorescent nuclei. The caspase-3 activity was also found to be increased in ox-LDL-treated cells. The number of Hoechst 33342-positive cells and annexin V-FITC/PI staining cells as well as the activity of caspase-3 induced by ox-LDL were significantly reduced by selaginellin in a concentration-dependent manner.
     (4) Ox-LDL increased intracellular ROS generation. Selaginellin significantly reduced the increase in ROS generation induced by ox-LDL in a concentration-dependent manner.
     (5) Incubation of PC 12 cells with ox-LDL (100μg/mL) for 24 h led to a significant increase in LOX-1 mRNA expression. In contrast, the decreased mRNA expression of LOX-1 was reversed by pretreatment with selaginellin in a concentration-dependent manner.
     (6) Ox-LDL activated NADPH oxidase, which was reversed by selaginellin. Also, as shown by the results of real time PCR, incubation of PC 12 with ox-LDL for 24 h led to a significant increase in NOX-1, gp91phox and p47phox mRNA expression. In contrast, the increased mRNA expression of NOX-1, gp91phox and p47phox was reversed by pretreatment with selaginellin. Co-incubation with anti-LOX-1 could completely block ox-LDL-induced the activation of NADPH oxidase.
     CONCLUSION
     Selaginellin protected against ox-LDL apoptosis in differentiated PC 12 cells through regulation of LOX-1/NADPH oxidase/ROS pathway.
     BACKGROUND
     Alzheimer's disease (AD) is a progressive neurodegenerative disorder. It is considered that pathogenesis of AD is involved in many factors, such as genetic factor, cell apoptosis, oxidation and aluminium poisoning. Inflammation has been recently reported to be involved in the progress of AD. Astrocytes express an array of inflammatory mediators that are involved in the initiation of inflammatory reactions within CNS parenchyma. It is documented that toll-like receptor 4 (TLR4) plays a key role in the program of AD pathology. TLR4 can activate nuclear factor-κB (NF-κB) signal pathway, which mediate the pro-inflammatory effects of many kinds of inflamatory cytokines. Selaginellin, a compound with novel chemical structure, was extracted from Selaginella Tamariscina. Our preliminary data showed that selaginellin had strong anti-oxidative activity, which inhibited L-glutamate-and ox-LDL-induced apoptosis of differentiated PC 12 cell. Therefore, we presumed that selaginellin had neuronal protective effects. The aim of the present study was to investigate the effect of selaginellin on inflammation of astrocytes and whether anti-inflammatory effect of selaginellin was related to TLR4-NF-κB pathway.
     METHODS
     Cell viability was analyzed by using MTS assay. The expression of TLR4, TNF-α, MCP-1, IL-6 and NF-κB p65 mRNA was detected by real time PCR. The levels of TNF-α, MCP-1 and IL-6 in culture medium were assayed by enzyme linked immunosorbent assay (ELISA). NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay (EMSA).
     RESULTS
     (1) Treatment with LPS (1μg/mL) for 24 h markedly decreased the activity of astrocytes. Pretreatment with selaginellin for 1 h prior to exposure to LPS concentration-dependently reversed the decrease in cell viability induced by LPS.
     (2) In cultured astrocytes, incubation with LPS significantly up-regulated the mRNA expression of inflammatory factors tumor necrosis factor-α(TNF-α), MCP-1 and IL-6, which could be attenuated by pretreatment with selaginellin in a concentration-dependent manner.
     (3) The levels of TNF-α, MCP-1 and IL-6 in cultured medium were increased after incubated with LPS for 24 h. In contrast, selaginellin decreased the levels of TNF-α, MCP-1 and IL-6 in a concentration-dependent manner.
     (4) The mRNA expression of TLR4 was markedly increased in LPS-incubated astrocytes. In contrast, selaginellin could significantly downregulate the mRNA expression of TLR4 in the presence of LPS.
     (5) Incubation of astrocytes with LPS for 24 h led to a significant increase in NF-κB p65 mRNA expression. In contrast, the increased mRNA expression of NF-κB p65 was reversed by pretreatment with selaginellin in a concentration-dependent manner. Also, as shown by the results of EMSA, LPS activated NF-κB, which was reversed by selaginellin. Co-incubation with TLR4 antagonist could completely block LPS-induced the activation of NF-κB.
     CONCLUSION
     Selaginellin can decrease inflammatory cytokines TNF-a, MCP-1 and IL-6 synthesis and release in astrocytes induced by LPS via inhibiting TLR4-NF-κB signaling pathway.
引文
[1]McCully KS. Homocysteine metabolism in scurvy, growth and arteriosclerosis. Nature 1971; 231 (5302):391-2.
    [2]Nasir K, Tsai M, Rosen BD, Fernandes V, Bluemke DA, Folsom AR, et al. Elevated homocysteine is associated with reduced regional left ventricular function:the Multi-Ethnic Study of Atherosclerosis. Circulation 2007; 115 (2): 180-7.
    [3]Rasouli ML, Nasir K, Blumenthal RS, Park R, Aziz DC, Budoff MJ. Plasma homocysteine predicts progression of atherosclerosis. Atherosclerosis 2005; 181 (1):159-65.
    [4]Wang H, Jiang X, Yang F, Chapman GB, Durante W, Sibinga NE, et al. Cyclin A transcriptional suppression is the major mechanism mediating homocysteine-induced endothelial cell growth inhibition. Blood 2002; 99 (3): 939-45.
    [5]Faraci FM, Lentz SR. Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke 2004; 35 (2):345-7.
    [6]Weiss N, Heydrick SJ, Postea O, Keller C, Keaney JF, Jr., Loscalzo J. Influence of hyperhomocysteinemia on the cellular redox state-impact on homocysteine-induced endothelial dysfunction. Clin Chem Lab Med 2003; 41 (11):1455-61.
    [7]Gariballa SE. Nutritional factors in stroke. Br J Nutr 2000; 84 (1):5-17.
    [8]McKinley MC. Nutritional aspects and possible pathological mechanisms of hyperhomocysteinaemia:an independent risk factor for vascular disease. Proc Nutr Soc 2000; 59 (2):221-37.
    [9]McCracken C, Hudson P, Ellis R, McCaddon A. Methylmalonic acid and cognitive function in the Medical Research Council Cognitive Function and Ageing Study. Am J Clin Nutr 2006; 84 (6):1406-11.
    [10]Minamino T, Komuro I. Vascular cell senescence:contribution to atherosclerosis. Circ Res 2007; 100(1):15-26.
    [11]Minamino T, Miyauchi H, Yoshida T, Tateno K, Komuro I. The role of vascular cell senescence in atherosclerosis:antisenescence as a novel therapeutic strategy for vascular aging. Curr Vasc Pharmacol 2004; 2 (2):141-8.
    [12]Ksiazek K, Mikula-Pietrasik J, Jorres A, Witowski J. Oxidative stress-mediated early senescence contributes to the short replicative life span of human peritoneal mesothelial cells. Free Radic Biol Med 2008; 45 (4):460-7.
    [13]Brandes RP, Fleming I, Busse R. Endothelial aging. Cardiovasc Res 2005; 66 (2):286-94.
    [14]Ulrich S, Loitsch SM, Rau O, von Knethen A, Brune B, Schubert-Zsilavecz M, et al. Peroxisome proliferator-activated receptor gamma as a molecular target of resveratrol-induced modulation of polyamine metabolism. Cancer Res 2006; 66 (14):7348-54.
    [15]van Leeuwen I, Lain S. Sirtuins and p53. Adv Cancer Res 2009; 102:171-95.
    [16]Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 2004; 116 (4):551-63.
    [17]Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y. Sirtl modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol 2007;43(5):571-9.
    [18]Blackwell KA, Sorenson JP, Richardson DM, Smith LA, Suda O, Nath K, et al. Mechanisms of aging-induced impairment of endothelium-dependent relaxation: role of tetrahydrobiopterin. Am J Physiol Heart Circ Physiol 2004; 287 (6): H2448-53.
    [19]Xu D, Neville R, Finkel T. Homocysteine accelerates endothelial cell senescence. FEBS Lett 2000; 470 (1):20-4.
    [20]Augustyniak A, Skrzydlewska E. [Antioxidative abilities during aging]. Postepy Hig Med Dosw (Online) 2004; 58:194-201.
    [21]Chauhan A, Chauhan V, Brown WT, Cohen I. Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin-the antioxidant proteins. Life Sci 2004; 75 (21):2539-49.
