用户名: 密码: 验证码:
牛磺酸抑制心肌成纤维细胞的增殖作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心肌纤维化(MF)发生于多种心血管疾病,是许多心血管疾病中一个重要的病理改变。由于长期心肌供血不足,引起心肌组织发生营养障碍和萎缩,或大面积心肌梗死后,以至正常心肌组织结构中胶原纤维过量积聚、胶原浓度显著升高或胶原成分发生改变。现代细胞分子医学研究证实:心肌纤维化病变是众多心脏病患者共同面临的最大威胁,包括风湿性心脏病、冠状动脉硬化性心脏病和心肌炎等重大心脏疾病,都是以心肌纤维化病变为基础的,心肌纤维化不断发展会引起一系列临床症状,最终以心功能完全衰竭致患者死亡。此病理过程是心功能由代偿期向失代偿期转变的关键,其消退可恢复心肌组织和间质成分之间的平衡,使僵硬程度逐渐软化,有利于心功能的改善。故如何防治心肌纤维化是当前世界医学研究的重点和热点。
     牛磺酸是正常存在于体内的含硫氨基酸,于1827年由Tiedemann等从牛胆汁中分离提取。人体内含量丰富,主要存在于心肌,具有广泛的生物学效应。研究表明,牛磺酸在维持细胞内外渗透压平衡、调节细胞钙稳态、清除氧自由基,减轻过氧化损伤和直接膜稳定等方面发挥作用。近年来,本实验室对牛磺酸调节心血管疾病的药理作用及机制进行了初步研究,证实牛磺酸具有抑制心肌成纤维细胞的增殖及逆转心肌重塑的作用,但具体的作用机制至今尚未阐明。
     本研究分为以下几部分:首先研究牛磺酸抑制在体异丙肾上腺素(Isoprenaline,Iso)诱导MF作用的实验研究;其次研究牛磺酸抑制心肌成纤维细胞的增殖作用与PKCα、iNOS、ERK1/2和ROS等有关,再进一步研究牛磺酸逆转心肌重塑的细胞内信号转导机制。
     1、牛磺酸抑制Iso诱导MF作用的实验研究
     Wistar大鼠,体重200~250g,雌雄各半,随机分成5组:对照组、Iso模型组和Tau (60、120和240) mg·kg~(-1)·d~(-1)各剂量组。Iso组于大鼠背部的皮下注射Iso(5mg·kg~(-1)·d~(-1)),连续7d;对照组注射相同体积的生理盐水;Tau各剂量组于造模的第2d开始腹腔注射给药,每天一次,连续14d。通过检测HMI、LVMI、心肌组织Hyp的含量、MDA含量和SOD活性及免疫组织化学染色检测心肌组织中TGF-β1的表达。
     结果可见:Tau在60~240mg·kg~(-1)·d~(-1)可明显降低HMI、LVMI和心肌组织中Hyp含量;Tau60~240mg·kg~(-1)·d~(-1)组都出现MDA含量减少,SOD活性提高;不同剂量的Tau不同程度地抑制了TGF-β1表达,说明Tau能够抑制TGF-β1蛋白表达,提示Iso通过提高TGF-β1蛋白表达,进而引起心肌组织的纤维化。Tau可通过提高SOD活性,降低TGF-β1蛋白的表达,进而减轻心肌组织的纤维化。
     2、牛磺酸对myoFbs增殖的抑制作用
     观察牛磺酸(Tau)对血管紧张素II (Angiotensin II, AngII)诱导大鼠乳鼠myoFbs增殖的抑制作用,确定Tau抑制myoFbs增殖作用的有效剂量。分离出生1~3d大乳鼠myoFbs,培养72h后传代培养2-3代后随机分为:正常对照组、AngII (终浓度为10-7mol·L~(-1))模型组和Tau (120、60、30) mmol·L~(-1)组,继续培养24/48h后,观察细胞形态学的变化,应用MTT比色法检测细胞存活率、试剂盒测定细胞培养基中羟脯氨酸(I和III)含量、NO含量及iNOS的活性、ELISA检测细胞上清液中TGF-β1和CTGF的含量,荧光共聚焦检测ERK1/2核转位、PKCα膜转位和蛋白表达,Western blot检测p-ERK1/2、p-PKCα和iNOS蛋白表达。
     结果表明,与对照组比较,AngII组myoFbs存活数量明显增多,myoFbs培养液中羟脯氨酸(I和III)含量、NO含量及iNOS的活性、TGF-β1和CTGF的含量、ERK1/2核转位、PKCα膜转位和蛋白表达均增加(P<0.01);与模型组比较,Tau (120、60和30)mmol·L~(-1)组myoFbs存活数量减少(P<0.05,P<0.01),myoFbs培养液中羟脯氨酸(I和III)含量、NO含量及iNOS的活性、TGF-β1和CTGF的含量明显降低(P<0.05,P<0.01)。荧光共聚焦检测ERK1/2核转位、PKCα膜转位和蛋白表达,Western blot检测p-ERK1/2、p-PKCα和iNOS蛋白表达明显减少。流式细胞仪检测,与模型组比较,Tau (120、60、30) mmol·L~(-1)各组myoFbs的周期G0/G1的百分比明显增加,S的百分比降低。
     由以上可知,Tau能抑制AngII引起的myoFbs的增殖、减少羟脯氨酸(I和III)的生成、降低TGF-β1和CTGF的含量,此作用可能与NO、iNOS、ERK1/2、PKCα等因素有关,其中Tau在剂量为60mmol·L~(-1)时作用较为显著。
     3、Tau抑制myoFbs增殖机制的研究
     (1) Tau通过抑制p-PKCα的膜转位和表达调控myoFbs的增殖
     分离出生1~3d大乳鼠的myoFbs,培养72h后传代培养2-3代随机分为正常对照组、AngII (10-7mol·L~(-1))模型组、Tau (60mmol·L~(-1))组、D4681(0.625μg·L~(-1))组、AngII+D4681组和AngII+D4681+Tau组,继续培养24/48h后,应用MTT比色法检测细胞存活率、流式细胞仪检测细胞周期的分布、免疫细胞化学法、荧光共聚焦法和Western blot检测p-PKCα的膜转位和蛋白的表达。
     结果显示:Tau可抑制myoFbs的增殖,与D4681合用后抑制作用更加明显,并降低S期和升高G0/G1期的比例;同时Tau可抑制p-PKCα的膜转位和蛋白的表达,D4681与Tau共同使用后抑制p-PKCα膜转位和蛋白表达作用更加明显。由此可见Tau抑制myoFbs的增殖是通过抑制p-PKCα的膜转位和表达作用实现的。应用特异性PKCα抑制剂D4681可加强Tau抑制myoFbs的增殖作用。
     (2)Tau通过提高iNOS活性和NO含量抑制myoFbs的增殖
     分离出生1~3d大鼠乳鼠的myoFbs,培养72h后传代培养2-3代随机分为正常对照组、AngII (10-7mol·L~(-1))模型组、Tau (60mmol·L~(-1))组、D4681(0.625μg·L~(-1))组、D4681+AngII组、D4681+Tau+AngII、AG (10μg·L~(-1))组、AngII+AG组和AngII+AG+Tau组,继续培养24/48h后,应用MTT比色法检测细胞存活率、测定细胞培养基中iNOS活性和NO含量、并采用流式细胞仪检测细胞周期分布、应用免疫细胞化学法、荧光共聚焦和Western blot检测iNOS在胞浆的表达。
     结果显示:与模型组比较,D4681+Tau+AngII和AngII+AG+Tau组myoFbs的增殖明显减少,细胞培养液iNOS活性下降、NO含量降低(P<0.01,P<0.001),S期的百分比下降、G0/G1期的比例明显升高(P<0.05,P<0.01),iNOS在胞浆的表达明显升高。D4681+Tau+AngII组iNOS活性与Tau组比较有所升高,提示Tau可通过抑制PKCα的膜转位及表达进而提高iNOS活性,抑制myoFbs的增殖。
     (3) Tau通过抑制p-ERK1/2的核转位和表达抑制myoFbs的增殖
     分离出生1~3d大乳鼠的myoFbs,培养72h后传代培养2-3代随机分为正常对照组、AngII (10-7mol·L~(-1))模型组、Tau (60mmol·L~(-1))组、D4681(0.625μg·L~(-1))组、AngII+D4681组、AngII+D4681+Tau组、PD98059(10μmol·L~(-1))+AngII组和PD98059+Tau+Ang II组,继续培养24/48h后,应用免疫细胞化学法、荧光共聚焦和Western blot检测p-ERK1/2的核转位和表达。
     结果显示:Tau可抑制p-ERK1/2的核转位和表达,D4681与Tau共同使用后抑制p-ERK1/2的核转位和表达作用更加明显,而PD98059对p-PKCα的膜转位及表达没有影响。由此可见Tau抑制myoFbs的增殖是通过抑制p-ERK1/2的核转位和表达作用实现的。应用特异性PKCα的抑制剂D4681可加强Tau抑制p-ERK1/2的核转位和表达作用。
     (4) Tau通过ROS调控myoFbs的增殖
     研究中发现在AngII诱导myoFbs增殖中有ROS量的变化,为进一步检测Tau是否通过减少ROS的生成进而抑制myoFbs的增殖。采用体外培养myoFbs,并应用特异性抗氧化剂N-乙酰半胱氨酸(N-acetyl cysteine,NAC),检测Tau对ROS及p-PKCα的作用,并探讨其作用机制。
     分离出生1~3d大乳鼠的myoFbs,培养72h后传代培养2-3代随机分为正常对照组、AngII(10-7mol·L~(-1))模型组、Tau (30、60、120)mmol·L~(-1)组和NAC (10-4mol·L~(-1))组,继续培养24/48h后,应用MTT比色法检测细胞存活率,并采用ELISA试剂盒检测细胞培养液中·OH含量,荧光共聚焦检测ROS的表达,同时采用Western blot检测myoFbs中p-PKCα蛋白的表达。
     结果与对照组比较,AngII组myoFbs的增殖率、细胞培养液中·OH含量、myoFbs中ROS的含量和p-PKCα的表达都明显增加;应用抗氧化剂N-乙酰半胱氨酸(NAC)后,与模型组相比,Tau组和NAC组myoFbs的增殖率、细胞培养液中·OH含量、ROS的含量及p-PKCα的表达均明显降低。由此可知,Tau抑制myoFbs的增殖作用与其减少ROS的生成进而使p-PKCα的表达下降,从而启动抗心肌纤维化的作用有关。
     综上所述,Tau能抑制myoFbs的增殖,逆转心肌重塑,从而达到对心肌细胞的保护作用,其细胞内信号转导机制可能是通过激活ROS-PKCα-ERK1/2和iNOS通路,从而改变TGF-β1和CTGF的生成量而实现的。
Myocardial fibrosis (MF) occurs in a variety of cardiovascular disease, for manycardiovascular disease in an important pathological changes. As a result of long-termmyocardial blood supply, myocardial histogenesis dystrophy and atrophy, or large area aftermyocardial infarction, so that normal myocardial tissue structure of collagen fiber excessaccumulation, collagen concentration significantly increased or collagen compositionchange. Modern cell and molecular medicine research confirmed: myocardial fibrosislesions is many heart patients common biggest threats, including rheumatic