    [22]Oyama Y, Okazaki E, Chikahisa L, Nagano T, Sadakata C. Oxidative stress-induced increase in intracellular Ca2+ and Ca(2+)-induced increase in oxidative stress:an experimental model using dissociated rat brain neurons. Jpn J Pharmacol 1996; 72 (4):381-5.
    [23]Scaccini C, Jialal I. LDL modification by activated polymorphonuclear leukocytes:a cellular model of mild oxidative stress. Free Radic Biol Med 1994; 16(1):49-55.
    [24]Lin CP, Chen YH, Lin WT, Leu HB, Liu TZ, Huang SL, et al. Direct effect of statins on homocysteine-induced endothelial adhesiveness:potential impact to human atherosclerosis. Eur J Clin Invest 2008; 38 (2):106-16.
    [25]Wang G, Mao JM, Wang X, Zhang FC. Effect of homocysteine on plaque formation and oxidative stress in patients with acute coronary syndromes. Chin Med J (Engl) 2004; 117 (11):1650-4.
    [26]Cavalca V, Cighetti G, Bamonti F, Loaldi A, Bortone L, Novembrino C, et al. Oxidative stress and homocysteine in coronary artery disease. Clin Chem 2001; 47 (5):887-92.
    [27]Signorello MG, Segantin A, Passalacqua M, Leoncini G. Homocysteine decreases platelet NO level via protein kinase C activation. Nitric Oxide 2009; 20 (2):104-13.
    [28]Siow YL, Au-Yeung KK, Woo CW, O K. Homocysteine stimulates phosphorylation of NADPH oxidase p47phox and p67phox subunits in monocytes via protein kinase Cbeta activation. Biochem J 2006; 398 (1):73-82.
    [29]Moselhy SS, Demerdash SH. Plasma homocysteine and oxidative stress in cardiovascular disease. Dis Markers 2003; 19 (1):27-31.
    [30]Vasa M, Breitschopf K, Zeiher AM, Dimmeler S. Nitric oxide activates telomerase and delays endothelial cell senescence. Circ Res 2000; 87 (7):540-2.
    [31]Zhu JH, Chen JZ, Wang XX, Xie XD, Sun J, Zhang FR. Homocysteine accelerates senescence and reduces proliferation of endothelial progenitor cells. J Mol Cell Cardiol 2006; 40 (5):648-52.
    [32]Okatani Y, Wakatsuki A, Reiter RJ. Melatonin counteracts potentiation by homocysteine of KCL-induced vasoconstriction in human umbilical artery: relation to calcium influx. Biochem Biophys Res Commun 2001; 280 (3):940-4.
    [33]Huang RF, Huang SM, Lin BS, Hung CY, Lu HT. N-Acetylcysteine, vitamin C and vitamin E diminish homocysteine thiolactone-induced apoptosis in human promyeloid HL-60 cells. J Nutr 2002; 132 (8):2151-6.
    [34]Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403 (6771):795-800.
    [35]Denu JM. The Sir 2 family of protein deacetylases. Curr Opin Chem Biol 2005; 9 (5):431-40.
    [36]Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 2001; 292 (5514):107-10.
    [37]Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 2004; 101 (45): 15998-6003.
    [38]Brooks CL, Gu W. How does SIRT1 affect metabolism, senescence and cancer? Nat Rev Cancer 2009; 9 (2):123-8.
    [39]Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23 (12):2369-80.
    [40]Giannakou ME, Partridge L. The interaction between FOXO and SIRT1:tipping the balance towards survival. Trends Cell Biol 2004; 14 (8):408-12.
    [41]Zhang QJ, Wang Z, Chen HZ, Zhou S, Zheng W, Liu G, et al. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 2008; 80 (2): 191-9.
    [42]Hsu CP, Odewale I, Alcendor RR, Sadoshima J. Sirtl protects the heart from aging and stress. Biol Chem 2008; 389 (3):221-31.
    [43]Huang J, Gan Q, Han L, Li J, Zhang H, Sun Y, et al. SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6kl signaling in human diploid fibroblasts. PLoS One 2008; 3 (3):e1710.
    [1]Jin R, Horning M, Mayer ML, Gouaux E. Mechanism of activation and selectivity in a ligand-gated ion channel:structural and functional studies of GluR2 and quisqualate. Biochemistry 2002; 41 (52):15635-43.
    [2]Molnar E, Isaac JT. Developmental and activity dependent regulation of ionotropic glutamate receptors at synapses. Scientific World Journal 2002; 2: 27-47.
    [3]Doble A. The role of excitotoxicity in neurodegenerative disease:implications for therapy. Pharmacol Ther 1999; 81 (3):163-221.
    [4]Mattson MP. Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 2008; 1144:97-112.
    [5]Camins A, Pallas M, Silvestre JS. Apoptotic mechanisms involved in neurodegenerative diseases:experimental and therapeutic approaches. Methods Find Exp Clin Pharmacol 2008; 30 (1):43-65.
    [6]Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988; 1 (8):623-34.
    [7]Murphy TH, Miyamoto M, Sastre A, Schnaar RL, Coyle JT. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 1989; 2 (6):1547-58.
    [8]Penugonda S, Mare S, Goldstein G, Banks WA, Ercal N. Effects of N-acetylcysteine amide (NACA), a novel thiol antioxidant against glutamate-induced cytotoxicity in neuronal cell line PC 12. Brain Res 2005; 1056 (2):132-8.
    [9]Herrera F, Martin V, Garcia-Santos G, Rodriguez-Blanco J, Antolin I, Rodriguez C. Melatonin prevents glutamate-induced oxytosis in the HT22 mouse hippocampal cell line through an antioxidant effect specifically targeting mitochondria. J Neurochem 2007; 100 (3):736-46.
    [10]Froissard P, Duval D. Cytotoxic effects of glutamic acid on PC 12 cells. Neurochem Int 1994; 24 (5):485-93.
    [11]Urushitani M, Nakamizo T, Inoue R, Sawada H, Kihara T, Honda K, et al. N-methyl-D-aspartate receptor-mediated mitochondrial Ca(2+) overload in acute excitotoxic motor neuron death:a mechanism distinct from chronic neurotoxicity after Ca(2+) influx. J Neurosci Res 2001; 63 (5):377-87.
    [12]Bleich S, Romer K, Wiltfang J, Kornhuber J. Glutamate and the glutamate receptor system:a target for drug action. Int J Geriatr Psychiatry 2003; 18 (Suppl 1):S33-40.
    [13]Murphy TH, Schnaar RL, Coyle JT. Immature cortical neurons are uniquely sensitive to glutamate toxicity by inhibition of cystine uptake. FASEB J 1990; 4 (6):1624-33.
    [14]Penugonda S, Mare S, Lutz P, Banks WA, Ercal N. Potentiation of lead-induced cell death in PC 12 cells by glutamate:protection by N-acetylcysteine amide (NACA), a novel thiol antioxidant. Toxicol Appl Pharmacol 2006; 216 (2): 197-205.
    [15]Zablocka A, Janusz M. [The two faces of reactive oxygen species]. Postepy Hig Med Dosw (Online) 2008; 62:118-24.
    [16]Pereira CM, Oliveira CR. Glutamate toxicity on a PC 12 cell line involves glutathione (GSH) depletion and oxidative stress. Free Radic Biol Med 1997; 23 (4):637-47.
    [17]Zhu X, Raina AK, Perry G, Smith MA. Apoptosis in Alzheimer disease:a mathematical improbability. Curr Alzheimer Res 2006; 3 (4):393-6.
    [18]Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 1997; 390 (6655):45-51.
    [19]Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 2005; 280 (45):38029-34.
    [20]Ikushima M, Rakugi H, Ishikawa K, Maekawa Y, Yamamoto K, Ohta J, et al. Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells. Biochem Biophys Res Commun 2006; 339 (3):827-32.
    [21]Ayala-Grosso C, Ng G, Roy S, Robertson GS. Caspase-cleaved amyloid precursor protein in Alzheimer's disease. Brain Pathol 2002; 12 (4):430-41. eng.
    [22]Walton HS, Dodd PR. Glutamate-glutamine cycling in Alzheimer's disease. Neurochem Int 2007; 50 (7-8):1052-66.
    [23]Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA. Apoptosis and necrosis:two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci U S A 1995; 92 (16):7162-6.