heart disease,coronary heart disease and myocarditis and other major heart disease, are the basis ofmyocardial fibrosis disease, myocardial fibrosis development would cause a series ofsymptoms, and ultimately to cardiac function complete failure cause patients died. Thepathological process is cardiac function by compensatory period to decompensated phaseshift key, its extinction can restore the myocardial tissue and stroma between balance,ankylose degree gradually softening, which is beneficial to the improvement of heartfunction. So how to the prevention of myocardial fibrosis is the hot spot and focus ofmedical research.
     Taurine (Tau) is normal exist in the body of the sulfur amino acid, in1827by theTiedemann ox bile from the extraction separation. The human body rich content, mainlyexists in myocardial tissue, has extensive biological effect. Research shows that taurine canmaintain cell osmotic balance, regulating cell calcium steady state, clear oxygen freeradicals, reducing the peroxidation damage and direct membrane stability and function. Inrecent years, the laboratory of taurine regulation of cardiovascular disease pharmacologicalaction and mechanism was studied, confirmed that taurine can inhibit myocardial fibroblastproliferation and reversal myocardial remodeling effect, but the specific mechanism ofaction has not bright.
     This research is divided into three parts, first research taurine inhibiting effects ofmyocardial fibroblasts proliferation, PKC alpha, iNOS and ERK1/2, and then further studyTau reversal myocardial remodeling of intracellular signal transduction mechanism.
     1. Tau effects on inhibition proliferation of myoFbs
     Aim to observe that Tau effects on inhibition proliferation of myoFbs induced byAngiotensinII (AngII) in neonatal rats, determine the Tau inhibition myoFbs proliferationeffect of effective dose. Separation was born1~3d big lactation rats myoFbs, culture72hafter subculture2-3generations randomly divided into normal control group, AngII(10-7mol·L~(-1)) model group and Tau (120,60and30)mmol·L~(-1)group, continue to cultivate24/48h,observe the change of cell morphology, the application of MTT colorimetric method todetect cell survival, kit test cell medium hydroxyproline (I and III) content, NO content andiNOS activity, ELISA detection cell supernatant fluid of TGF-β1and CTGF content,fluorescent confocal detection ERK1/2nuclear transfer, PKCα membrane inversion andprotein expression, Western blot test p-ERK1/2, p-PKCa and iNOS protein expression.
     The results show that, compared with controls, myoFbs proliferation live quantityobviously increased in AngII group, myoFbs medium, hydroxyproline (I and III) content,NO content and iNOS activity, TGF-β1and CTGF content, ERK1/2nuclear transfer, PKCαmembrane inversion and protein expression increased (P<0.01); Compared with modelgroup, Tau (120,60and30)mmol·L~(-1)group, proliferation of myoFbs quantity reduce(P<0.05, P<0.01), myoFbs medium, hydroxyproline (I and III) content, NO content andiNOS activity, TGF-β1and CTGF was obviously lower,(P<0.05, P<0.01). Fluorescentconfocal detection ERK1/2nuclear transfer, PKCα membrane inversion and proteinexpression, Western blot testing p-ERK1/2, p-PKCα and iNOS protein expressionsignificantly reduced. Flow cytometry instrument detection Tau(120,60and30)mmol L~(-1)group myoFbs apoptosis number no significant reduce.
     Tau inhibits AngII cause myoFbs proliferation, reduce hydroxyproline (I and III)generation, reduce the TGF-β1and CTGF content, this effect may and NO, iNOS, ERK1/2,PKCα wait for an element to concern, including Tau in dose for60mmol·L~(-1)effect issignificant.
     2. Study on mechanism of Tau inhibits proliferation of myoFbs
     (1) Tau by inhibiting p-PKCα membrane inversion and expression regulation myoFbsproliferation Separation was born1~3d rat myoFbs, culture72h after subculture2-3generation randomly divided into normal control group, AngII (final concentration for10-7mol·L~(-1)) model group, Tau (120,60and30) mmol·L~(-1)group, D4681(0.625ug·L~(-1)) group,AngII+D4681group and AngII+D4681+Tau group, continue to cultivate24/48h, applicationMTT colorimetric method to detect cell survival rate, flow cytometry instrument detectioncell cycle distribution, immunocytochemistry method, fluorescent confocal method and Western blot detection p-PKCα membrane inversion and expression. The results show that itcan inhibit the proliferation myoFbs, Tau and D4681after share inhibition effect moreapparent, and reduce the proportion of S phase, rise G0/G1phase rate. At the same time Tauinhibits p-PKCα membrane inversion and expression, D4681and Tau common after useinhibition p-PKCα membrane inversion and the expression effect more apparent, thus it canbe seen that Tau can inhibit proliferation of myoFbs is through the inhibition of p-PKCαmembrane inversion and express the realization of function. Application specific PKCαinhibitor D4681can strengthen Tau effect son inhibition proliferation of myoFbs.
     (2) Tau can improve activity of iNOS and content of NO
     Separation myoFbs were born1~3d rat, myoFbs were cultured72h after subculture,2-3generation randomly divided into normal control group, AngII (10-7mol·L~(-1)) modelgroup, Tau (60mmol·L~(-1)) group, AG(10μg·L~(-1)) group, AngII+AG group and AngII+AG+Taugroup, continue to cultivate24/48h, application MTT colorimetric method to detect cellsurvival, measuring cell medium iNOS activity and NO content by flow cytometry, and thedetection instrument cell cycle distribution, application immunocytochemistry method,fluorescent confocal and Western blotting detection in the expression of iNOS cytoplasm.
     Results show that AngII+AG+Tau group myoFbs proliferation significantly reduced,cell culture fluid iNOS activity decline, NO content lower (P<0.01, P<0.001), S periodpercentage decline, G0/G1phase proportion increased significantly(P<0.05, P<0.01), and theexpression of iNOS in cytoplasm increased significantly comparison with the model group,Tau can improve iNOS activity, inhibition proliferation of myoFbs.
     (3) Tau by inhibiting p-ERK1/2nuclear transfer and expression to inhibit proliferationof myoFbs. Separation myoFbs was born1~3d rat, which were cultured72h after subculture2-3generation,then randomly divided into normal control group, AngII (10-7mol·L~(-1)) modelgroup, Tau(60mmol·L~(-1))group, D4681(0.625ug·L~(-1))group, AngII+D4681group andAngII+D4681+Tau group, continue to cultivate24/48h, application immunocytochemistrymethod, fluorescent confocal and Western blotting testing p-ERK1/2nuclear transfer andexpression. The results show that Tau inhibits p-ERK1/2nuclear transfer and expression,D4681and Tau common after use inhibition p-ERK1/2nuclear transfer and the expressioneffect more apparent, thus it can be seen myoFbs Tau inhibition of proliferation is throughthe inhibition of p-ERK1/2nuclear transfer and express the realization of function.Application specific PKCα inhibitor D4681can strengthen Tau inhibition p-ERK1/2nucleartransfer and the expression effect.