    [24]Cheung NS, Pascoe CJ, Giardina SF, John CA, Beart PM. Micromolar L-glutamate induces extensive apoptosis in an apoptotic-necrotic continuum of insult-dependent, excitotoxic injury in cultured cortical neurones. Neuropharmacology 1998; 37 (10-11):1419-29.
    [25]Johnson EM, Jr., Greenlund LJ, Akins PT, Hsu CY. Neuronal apoptosis:current understanding of molecular mechanisms and potential role in ischemic brain injury. J Neurotrauma 1995; 12 (5):843-52.
    [26]Schubert D, Kimura H, Maher P. Growth factors and vitamin E modify neuronal glutamate toxicity. Proc Natl Acad Sci U S A 1992; 89 (17):8264-7.
    [27]Seyfried J, Evert BO, Rundfeldt C, Schulz JB, Kovar KA, Klockgether T, et al. Flupirtine and retigabine prevent L-glutamate toxicity in rat pheochromocytoma PC 12 cells. Eur J Pharmacol 2000; 400 (2-3):155-66.
    [28]Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993; 262 (5134):689-95.
    [29]Kume T, Katsuki H, Akaike A. Endogenous factors regulating neuronal death induced by radical stress. Biol Pharm Bull 2004; 27 (7):964-7.
    [30]Chong ZZ, Li F, Maiese K. Oxidative stress in the brain:novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 2005; 75 (3):207-46.
    [31]Schwartz PJ, Reaume A, Scott R, Coyle JT. Effects of over-and under-expression of Cu,Zn-superoxide dismutase on the toxicity of glutamate analogs in transgenic mouse striatum. Brain Res 1998; 789 (1):32-9.
    [32]Sandhu JK, Pandey S, Ribecco-Lutkiewicz M, Monette R, Borowy-Borowski H, Walker PR, et al. Molecular mechanisms of glutamate neurotoxicity in mixed cultures of NT2-derived neurons and astrocytes:protective effects of coenzyme Q10. J Neurosci Res 2003; 72 (6):691-703.
    [33]Wang H, Cheng E, Brooke S, Chang P, Sapolsky R. Over-expression of antioxidant enzymes protects cultured hippocampal and cortical neurons from necrotic insults. J Neurochem 2003; 87 (6):1527-34.
    [34]Ezaki Y, Nishihara E, Shibata Y, Matsuo T, Kitagawa N, Nagata I, et al. Vitamin E prevents the neuronal cell death by repressing cyclooxygenase-2 activity. Neuroreport 2005; 16(11):1163-7.
    [35]Godkar PB, Gordon RK, Ravindran A, Doctor BP. Celastrus paniculatus seed oil and organic extracts attenuate hydrogen peroxide-and glutamate-induced injury in embryonic rat forebrain neuronal cells. Phytomedicine 2006; 13 (1-2):29-36.
    [36]Nagai T, Yamada K, Kim HC, Kim YS, Noda Y, Imura A, et al. Cognition impairment in the genetic model of aging klotho gene mutant mice:a role of oxidative stress. FASEB J 2003; 17 (1):50-2.
    [37]Duce JA, Podvin S, Hollander W, Kipling D, Rosene DL, Abraham CR. Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey. Glia 2008; 56 (1):106-17.
    [38]Kampkotter A, Timpel C, Zurawski RF, Ruhl S, Chovolou Y, Proksch P, et al. Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp Biochem Physiol B Biochem Mol Biol 2008; 149 (2):314-23.
    [39]Olmos Y, Valle I, Borniquel S, Tierrez A, Soria E, Lamas S, et al. Mutual dependence of Foxo3a and PGC-1 alpha in the induction of oxidative stress genes. J Biol Chem 2009; 284 (21):14476-84.
    [40]Su JH, Zhao M, Anderson AJ, Srinivasan A, Cotman CW. Activated caspase-3 expression in Alzheimer's and aged control brain:correlation with Alzheimer pathology. Brain Res 2001; 898 (2):350-7.
    [41]Zhao M, Su J, Head E, Cotman CW. Accumulation of caspase cleaved amyloid precursor protein represents an early neurodegenerative event in aging and in Alzheimer's disease. Neurobiol Dis 2003; 14 (3):391-403.
    [42]Lu DC, Rabizadeh S, Chandra S, Shayya RF, Ellerby LM, Ye X, et al. A second cytotoxic proteolytic peptide derived from amyloid beta-protein precursor. Nat Med 2000; 6 (4):397-404.
    [43]Louneva N, Cohen JW, Han LY, Talbot K, Wilson RS, Bennett DA, et al. Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer's disease. Am J Pathol 2008; 173 (5):1488-95.
    [44]Takuma H, Tomiyama T, Kuida K, Mori H. Amyloid beta peptide-induced cerebral neuronal loss is mediated by caspase-3 in vivo. J Neuropathol Exp Neurol 2004; 63 (3):255-61.
    [1]Sinem F, Dildar K, Gokhan E, Melda B, Orhan Y, Filiz M. The Serum Protein and Lipid Oxidation Marker Levels in Alzheimer's Disease and Effects of Cholinesterase Inhibitors and Antipsychotic Drugs Therapy. Curr Alzheimer Res 2009.
    [2]Kassner SS, Bonaterra GA, Kaiser E, Hildebrandt W, Metz J, Schroder J, et al. Novel systemic markers for patients with Alzheimer disease?-a pilot study. Curr Alzheimer Res 2008; 5 (4):358-66.
    [3]Yao ZX, Papadopoulos V. Function of beta-amyloid in cholesterol transport:a lead to neurotoxicity. FASEB J 2002; 16 (12):1677-9.
    [4]Fagan AM, Holtzman DM. Astrocyte lipoproteins, effects of apoE on neuronal function, and role of apoE in amyloid-beta deposition in vivo. Microsc Res Tech 2000; 50 (4):297-304.
    [5]Fabrizi C, Businaro R, Lauro GM, Starace G, Fumagalli L. Activated alpha2macroglobulin increases beta-amyloid (25-35)-induced toxicity in LAN5 human neuroblastoma cells. Exp Neurol 1999; 155 (2):252-9.
    [6]Vajda FJ. Neuroprotection and neurodegenerative disease. J Clin Neurosci 2002; 9 (1):4-8.
    [7]Roth KA. Caspases, apoptosis, and Alzheimer disease:causation, correlation, and confusion. J Neuropathol Exp Neurol 2001; 60 (9):829-38.
    [8]Hajimohamadreza I, Treherne JM. The role of apoptosis in neurodegenerative diseases. Prog Drug Res 1997; 48:55-98.
    [9]Macaya A. [Apoptosis in the nervous system]. Rev Neurol 1996; 24 (135): 1356-60.
    [10]Chen J, Mehta JL, Haider N, Zhang X, Narula J, Li D. Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells. Circ Res 2004; 94 (3):370-6.
    [11]Cheng J, Zhang J, Merched A, Zhang L, Zhang P, Truong L, et al. Mechanical stretch inhibits oxidized low density lipoprotein-induced apoptosis in vascular smooth muscle cells by up-regulating integrin alphavbeta3 and stablization of PINCH-1. J Biol Chem 2007; 282 (47):34268-75.
    [12]Yu LH, Liu GT. Schisanhenol attenuated ox-LDL-induced apoptosis and reactive oxygen species generation in bovine aorta endothelial cells in vitro. J Asian Nat Prod Res 2008; 10 (7-8):799-806.
    [13]Chen XP, Xun KL, Wu Q, Zhang TT, Shi JS, Du GH. Oxidized low density lipoprotein receptor-1 mediates oxidized low density lipoprotein-induced apoptosis in human umbilical vein endothelial cells:role of reactive oxygen species. Vascul Pharmacol 2007; 47 (1):1-9.
    [14]Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, et al. An endothelial receptor for oxidized low-density lipoprotein. Nature 1997; 386 (6620):73-7.
    [15]Li D, Williams V, Liu L, Chen H, Sawamura T, Romeo F, et al. Expression of lectin-like oxidized low-density lipoprotein receptors during ischemia-reperfusion and its role in determination of apoptosis and left ventricular dysfunction. J Am Coll Cardiol 2003; 41 (6):1048-55.
    [16]Mehta JL. The role of LOX-1, a novel lectin-like receptor for oxidized low density lipoprotein, in atherosclerosis. Can J Cardiol 2004; 20 Suppl B: 32B-36B.
    [17]Block ML. NADPH oxidase as a therapeutic target in Alzheimer's disease. BMC Neurosci 2008; 9 Suppl 2:S8.