     (4) Tau regulate proliferation of myoFbs through ROS
     Research now myoFbs found AngII induced proliferation of ROS quantity changes, inorder to further testing whether Tau by reducing the generation of ROS and myoFbsinhibition of proliferation. The myoFbs were cultured in vitro, and application specificantioxidant to detect the content of ROS and the expression of p-PKCα, discuss themechanism of action. Separation myoFbs were born1~3d rat, culture72h after subculture2-3generation randomly divided into normal control group, AngII (10-7mol·L~(-1)) modelgroup, Tau (120,60and30)mmol·L~(-1)group, NAC (10-4mol·L~(-1)) and Tau+NAC group,continue to cultivate24/48h, application MTT colorimetric method to detect cell survivalrate, and use the ELISA kit to detecti content of·OH in cell medium, laser confocaldetection the expression of ROS, Western blot detection of p-PKCα expression of myoFbs.
     Results comparing with control group, AngII group myoFbs proliferation, contentof·OH in cell medium, ROS and p-PKCα expression are increased significantly;Application of antioxidant n-acetyl cysteine (NAC), compared with the model group, Taugroup and NAC group myoFbs proliferation, content of·OH in cell medium, ROS andp-PKCα expression are all decreased. Therefore, effect of Tau on inhibition of proliferationmyoFbs and reduce the generation of ROS and p-PKCα expression, which can start againstmyocardial fibrosis effect about.
     To sum up, Tau can inhibit the proliferation of myoFbs and reversal myocardialremodeling, thus to attain the myocardial cell of protection, the intracellular signaltransduction mechanism may be through the activation of PKCα-ROS, ERK1/2and iNOSpath, so as to change the TGF-β1and CTGF of generation and the realization.
引文
[1]杨世杰主编,药理学,人民卫生出版社,2005,第一版,233-235.
    [2] Kamkin A,kiseleva I,Isenberg G,etal.Cardiac fibroblast and the mchanoelectric feedbackmechanism in healthy and diseased hearts[J]. Prog Biophys Mol Biol,2003,82(1):111-122
    [3] Matthew J,Huentelman I,Justin L,etal.Protection from angiotensinII-induced cardiachypertrophy and fibrosis by systemic lentiviral delivery of ACE2in rats[J]. Experimentalphysiology,2005,1089(3):785-790.
    [4] Cohn JN, Ferrari R, Sharpe N, etal. Cardiac remoding concepts and clinical implication.A consensus paper from an international forum on cardiac remoding[J]. Am Cdl Cardiol,2004,35(3):569-582.
    [5]易春涛. TGF-β1和AngII相互作用在心肌纤维化中的意义,国外医学生理、病理科学与临床分册,2002,8(3):344-346.
    [6] Stawowy P, Margeta C, Blaschke F, et al. Protein kinase C epsilon mediates angiotensinII-induced activation of beta1-integrins in cardiac fibroblasts [J]. Cardiovasc Res,2005,67:50-59.
    [7] Laviades C, Varo N, Diez J.Transforming growth factor β1in hypertensives withcardiorenal damage[J].Hypertension,2000,36(4):517-522.
    [8] Sadoshima J, Izumo S.Molecular characterization of angiotensin II-induced hypertrophyof cardiac myocytes and hyperplasia of cardiac fibroblasts[J].Circ Res,1993,73:413-23.
    [9]王艳春.牛磺酸抑制心肌纤维化的作用及机制研究[J].吉林大学博士论文.2008,5,1.
    [10]顾玉梅,吴扬.氧化应激在心肌肥厚中的作用及其机制[J].南通大学学报(医学版),2005,25(3):233.
    [11] Engberding N, Spickemann S, Schacfer A, Wiencke A. Allopurinol attenuates leftventricular remodeling and dysfunction after experimental myocardialinfarction:a new action for an old drug[J]. J Circulation,2004,110:175-179.
    [12] Seshiah PN, WeberDS, Rocic P, et al. AngiotensinII stimulation of NAD(P)H oxidaseactivity: upstream mediators[J]. Circ Res,2002,91(5):406.
    [13] Li PF, Dietz R, Von Harsdorf R. Superoxide induces apoptosis in cardiom-yocytes, butproliferation and expression of transforming growth factor beta1in cardiac fibroblasts[J].FEBS Lett,1999,448:206-210.
    [14] Fiona See, BSC (HONS), Walter Thomas PHD, et al. p38Mitogen-Activated ProteinKinase Inhibition Improves Cardiac Function and Attenuates LeftVentricular Remodeling Following Myocardial Infarction in the Rat [J].American College of Cardiology,2004,44(8):1679-1689.
    [15] Tzu-Hurng Cheng, Pao-Yun Cheng, Neng-Lang Shih, Iuan-Bor Chen, et al. involvementof Reactive Oxygen Species in Angiotensin II-Induced Endothelin-1GeneExpression in Rat Cardiac Fibroblasts,Journal of the American College ofCardiology,2003,42(10):1845-1854.
    [16] Luo C, Guo LT. Taurine on acute cerebral ischemia neuronal apoptosis [J]. Bulletin ofChinese Pharmacology,2005,21(9):1057-1061.
    [17] Guo DS, Peng XL. The mechanism of taurine and its clinical application [J]. ChinaAnimal Husbandry and Veterinary,2007,34(10):85-87.
    [18] Huang RJ, Liu TW, Pang YS. Taurine dilated left ventricle of transforming growth factorTGF-β1expression [J]. Modern Diagnosis and Treatment,2004,15(2):83-85.
    [19] Wang T, Ye F. Effects of taurine on the development of myocardial remodeling effects[J]. Journal of Clinical Pediatrics,2005,23(2):115-116
    [20]张海燕.心肌胶原网络重构的研究进展[J].心血管病学进展,2003,24(5):359-362.
    [21]王海强,黄耀,添赵黎等.张应力对深筋膜I、III型胶原影响的实验研究[J].中国临床康复,2002,6(2):208-209.
    [22]张召才,杨英珍,陈灏珠.心肌纤维化的研究进展[J].临床心血管病杂志,2004,20(1):58-60.
    [23] Damas JK, Eiken H, Qie E[J]. Cardiovasc Res,2000,47(4):778-787.
    [24]王艳春,任旷,顾饶胜,杨世杰.越橘中原花青素抑制新生大鼠心肌成纤维细胞增殖及其作用机制[J].中草药,2009,40(8):1280-1283
    [25] Tabibzadeh S. Homeostasis of extracellular matrix by TGF-beta and lefty[J]. Frontiers inBioscience,2002,7:1231
    [26] Lopez B, Gonzalez A, Vain N, et al. Biochemical assessment of myocardial fibrosis inhypertensive heart disease[J].Hypertension,2001,38(5):1222-1226..
    [27] Kamkin A,Kiseleva I,Isenberg G,et al.Cardiac fibroblast and the mechanoelectricfeedback mechanism in healthy and diseased hearts[J].Prog Biophys MolBiol,2003,82(1):111-122.
    [28] Filex JAR,Yao S,Karl TW.Myocardial fibrosis associated with aldosterone orangiotensin II administration:attenuation by calcium channel blockade[J].Mol CellCardiol,1998,30:475-475.
    [29]郑德明,韩绍杰,白大安.丹参对自发性高血压大鼠左室肥厚及心脏局部醛固酮的作用[J].中华医学杂志,2002,11(1):22-24.
    [30] Zannad F,Dousset B,Alla F.Treatment of congestive heart failure:interfering thealdosterone-cardiac extracellular matrix relationship[J].Hypertension,2001,38(5):1227-1232.
    [31] KoboriH,LchiharaA,MiyashitsY,et al. Local rennin-angiotensin system contributes tohyperthyroidism-induced cardial hypertrophy.J Endocrinol,1999,160:43-47.
    [32] Pueyo ME,Gonzalez W,Nicoletti A, et al.AngiotensinII stimulates endothelial vascularcell Adhesion molecule-1via nuclear factor-kappa Bactivation induced by intracellularoxidative stress [J]. Arterioscler Thromb VascBiol,2000,20:645-651
    [33] Brilla C G.Aldosterone and myocardial fibrosis in heart failure. Herz,2000,25:299-306.
    [34] Laviades C,Varo N,Diez J.Transforming growth factor β in hypertensives withcardiorenal damage[J]. Hypertension,2000,36(4):517-522..
    [35] Engelmann GL, Grutkoski PS. Coordinate TGF-beta receptor gene expression during ratheart development[J]. Cell Mol Biol Res,1994,40:93-104.
    [36] Roberts AB,Roche NS,Winokur TS,Burmester JK,et al.Role of transforming growthfactor-β1in maintenance of function of cultured neonatal cardiac myocytes[J]. J ClinInvest1992,90:2056-2062.
    [37] Li G, Li RK, Mickle D, Weisel RD, et al. Elevated insulin-like growth factor-1andtransforming growth factor-β1and their receptors in patients with idiopathichypertrophic obstructive cardiomyopathy[J].Circulation,1998,98:11144-11150.