    [18]Lesser G, Kandiah K, Libow LS, Likourezos A, Breuer B, Marin D, et al. Elevated serum total and LDL cholesterol in very old patients with Alzheimer's disease. Dement Geriatr Cogn Disord 2001; 12 (2):138-45.
    [19]Merched A, Xia Y, Visvikis S, Serot JM, Siest G. Decreased high-density lipoprotein cholesterol and serum apolipoprotein AI concentrations are highly correlated with the severity of Alzheimer's disease. Neurobiol Aging 2000; 21 (1):27-30.
    [20]Schulz B, Liebisch G, Grandl M, Werner T, Barlage S, Schmitz G. Beta-amyloid (Abeta40, Abeta42) binding to modified LDL accelerates macrophage foam cell formation. Biochim Biophys Acta 2007; 1771 (10):1335-44.
    [21]Michikawa M. Cholesterol paradox:is high total or low HDL cholesterol level a risk for Alzheimer's disease? J Neurosci Res 2003; 72 (2):141-6.
    [22]Keller JN, Hanni KB, Markesbery WR. Oxidized low-density lipoprotein induces neuronal death:implications for calcium, reactive oxygen species, and caspases. J Neurochem 1999; 72 (6):2601-9.
    [23]Schroeter H, Spencer JPE, Rice-Evans C, Williams RJ. Flavonoids protect neurons from oxidized low-density-lipoprotein-induced apoptosis involving c-Jun N-terminal kinase (JNK), c-Jun and caspase-3. Biochemical Journal 2001; 358:547-57.
    [24]Lee HS, Lee MJ, Kim H, Choi SK, Kim JE, Moon HI, et al. Curcumin inhibits TNFalpha-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J Enzyme Inhib Med Chem.
    [25]Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells:implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 2002; 95 (1):89-100.
    [26]Rudijanto A. The expression and down stream effect of lectin like-oxidized low density lipoprotein 1 (LOX-1) in hyperglycemic state. Acta Med Indones 2007; 39(1):36-43.
    [27]Akagi M, Ueda A, Teramura T, Kanata S, Sawamura T, Hamanishi C. Oxidized LDL binding to LOX-1 enhances MCP-1 expression in cultured human articular chondrocytes. Osteoarthritis Cartilage 2009; 17 (2):271-5.
    [28]Nakagawa T, Akagi M, Hoshikawa H, Chen M, Yasuda T, Mukai S, et al. Lectin-like oxidized low-density lipoprotein receptor 1 mediates leukocyte infiltration and articular cartilage destruction in rat zymosan-induced arthritis. Arthritis Rheum 2002; 46 (9):2486-94.
    [29]Sakamoto N, Ishibashi T, Sugimoto K, Sawamura T, Sakamoto T, Inoue N, et al. Role of LOX-1 in monocyte adhesion-triggered redox, Akt/eNOS and Ca2+ signaling pathways in endothelial cells. J Cell Physiol 2009; 220 (3):706-15.
    [30]Chen K, Chen J, Liu Y, Xie J, Li D, Sawamura T, et al. Adhesion molecule expression in fibroblasts:alteration in fibroblast biology after transfection with LOX-1 plasmids. Hypertension 2005; 46 (3):622-7.
    [31]Mukai E, Kume N, Hayashida K, Minami M, Yamada Y, Seino Y, et al. Heparin-binding EGF-like growth factor induces expression of lectin-like oxidized LDL receptor-1 in vascular smooth muscle cells. Atherosclerosis 2004; 176 (2):289-96.
    [32]Li D, Mehta JL. Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells. Circulation 2000; 101 (25):2889-95.
    [33]Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87 (1):245-313.
    [34]Babior BM, Lambeth JD, Nauseef W. The neutrophil NADPH oxidase. Arch Biochem Biophys 2002; 397 (2):342-4.
    [35]Dang PM, Cross AR, Quinn MT, Babior BM. Assembly of the neutrophil respiratory burst oxidase:a direct interaction between p67PHOX and cytochrome b558 II. Proc Natl Acad Sci U S A 2002; 99 (7):4262-5.
    [36]Bianca VD, Dusi S, Bianchini E, Dal Pra I, Rossi F. beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer's disease. J Biol Chem 1999; 274 (22):15493-9.
    [37]Bruce-Keller AJ, Gupta S, Parrino TE, Knight AG, Ebenezer PJ, Weidner AM, et al. NOX Activity Is Increased in Mild Cognitive Impairment. Antioxid Redox Signal.
    [38]de la Monte SM, Wands JR. Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer's disease. J Alzheimers Dis 2006; 9 (2):167-81.
    [39]Park L, Anrather J, Zhou P, Frys K, Pitstick R, Younkin S, et al. NADPH-oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid beta peptide. J Neurosci 2005; 25 (7): 1769-77.
    [40]Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH, et al. Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci U S A 2008; 105 (4):1347-52.
    [41]Yamamoto E, Tamamaki N, Nakamura T, Kataoka K, Tokutomi Y, Dong YF, et al. Excess salt causes cerebral neuronal apoptosis and inflammation in stroke-prone hypertensive rats through angiotensin II-induced NADPH oxidase activation. Stroke 2008; 39 (11):3049-56.
    [42]Abramov AY, Canevari L, Duchen MR. Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 2004; 24 (2):565-75.
    [43]Abramov AY, Canevari L, Duchen MR. Calcium signals induced by amyloid beta peptide and their consequences in neurons and astrocytes in culture. Biochim Biophys Acta 2004; 1742 (1-3):81-7.
    [44]Abramov AY, Duchen MR. The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides. Philos Trans R Soc Lond B Biol Sci 2005; 360 (1464):2309-14.
    [45]Zhu D, Lai Y, Shelat PB, Hu C, Sun GY, Lee JC. Phospholipases A2 mediate amyloid-beta peptide-induced mitochondrial dysfunction. J Neurosci 2006; 26 (43):11111-9.
    [1]Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer's disease. Neurobiol Aging 2000; 21 (3):383-421.
    [2]Reyes JF, Reynolds MR, Horowitz PM, Fu Y, Guillozet-Bongaarts AL, Berry R, et al. A possible link between astrocyte activation and tau nitration in Alzheimer's disease. Neurobiol Dis 2008; 31 (2):198-208.
    [3]Licastro F, Pedrini S, Caputo L, Annoni G, Davis LJ, Ferri C, et al. Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer's disease:peripheral inflammation or signals from the brain? J Neuroimmunol 2000; 103 (1):97-102.
    [4]Zetterberg H, Andreasen N, Blennow K. Increased cerebrospinal fluid levels of transforming growth factor-betal in Alzheimer's disease. Neurosci Lett 2004; 367 (2):194-6.
    [5]Arvanitakis Z, Grodstein F, Bienias JL, Schneider JA, Wilson RS, Kelly JF, et al. Relation of NSAIDs to incident AD, change in cognitive function, and AD pathology. Neurology 2008; 70 (23):2219-25.
    [6]Ito K, Ishikawa Y, Skinner RD, Mrak RE, Morrison-Bogorad M, Mukawa J, et al. Lesioning of the inferior olive using a ventral surgical approach. Characterization of temporal and spatial astrocytic responses at the lesion site and in cerebellum. Mol Chem Neuropathol 1997; 31 (3):245-64.
    [7]Vrotsos EG, Kolattukudy PE, Sugaya K. MCP-1 involvement in glial differentiation of neuroprogenitor cells through APP signaling. Brain Res Bull 2009; 79 (2):97-103.
    [8]Ge S, Murugesan N, Pachter JS. Astrocyte- and endothelial-targeted CCL2 conditional knockout mice:critical tools for studying the pathogenesis of neuroinflammation. J Mol Neurosci 2009; 39 (1-2):269-83.
    [9]Blasko I, Veerhuis R, Stampfer-Kountchev M, Saurwein-Teissl M, Eikelenboom P, Grubeck-Loebenstein B. Costimulatory effects of interferon-gamma and interleukin-1 beta or tumor necrosis factor alpha on the synthesis of Abetal-40 and Abetal-42 by human astrocytes. Neurobiol Dis 2000; 7 (6 Pt B):682-9.
    [10]Sastre M, Dewachter I, Landreth GE, Willson TM, Klockgether T, van Leuven F, et al. Nonsteroidal anti-inflammatory drugs and peroxisome proliferator-activated receptor-gamma agonists modulate immunostimulated processing of amyloid precursor protein through regulation of beta-secretase. J Neurosci 2003; 23 (30):9796-804.