    [38] Yao J, Tomer R, Bell F, Eghbali M. Regulation of collagenase gene expression incardiac fibroblasts by transforming growth factor-β1[J]. FASEB J,1992,6:939.
    [39] Petrov W,Fagard RH,Lijnen PJ.Transforming growth factor-β1induced-differentiation ofcardiac fibroblasts to myofibroblasts is accompanied by an increase in angiotensinconverting enzyme activity[J]. J Hypertens,1999,17:518.
    [40] Kim S,Ohta K,Hamaguchi A,Yukimurai Miura K, et al. AngiotensinII induces cardiacphenotypic modulation and remodeling in vivo in rats[J].Hypertension,1995,25:1252-1259.
    [41] Yoo KH, Thornhill BA, Wolstenholme JT, Chevalier RL. Tissue-specific regulation ofgrowth factors and clustering by angiotensinII[J]. Am J Hypertens1998,11:715-722.
    [42] Campbell SE, Katwa LC. Angiotensin II stimulated expression of transf-orminggrowth factor-β1in cardiac fibroblasts and myofibroblasts[J]. Mol Cell Cardiol,1997,29:1947-1958.
    [43] Kawano H, Do YS, Kawano Y, Starnes V, et al. AngiotensinII has multiple profibroticeffects in human cardiac fibroblasts[J]. Circulation,2000,101:1130-1137.
    [44] Chen M, Lan A, Abrahamj A, et al. CTGF expression is induced by TGF-beta in cardiacfibroblasts and cardiac myocytes:a potential role in heart fibrosis[J]. J Mol Cell Cardiol,2000,32(3):1805-1819.
    [45] Iwanciw D, Rehm M, Porst M, et al. Induction of connective tissue growth factor byangiotensin II: integration of signaling pathways[J]. Arterioscler Thromb VascBiol,2003,23(4):1782-1787.
    [46] Wu HY,Tom izawa K,Oda Y. Critical role of calpain-mediated cleavage of calcineurin inexcitotoxic neurodegeneration[J]. J Biol Chem,2004,279(6):4929-4940.
    [47]刘为民,李广生,金毅.低硒低维生素E对血管活性物质的影响及其在克山病发生机制中的作用.吉林科技出版社,1997,174-199
    [48]金毅,李保玉,李广生等.硒和维生素E对冷刺激条件下大鼠心肌血管紧张素II含量的影响中国地方病防治杂志,1997,12:14-15
    [49] Takizawa T,Gu M,Chobanian AV etal. Effect of nitric oxide on DNA replicationinduced by angiotensinII in rat cardiac fibroblasts[J].Hypertension.1997,30:1035-1040.
    [50] Kim NN, Villegas S, Summerour SR,et al. Regulation of cardiac fibroblast extracellularmatrix production by bradykinin and nitric oxide[J]. J Mol Cell Cardiol.1999,31:457-466.
    [51] Wang D,Yu X,Brecher P.Nitric oxide and N-acetylcysteine inhibit the activation ofmitogen-activated protein kinases by angiotensin II in rat cardiac fibroblasts[J].J BiolChem,1998,273:33027-33034.
    [52] Gu MF, Brecher P. Nitric oxide-induced increase in p21sdi1/cip1/waf1expressionduring the cell cycle in aortic adventitial fibroblasts[J]. Arterioscler Thromb VascBiol,2000,20:27-34.
    [53] Wang D, Yu X, Cohen RA, et al. Distinct effects of N-cetylcysteine and nitric oxide onangiotensin II-induced epidermal growth factor receptor phosphorylation andintracellular Ca2+levels[J]. J Biol Chem,2000,275:12223-12230.
    [54] Funakoshi H, Kubota T, Machida Y, et al. Involvement of inducible nitric oxide synthasein cardiac dysfunction with tumor necrosis factor-alpha. Am J Physiol Heart CircPhysiol,2002,282:2159-2166.
    [55] Hughes SE.The pathology of hypertrophic cardiomyopathy[J]. Histopathology,2004,44(5):412-427.
    [56] Dana A, Skarli M, Papakrivopoulou J, et al. AdenosineA (1) receptor induced delayedpreconditioning in rabbits:induction of p38mitogen-activated protein kinase activationand Hsp27phosphorylation via a tyrosine kinase-and protein kinase C-dependentmechanism[J]. Circ Res,2000,86(9):989-997.
    [57] GurujeyalakshmiG, WangY, GiriSN. Taurine and niacin block lung injury and fibrosis bydown-regulating bleomycin-induced activation of Transcription nuclear factor-кB inmice[J]. J Pharmacol ExpTher,2000,293:82-90.