    [11]Vassar R. The beta-secretase, BACE:a prime drug target for Alzheimer's disease. J Mol Neurosci 2001; 17(2):157-70.
    [12]Frank S, Copanaki E, Burbach GJ, Muller UC, Deller T. Differential regulation of toll-like receptor mRNAs in amyloid plaque-associated brain tissue of aged APP23 transgenic mice. Neurosci Lett 2009; 453 (1):41-4.
    [13]Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, Cheng A, et al. Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 2008; 213 (1):114-21.
    [14]Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, et al. Role of the toll-like receptor 4 in neuroinflammation in Alzheimer's disease. Cell Physiol Biochem 2007; 20 (6):947-56.
    [15]Blanco AM, Valles SL, Pascual M, Guerri C. Involvement of TLR4/type Ⅰ IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol 2005; 175 (10):6893-9.
    [16]Kilic U, Kilic E, Matter CM, Bassetti CL, Hermann DM. TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration. Neurobiol Dis 2008; 31 (1):33-40.
    [17]Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 2003; 100 (14):8514-9.
    [18]Jung DY, Lee H, Jung BY, Ock J, Lee MS, Lee WH, et al. TLR4, but not TLR2, signals autoregulatory apoptosis of cultured microglia:a critical role of IFN-beta as a decision maker. J Immunol 2005; 174 (10):6467-76.
    [19]Guo JT, Yu J, Grass D, de Beer FC, Kindy MS. Inflammation-dependent cerebral deposition of serum amyloid a protein in a mouse model of amyloidosis. J Neurosci 2002; 22 (14):5900-9.
    [20]Szekely CA, Town T, Zandi PP. NSAIDs for the chemoprevention of Alzheimer's disease. Subcell Biochem 2007; 42:229-48.
    [21]Choi JK, Jenkins BG, Carreras I, Kaymakcalan S, Cormier K, Kowall NW, et al. Anti-inflammatory treatment in AD mice protects against neuronal pathology. Exp Neurol 2009.
    [22]Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 2008; 5:37.
    [23]Jaeger LB, Dohgu S, Sultana R, Lynch JL, Owen JB, Erickson MA, et al. Lipopolysaccharide alters the blood-brain barrier transport of amyloid beta protein:a mechanism for inflammation in the progression of Alzheimer's disease. Brain Behav Immun 2009; 23 (4):507-17.
    [24]Kitazawa M, Oddo S, Yamasaki TR, Green KN, LaFerla FM. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J Neurosci 2005; 25 (39):8843-53.
    [25]De Luigi A, Fragiacomo C, Lucca U, Quadri P, Tettamanti M, Grazia De Simoni M. Inflammatory markers in Alzheimer's disease and multi-infarct dementia. Mech Ageing Dev 2001; 122(16):1985-95.
    [26]Hauss-Wegrzyniak B, Wenk GL. Beta-amyloid deposition in the brains of rats chronically infused with thiorphan or lipopolysaccharide:the role of ascorbic acid in the vehicle. Neurosci Lett 2002; 322 (2):75-8.
    [27]Hauss-Wegrzyniak B, Vannucchi MG, Wenk GL. Behavioral and ultrastructural changes induced by chronic neuroinflammation in young rats. Brain Res 2000; 859(1):157-66.
    [28]Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL. Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer's disease. Brain Res 1998; 780 (2):294-303.
    [29]Toyomoto M, Inoue S, Ohta K, Kuno S, Ohta M, Hayashi K, et al. Production of NGF, BDNF and GDNF in mouse astrocyte cultures is strongly enhanced by a cerebral vasodilator, ifenprodil. Neurosci Lett 2005; 379 (3):185-9.
    [30]Garg SK, Kipnis J, Banerjee R. IFN-gamma and IL-4 differentially shape metabolic responses and neuroprotective phenotype of astrocytes. J Neurochem 2009; 108 (5):1155-66.
    [31]Zhao L, Brinton RD. Suppression of proinflammatory cytokines interleukin-lbeta and tumor necrosis factor-alpha in astrocytes by a V1 vasopressin receptor agonist:a cAMP response element-binding protein-dependent mechanism. J Neurosci 2004; 24 (9):2226-35.
    [32]Vasto S, Candore G, Listi F, Balistreri CR, Colonna-Romano G, Malavolta M, et al. Inflammation, genes and zinc in Alzheimer's disease. Brain Res Rev 2008; 58(1):96-105.
    [33]Streit WJ, Miller KR, Lopes KO, Njie E. Microglial degeneration in the aging brain-bad news for neurons? Front Biosci 2008; 13:3423-38.
    [34]Minoretti P, Gazzaruso C, Vito CD, Emanuele E, Bianchi M, Coen E, et al. Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer's disease. Neurosci Lett 2006; 391 (3): 147-9.
    [35]Balistreri CR, Grimaldi MP, Chiappelli M, Licastro F, Castiglia L, Listi F, et al. Association between the polymorphisms of TLR4 and CD 14 genes and Alzheimer's disease. Curr Pharm Des 2008; 14 (26):2672-7.
    [36]Shoham S, Huang C, Chen JM, Golenbock DT, Levitz SM. Toll-like receptor 4 mediates intracellular signaling without TNF-alpha release in response to Cryptococcus neoformans polysaccharide capsule. J Immunol 2001; 166 (7): 4620-6.
    [37]Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 2001; 167 (5): 2887-94.
    [38]Lee JY, Hwang DH. The modulation of inflammatory gene expression by lipids: mediation through Toll-like receptors. Mol Cells 2006; 21 (2):174-85.
    [39]Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, et al. Pattern recognition receptors TLR4 and CD 14 mediate response to respiratory syncytial virus. Nat Immunol 2000; 1 (5):398-401.
    [40]Muzio M, Polentarutti N, Bosisio D, Prahladan MK, Mantovani A. Toll-like receptors:a growing family of immune receptors that are differentially expressed and regulated by different leukocytes. J Leukoc Biol 2000; 67 (4): 450-6.
    [41]Liao CK, Wang SM, Chen YL, Wang HS, Wu JC. Lipopolysaccharide-induced inhibition of connexin43 gap junction communication in astrocytes is mediated by downregulation of caveolin-3. Int J Biochem Cell Biol; 42 (5):762-70.
    [1]Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, et al. Prevalence of Alzheimer's disease in a community population of older persons. Higher than previously reported. JAMA 1989; 262 (18):2551-6.
    [2]Russo C, Venezia V, Salis S, Dolcini V, Schettini G. Molecular aspects of neurodegeneration in Alzheimer's disease. Funct Neurol 2002; 17 (2):65-70.
    [3]Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K. Neuronal origin of a cerebral amyloid:neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 1985; 4 (11):2757-63.
    [4]Morishima-Kawashima M, Han X, Tanimura Y, Hamanaka H, Kobayashi M, Sakurai T, et al. Effects of human apolipoprotein E isoforms on the amyloid beta-protein concentration and lipid composition in brain low-density membrane domains. J Neurochem 2007; 101 (4):949-58.
    [5]Bateman DA, McLaurin J, Chakrabartty A. Requirement of aggregation propensity of Alzheimer amyloid peptides for neuronal cell surface binding. BMC Neurosci 2007; 8:29.
    [6]Kowall NW, McKee AC, Yankner BA, Beal MF. In vivo neurotoxicity of beta-amyloid [beta(1-40)] and the beta(25-35) fragment. Neurobiol Aging 1992; 13 (5):537-42.
    [7]Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature 1995; 375 (6534):754-60.
    [8]Schellenberg GD, Bird TD, Wijsman EM, Orr HT, Anderson L, Nemens E, et al. Genetic linkage evidence for a familial Alzheimer's disease locus on chromosome 14. Science 1992; 258 (5082):668-71.
    [9]Rogaev El, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, et al. Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 1995; 376 (6543):775-8.
    [10]Lendon CL, Ashall F, Goate AM. Exploring the etiology of Alzheimer disease using molecular genetics. JAMA 1997; 277 (10):825-31.
    [11]Kovacs DM, Fausett HJ, Page KJ, Kim TW, Moir RD, Merriam DE, et al. Alzheimer-associated presenilins 1 and 2:neuronal expression in brain and
    localization to intracellular membranes in mammalian cells. Nat Med 1996; 2 (2):224-9.
    [12]Cao G, Pei W, Ge H, Liang Q, Luo Y, Sharp FR, et al. In Vivo Delivery of a Bcl-xL Fusion Protein Containing the TAT Protein Transduction Domain Protects against Ischemic Brain Injury and Neuronal Apoptosis. J Neurosci 2002; 22 (13):5423-31.
    [13]Lah JJ, Heilman CJ, Nash NR, Rees HD, Yi H, Counts SE, et al. Light and electron microscopic localization of presenilin-1 in primate brain. J Neurosci 1997; 17(6):1971-80.
    [14]Kowalska A, Pruchnik-Wolinska D, Florczak J, Modestowicz R, Szczech J, Kozubski W, et al. Genetic study of familial cases of Alzheimer's disease. Acta Biochim Pol 2004; 51 (1):245-52.
    [15]Nakai T, Yamasaki A, Sakaguchi M, Kosaka K, Mihara K, Amaya Y, et al. Membrane topology of Alzheimer's disease-related presenilin 1. Evidence for the existence of a molecular species with a seven membrane-spanning and one membrane-embedded structure. J Biol Chem 1999; 274 (33):23647-58.
    [16]Lehmann S, Chiesa R, Harris DA. Evidence for a six-transmembrane domain structure of presenilin 1. J Biol Chem 1997; 272 (18):12047-51.
    [17]Rogaev EI, Sherrington R, Wu C, Levesque G, Liang Y, Rogaeva EA, et al. Analysis of the 5'sequence, genomic structure, and alternative splicing of the presenilin-1 gene (PSEN1) associated with early onset Alzheimer disease. Genomics 1997; 40 (3):415-24.
    [18]Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55 (6):1189-93.
    [19]Roos RA, Cruts M. [From gene to disease; presenilins and Alzheimer disease]. Ned Tijdschr Geneeskd 2001; 145 (42):2027-9.
    [20]Czech C, Tremp G, Pradier L. Presenilins and Alzheimer's disease:biological functions and pathogenic mechanisms. Prog Neurobiol 2000; 60 (4):363-84.
    [21]Guo Q, Sebastian L, Sopher BL, Miller MW, Ware CB, Martin GM, et al. Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity:central roles of superoxide production and caspase activation. J Neurochem 1999; 72 (3):1019-29.
    [22]Alves da Costa C, Paitel E, Mattson MP, Amson R, Telerman A, Ancolio K, et al. Wild-type and mutated presenilins 2 trigger p53-dependent apoptosis and down-regulate presenilin 1 expression in HEK293 human cells and in murine neurons. Proc Natl Acad Sci U S A 2002; 99 (6):4043-8.
    [23]Selkoe DJ, Schenk D. Alzheimer's disease:molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 2003; 43:545-84.
    [24]Allinson TM, Parkin ET, Turner AJ, Hooper NM. ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 2003; 74 (3): 342-52.
    [25]Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, et al. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo:evidence for augmentation of a 42-specific gamma secretase. Hum Mol Genet 2004; 13 (2):159-70.
    [26]Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, et al. Familial Alzheimer's disease-linked presenilin 1 variants elevate Abetal-42/1-40 ratio in vitro and in vivo. Neuron 1996; 17 (5):1005-13.
    [27]Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, et al. Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 1997; 3 (1): 67-72.
    [28]Struhl G, Adachi A. Requirements for presenilin-dependent cleavage of notch and other transmembrane proteins. Mol Cell 2000; 6 (3):625-36.
    [29]Nam Y, Aster JC, Blacklow SC. Notch signaling as a therapeutic target. Curr Opin Chem Biol 2002; 6 (4):501-9.
    [30]De Ferrari GV, Inestrosa NC. Wnt signaling function in Alzheimer's disease. Brain Res Brain Res Rev 2000; 33 (1):1-12.
    [31]Shepherd CE, Gregory GC, Vickers JC, Brooks WS, Kwok JB, Schofield PR, et al. Positional effects of presenilin-1 mutations on tau phosphorylation in cortical plaques. Neurobiol Dis 2004; 15 (1):115-9.
    [32]Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem 2004; 73:417-35.
    [33]Denu JM. The Sir 2 family of protein deacetylases. Curr Opin Chem Biol 2005; 9 (5):431-40.
    [34]Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 2000; 403 (6771):795-800.
    [35]Kennedy BK, Gotta M, Sinclair DA, Mills K, McNabb DS, Murthy M, et al. Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 1997; 89 (3):381-91.
    [36]Rogina B, Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 2004; 101 (45): 15998-6003.
    [37]Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS. A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 2001; 292 (5514):107-10.
    [38]Tang BL, Chua CE. SIRT1 and neuronal diseases. Mol Aspects Med 2008; 29 (3):187-200.
    [39]Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 2001; 107 (2):149-59.
    [40]Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 2001; 107 (2): 137-48.
    [41]Langley E, Pearson M, Faretta M, Bauer UM, Frye RA, Minucci S, et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J 2002; 21 (10):2383-96.
    [42]Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci U S A 2003; 100 (19):10794-9.
    [43]Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 2004; 23 (12):2369-80.
    [44]Lam EW, Francis RE, Petkovic M. FOXO transcription factors:key regulators of cell fate. Biochem Soc Trans 2006; 34 (Pt 5):722-6.
    [45]Giannakou ME, Partridge L. The interaction between FOXO and SIRT1:tipping the balance towards survival. Trends Cell Biol 2004; 14 (8):408-12.
    [46]Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-lalpha and SIRT1. Nature 2005; 434 (7029):113-8.
    [47]Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 2005; 280 (16):16456-60.
    [48]Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De Oliveira R, et al. Sirtl promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 2004; 429 (6993):771-6.
    [49]Wilquet V, De Strooper B. Amyloid-beta precursor protein processing in neurodegeneration. Curr Opin Neurobiol 2004; 14 (5):582-8.
    [50]Meziane H, Dodart JC, Mathis C, Little S, Clemens J, Paul SM, et al. Memory-enhancing effects of secreted forms of the beta-amyloid precursor protein in normal and amnestic mice. Proc Natl Acad Sci U S A 1998; 95 (21): 12683-8.
    [51]Tang BL. Alzheimer's disease:channeling APP to non-amyloidogenic processing. Biochem Biophys Res Commun 2005; 331 (2):375-8.
    [52]Julien C, Tremblay C, Emond V, Lebbadi M, Salem N, Jr., Bennett DA, et al. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J Neuropathol Exp Neurol 2009; 68 (1):48-58.
    [53]Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, et al. SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. EMBO J 2007; 26 (13):3169-79.
    [54]Chen J, Zhou Y, Mueller-Steiner S, Chen LF, Kwon H, Yi S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem 2005; 280 (48):40364-74.
    [55]Sells SF, Wood DP, Jr., Joshi-Barve SS, Muthukumar S, Jacob RJ, Crist SA, et al. Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and-independent prostate cells. Cell Growth Differ 1994; 5 (4):457-66.
    [56]Boghaert ER, Sells SF, Walid AJ, Malone P, Williams NM, Weinstein MH, et al. Immunohistochemical analysis of the proapoptotic protein Par-4 in normal rat tissues. Cell Growth Differ 1997; 8 (8):881-90.
    [57]Ranganathan P, Rangnekar VM. Regulation of cancer cell survival by Par-4. Ann N Y Acad Sci 2005; 1059:76-85.
    [58]Diaz-Meco MT, Municio MM, Frutos S, Sanchez P, Lozano J, Sanz L, et al. The product of par-4, a gene induced during apoptosis, interacts selectively with the atypical isoforms of protein kinase C. Cell 1996; 86 (5):777-86.
    [59]Page G, Kogel D, Rangnekar V, Scheidtmann KH. Interaction partners of Dlk/ZIP kinase:co-expression of Dlk/ZIP kinase and Par-4 results in cytoplasmic retention and apoptosis. Oncogene 1999; 18 (51):7265-73.
    [60]Johnstone RW, See RH, Sells SF, Wang J, Muthukkumar S, Englert C, et al. A novel repressor, par-4, modulates transcription and growth suppression functions of the Wilms' tumor suppressor WT1. Mol Cell Biol 1996; 16 (12):6945-56.
    [61]Chakraborty M, Qiu SG, Vasudevan KM, Rangnekar VM. Par-4 drives trafficking and activation of Fas and Fasl to induce prostate cancer cell apoptosis and tumor regression. Cancer Res 2001; 61 (19):7255-63.
    [62]Chang S, Kim JH, Shin J. p62 forms a ternary complex with PKCzeta and PAR-4 and antagonizes PAR-4-induced PKCzeta inhibition. FEBS Lett 2002; 510 (1-2):57-61.
    [63]Guo Q, Fu W, Xie J, Luo H, Sells SF, Geddes JW, et al. Par-4 is a mediator of neuronal degeneration associated with the pathogenesis of Alzheimer disease. Nat Med 1998; 4 (8):957-62.
    [64]Mattson MP, Gleichmann M. The neuronal death protein par-4 mediates dopaminergic synaptic plasticity. Mol Interv 2005; 5 (5):278-81.
    [65]Guo Q, Xie J. AATF inhibits aberrant production of amyloid beta peptide 1-42 by interacting directly with Par-4. J Biol Chem 2004; 279 (6):4596-603.
    [66]Guo Q, Xie J, Chang X, Du H. Prostate apoptosis response-4 enhances secretion of amyloid beta peptide 1-42 in human neuroblastoma IMR-32 cells by a caspase-dependent pathway. J Biol Chem 2001; 276 (19):16040-4.
    [67]Xie J, Guo Q. PAR-4 is involved in regulation of beta-secretase cleavage of the Alzheimer amyloid precursor protein. J Biol Chem 2005; 280 (14):13824-32.
    [68]Hart PJ, Deep S, Taylor AB, Shu Z, Hinck CS, Hinck AP. Crystal structure of the human TbetaR2 ectodomain-TGF-beta3 complex. Nat Struct Biol 2002; 9 (3):203-8.
    [69]Nakai T, Mochida J, Sakai D. Synergistic role of c-Myc and ERK1/2 in the mitogenic response to TGFbeta-1 in cultured rat nucleus pulposus cells. Arthritis Res Ther 2008;10(6):R140.
    [70]Yano T, Ito K, Fukamachi H, Chi XZ, Wee HJ, Inoue K, et al. The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Mol Cell Biol 2006; 26 (12): 4474-88.
    [71]Zhang GY, Li X, Yi CG, Pan H, He GD, Yu Q, et al. Angiotensin II activates connective tissue growth factor and induces extracellular matrix changes involving Smad/activation and p38 mitogen-activated protein kinase signalling pathways in human dermal fibroblasts. Exp Dermatol 2009.
    [72]Kelber JA, Panopoulos AD, Shani G, Booker EC, Belmonte JC, Vale WW, et al. Blockade of Cripto binding to cell surface GRP78 inhibits oncogenic Cripto signaling via MAPK/PI3K and Smad2/3 pathways. Oncogene 2009.
    [73]Qi S, den Hartog GJ, Bast A. Superoxide radicals increase transforming growth factor-beta1 and collagen release from human lung fibroblasts via cellular influx through chloride channels. Toxicol Appl Pharmacol 2009; 237 (1):111-8.
    [74]Yang KL, Chang WT, Hung KC, Li El, Chuang CC. Inhibition of transforming growth factor-beta-induced liver fibrosis by a retinoic acid derivative via the suppression of Col 1A2 promoter activity. Biochem Biophys Res Commun 2008; 373 (2):219-23.
    [75]Tian L, Li C, Qi J, Fu P, Yu X, Li X, et al. Diabetes-induced upregulation of urotensin II and its receptor plays an important role in TGF-betal-mediated renal fibrosis and dysfunction. Am J Physiol Endocrinol Metab 2008; 295 (5): E1234-42.
    [76]Unsicker K, Flanders KC, Cissel DS, Lafyatis R, Sporn MB. Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 1991; 44 (3):613-25.
    [77]Knuckey NW, Finch P, Palm DE, Primiano MJ, Johanson CE, Flanders KC, et al. Differential neuronal and astrocytic expression of transforming growth factor beta isoforms in rat hippocampus following transient forebrain ischemia. Brain Res Mol Brain Res 1996; 40 (1):1-14.
    [78]Motta M, Imbesi R, Di Rosa M, Stivala F, Malaguarnera L. Altered plasma cytokine levels in Alzheimer's disease:correlation with the disease progression. Immunol Lett 2007; 114 (1):46-51.
    [79]Zetterberg H, Andreasen N, Blennow K. Increased cerebrospinal fluid levels of transforming growth factor-betal in Alzheimer's disease. Neurosci Lett 2004; 367 (2):194-6.
    [80]Mocali A, Cedrola S, Della Malva N, Bontempelli M, Mitidieri VA, Bavazzano A, et al. Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease. Exp Gerontol 2004; 39 (10):1555-61.
    [81]Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, McConlogue L, et al. TGF-betal promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 2001; 7 (5):612-8.
    [82]Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, et al. Amyloidogenic role of cytokine TGF-betal in transgenic mice and in Alzheimer's disease. Nature 1997; 389 (6651):603-6.
    [83]Zhang Y, Taveggia C, Melendez-Vasquez C, Einheber S, Raine CS, Salzer JL, et al. Interleukin-11 potentiates oligodendrocyte survival and maturation, and myelin formation. J Neurosci 2006; 26 (47):12174-85.
    [84]Luterman JD, Haroutunian V, Yemul S, Ho L, Purohit D, Aisen PS, et al. Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Arch Neurol 2000; 57 (8):1153-60.
    [85]Amara FM, Junaid A, Clough RR, Liang B. TGF-beta(1), regulation of alzheimer amyloid precursor protein mRNA expression in a normal human astrocyte cell line:mRNA stabilization. Brain Res Mol Brain Res 1999; 71 (1): 42-9.
    [86]Gray CW, Patel AJ. Regulation of beta-amyloid precursor protein isoform mRNAs by transforming growth factor-beta 1 and interleukin-1 beta in astrocytes. Brain Res Mol Brain Res 1993; 19 (3):251-6.
    [87]Buckwalter MS, Coleman BS, Buttini M, Barbour R, Schenk D, Games D, et al. Increased T cell recruitment to the CNS after amyloid beta 1-42 immunization in Alzheimer's mice overproducing transforming growth factor-beta 1. J Neurosci 2006; 26 (44):11437-41.
    [88]Gaertner RF, Wyss-Coray T, Von Euw D, Lesne S, Vivien D, Lacombe P. Reduced brain tissue perfusion in TGF-beta 1 transgenic mice showing Alzheimer's disease-like cerebrovascular abnormalities. Neurobiol Dis 2005; 19 (1-2):38-46.
    [89]Arosio B, Bergamaschini L, Galimberti L, La Porta C, Zanetti M, Calabresi C, et al.+ 10 T/C polymorphisms in the gene of transforming growth factor-betal are associated with neurodegeneration and its clinical evolution. Mech Ageing Dev 2007; 128 (10):553-7.
    [90]Rodriguez-Rodriguez E, Sanchez-Juan P, Mateo I, Llorca J, Infante J, Garcia-Gorostiaga I, et al. Serum levels and genetic variation of TGF-betal are not associated with Alzheimer's disease. Acta Neurol Scand 2007; 116 (6): 409-12.
    [91]Dickson MR, Perry RT, Wiener H, Go RC. Association studies of transforming growth factor-beta 1 and Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet 2005; 139B (1):38-41.
    [92]Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, et al. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci U S A 1999; 96 (13):7324-9.
    [93]Denley A, Carroll JM, Brierley GV, Cosgrove L, Wallace J, Forbes B, et al. Differential activation of insulin receptor substrates 1 and 2 by insulin-like growth factor-activated insulin receptors. Mol Cell Biol 2007; 27 (10):3569-77.
    [94]Shpakov AO, Pertseva MN. Structural and functional characterization of insulin receptor substrate proteins and the molecular mechanisms of their interaction with insulin superfamily tyrosine kinase receptors and effector proteins. Membr Cell Biol 2000; 13 (4):455-84.
    [95]Myers MG, Jr., Sun XJ, White MF. The IRS-1 signaling system. Trends Biochem Sci 1994; 19 (7):289-93.
    [96]Saltiel AR, Pessin JE. Insulin signaling pathways in time and space. Trends Cell Biol 2002; 12 (2):65-71.
    [97]Giovannone B, Scaldaferri ML, Federici M, Porzio O, Lauro D, Fusco A, et al. Insulin receptor substrate (IRS) transduction system:distinct and overlapping signaling potential. Diabetes Metab Res Rev 2000; 16 (6):434-41.
    [98]Sun XJ, Crimmins DL, Myers MG, Jr., Miralpeix M, White MF. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol Cell Biol 1993; 13 (12):7418-28.
    [99]Heidenreich KA, Toledo SP. Insulin receptors mediate growth effects in cultured fetal neurons. I. Rapid stimulation of protein synthesis. Endocrinology 1989; 125 (3):1451-7.
    [100]Mill JF, Chao MV, Ishii DN. Insulin, insulin-like growth factor Ⅱ, and nerve growth factor effects on tubulin mRNA levels and neurite formation. Proc Natl Acad Sci U S A 1985; 82 (20):7126-30.
    [101]Puro DG, Agardh E. Insulin-mediated regulation of neuronal maturation. Science 1984; 225 (4667):1170-2.
    [102]Lam K, Carpenter CL, Ruderman NB, Friel JC, Kelly KL. The phosphatidylinositol 3-kinase serine kinase phosphorylates IRS-1. Stimulation by insulin and inhibition by Wortmannin. J Biol Chem 1994; 269 (32): 20648-52.
    [103]Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A 1998; 95 (19):11211-6.
    [104]Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 1997; 275 (5300):661-5.
    [105]Pap M, Cooper GM. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem 1998; 273 (32):19929-32.
    [106]Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91 (2):231-41.
    [107]Condorelli F, Salomoni P, Cotteret S, Cesi V, Srinivasula SM, Alnemri ES, et al. Caspase cleavage enhances the apoptosis-inducing effects of BAD. Mol Cell Biol 2001; 21 (9):3025-36.
    [108]Halestrap AP, Doran E, Gillespie JP, O'Toole A. Mitochondria and cell death. Biochem Soc Trans 2000; 28 (2):170-7.
    [109]Hirsch T, Susin SA, Marzo I, Marchetti P, Zamzami N, Kroemer G. Mitochondrial permeability transition in apoptosis and necrosis. Cell Biol Toxicol 1998;14(2):141-5.
    [110]Russo VC, Gluckman PD, Feldman EL, Werther GA. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr Rev 2005; 26 (7): 916-43.
    [111]Trejo JL, Carro E, Lopez-Lopez C, Torres-Aleman I. Role of serum insulin-like growth factor I in mammalian brain aging. Growth Horm IGF Res 2004; 14 Suppl A:S39-43.
    [112]Fernandez S, Fernandez AM, Lopez-Lopez C, Torres-Aleman I. Emerging roles of insulin-like growth factor-I in the adult brain. Growth Horm IGF Res 2007; 17 (2):89-95.
    [113]Sharma S, Prasanthi RPJ, Schommer E, Feist G, Ghribi O. Hypercholesterolemia-induced Abeta accumulation in rabbit brain is associated with alteration in IGF-1 signaling. Neurobiol Dis 2008; 32 (3):426-32.
    [114]Adlerz L, Holback S, Multhaup G, Iverfeldt K. IGF-1-induced processing of the amyloid precursor protein family is mediated by different signaling pathways. J Biol Chem 2007; 282 (14):10203-9.
    [115]Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I. Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 2002; 8 (12):1390-7.
    [116]Pratico D, Trojanowski JQ. Inflammatory hypotheses:novel mechanisms of Alzheimer's neurodegeneration and new therapeutic targets? Neurobiol Aging 2000; 21 (3):441-5; discussion 51-3.
    [117]Lee G, Newman ST, Gard DL, Band H, Panchamoorthy G. Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci 1998; 111 (Pt 21):3167-77.
    [118]Schubert M, Brazil DP, Burks DJ, Kushner JA, Ye J, Flint CL, et al. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J Neurosci 2003; 23 (18):7084-92.
    [119]Garcia-Segura LM, Diz-Chaves Y, Perez-Martin M, Darnaudery M. Estradiol, insulin-like growth factor-I and brain aging. Psychoneuroendocrinology 2007; 32 Suppl 1:S57-61.
    [120]Gasparini L, Xu H. Potential roles of insulin and IGF-1 in Alzheimer's disease. Trends Neurosci 2003; 26 (8):404-6.
    [121]Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease:link to brain reductions in acetylcholine. J Alzheimers Dis 2005; 8 (3):247-68.
    [122]Klahre U, Noguchi T, Fujioka S, Takatsuto S, Yokota T, Nomura T, et al. The Arabidopsis DIMINUTO/DWARF1 gene encodes a protein involved in steroid synthesis. Plant Cell 1998; 10 (10):1677-90.
    [123]Takahashi T, Gasch A, Nishizawa N, Chua NH. The DIMINUTO gene of Arabidopsis is involved in regulating cell elongation. Genes Dev 1995; 9 (1): 97-107.
    [124]Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, et al. The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci U S A 1999; 96 (4):1761-6.
    [125]Greeve I, Hermans-Borgmeyer I, Brellinger C, Kasper D, Gomez-Isla T, Behl C, et al. The human DIMINUTO/DWARF1 homolog seladin-1 confers resistance to Alzheimer's disease-associated neurodegeneration and oxidative stress. J Neurosci 2000; 20 (19):7345-52.
    [126]Benvenuti S, Luciani P, Vannelli GB, Gelmini S, Franceschi E, Serio M, et al. Estrogen and selective estrogen receptor modulators exert neuroprotective effects and stimulate the expression of selective Alzheimer's disease indicator-1, a recently discovered antiapoptotic gene, in human neuroblast long-term cell cultures. J Clin Endocrinol Metab 2005; 90 (3):1775-82.
    [127]Cecchi C, Rosati F, Pensalfini A, Formigli L, Nosi D, Liguri G, et al. Seladin-1/DHCR24 protects neuroblastoma cells against Abeta toxicity by increasing membrane cholesterol content. J Cell Mol Med 2008; 12 (5B): 1990-2002.
    [128]Crameri A, Biondi E, Kuehnle K, Lutjohann D, Thelen KM, Perga S, et al. The role of seladin-1/DHCR24 in cholesterol biosynthesis, APP processing and Abeta generation in vivo. EMBO J 2006; 25 (2):432-43.
    [129]Wu C, Miloslavskaya I, Demontis S, Maestro R, Galaktionov K. Regulation of cellular response to oncogenic and oxidative stress by Seladin-1. Nature 2004; 432 (7017):640-5.
    [130]Parton RQ Hancock JF. Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol 2004; 14 (3):141-7.
    [131]Park IH, Hwang EM, Hong HS, Boo JH, Oh SS, Lee J, et al. Lovastatin enhances Abeta production and senile plaque deposition in female Tg2576 mice. Neurobiol Aging 2003; 24 (5):637-43.
    [132]Wang Y, Rogers PM, Stayrook KR, Su C, Varga G, Shen Q, et al. The selective Alzheimer's disease indicator-1 gene (Seladin-1/DHCR24) is a liver X receptor target gene. Mol Pharmacol 2008; 74 (6):1716-21.
    [133]Lamsa R, Helisalmi S, Hiltunen M, Herukka SK, Tapiola T, Pirttila T, et al. The association study between DHCR24 polymorphisms and Alzheimer's disease. Am J Med Genet B Neuropsychiatr Genet 2007; 144B (7):906-10.
    [134]Xia W, Zhang J, Ostaszewski BL, Kimberly WT, Seubert P, Koo EH, et al. Presenilin 1 regulates the processing of beta-amyloid precursor protein C-terminal fragments and the generation of amyloid beta-protein in endoplasmic reticulum and Golgi. Biochemistry 1998; 37 (47):16465-71.
    [135]Skovronsky DM, Pijak DS, Doms RW, Lee VM. A distinct ER/IC gamma-secretase competes with the proteasome for cleavage of APP. Biochemistry 2000; 39 (4):810-7.
    [136]Soriano S, Chyung AS, Chen X, Stokin GB, Lee VM, Koo EH. Expression of beta-amyloid precursor protein-CD3 gamma chimeras to demonstrate the selective generation of amyloid beta(1-40) and amyloid beta(1-42) peptides within secretory and endocytic compartments. J Biol Chem 1999; 274 (45): 32295-300.
    [137]Ciana A, Balduini C, Minetti G Detergent-resistant membranes in human erythrocytes and their connection to the membrane-skeleton. J Biosci 2005; 30 (3):317-28.
    [138]Ledesma MD, Abad-Rodriguez J, Galvan C, Biondi E, Navarro P, Delacourte A, et al. Raft disorganization leads to reduced plasmin activity in Alzheimer's disease brains. EMBO Rep 2003; 4 (12):1190-6.
    [139]Abad-Rodriguez J, Ledesma MD, Craessaerts K, Perga S, Medina M, Delacourte A, et al. Neuronal membrane cholesterol loss enhances amyloid peptide generation. J Cell Biol 2004; 167 (5):953-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700