    [58] Aoki H, Richmond M, Izumo S, et al. Specific role of the extracellular signal-regulatedkinase pathway in angiotensin II-induced cardiac hypertrophy in vitro[J]. Biochem J2000,347(l):275-284.
    [59] Yamazaki T,Yazaki Y. Molecular basis of cardiac hypertrophy[J]. Kardiol,2000,89(1):1-6.
    [60] Kamkin A, Kiseleva I, Isenberg G, et al. Cardiac fibroblast and the mechanoelectricfeedback mechanism in healthy and diseased hearts[J]. Prog Biophys Mol Biol,2003,82(1):111-122.
    [61] Matthew J,Huentelman1, Justin L,et al.Protection from angiotensin II-induced cardiachypertrophy and fibrosis by systemic lentiviral delivery ofACE2in rats[J].Experimental Physiology,2005,1096(03):783–790.
    [62] Cohn JN, Ferrari R, Sharpe N, et al. Cardiac remodeling concepts and clinicalimplication.A consensus paper from an international forum on cardiac remodeling[J]. JAm Cdl Cardiol,2004;35(3):569-582.
    [63] Lents NH, Keenan SM, Bellone C, et al. Stimulation of the Raf/MEK/ERK cascade isnecessary and sufficient for activation and Thr-I60phosphorylation of anuclear-targeted CDK2[J]. J Biol Chem,2002,277(49):47469-47475.
    [64] Wang YC, Guan FY, Li H, et al. Anti-proliferation action of taurine on rat cardiacfibroblast through inhibiting protein kinase Cα expression [J]. Acta Pharm Sin,2009,44:591-596.
    [65] Gao Q, Tan J, Ma P, et al. PKC alpha affects cell cycle progression and proliferation inhuman RPE cells through the downregulation of p27kip1[J]. Mol Vis,2009,15:2683-2695
    [66] Byers HR, Boissel SJ, Tu C, et al. RNAi-mediated knockdown of protein kinase C-alphainhibits cell migration in MM-RU human metastatic melanoma cell line[J]. MelanomaRes,2010,20:171-178.
    [67] Gwak J, Jung SJ, Kang DI, et al, Stimulation of protein kinase C-alpha suppresses coloncancer cell proliferation by downregulation of beta-catenin [J]. Cell Mol Med,2009,13:2171-2180.
    [68] Wang SS, Ji YS, Li H, et al. Mechanisms of gross saponins of Tribulus terrestris viaactivating PKCε against myocardial apoptosis induced by oxidative stress [J]. ActaPharm Sin,2009,44:134-139
    [69] Simonis G, Briem SK, Schoen SP, et al. Protein kinase C in the human heart: differentialregulation of the isoforms in aortic stenosis or dilated cardiomyopathy [J]. Mol CellBiochem,2007,305:103-111.
    [70] Inagaki K, Begley R, Ikeno F, et al. Cardioprotection byepsilon-protein kinase Cactivation from ischemia: continuous delivery and antiarrhythmic effect of anepsilon-protein kinase C-activating peptide [J]. Circulation,2005,111:44-50.
    [71]董宁.卡维地洛抑制血管紧张素II诱导的心肌成纤维细胞增殖作用的研究.吉林大学硕士论文,2010,4,1
    [72]王立英,杨世杰.蛋白激酶C在心肌纤维化中的作用[J].药学学报,2010,10(12):1-6
    [73] Lee HS, Park SY, Lee HW, et al. Secretions of MMP-9by soluble glucocorticoid-induced tumor necrosis factor receptor (sGITR) mediated by protein kinase C (PKC)delta and phospholipase D (PLD) in murine macrophage [J]. Cell Biochem,2004,92:481-490.
    [74] Stawowy P, Margeta C, Blaschke F, et al. Protein kinase C epsilon mediates angiotensinII-induced activation of beta1-integrins in cardiac fibroblasts [J]. Cardiovasc Res,2005,67:50-59.
    [75] Heidkamp MC, Bayer AL, Scully BT, et al. Activation of focal adhesion kinase byprotein kinase C epsilon in neonatal rat ventricular myocytes [J]. Am J Physiol HeartCirc Physiol,2003,285:1684-1696.
    [76] Zhang S, Li H, Yang SJ. Tribulosin protects rat hearts from ischemia/reperfusion injury[J]. Acta Pharmacol Sin,2010,31:671-678.
    [77] Boyle AJ, Kelly DJ, Zhang Y, et al. Inhibition of protein kinase C reduces leftventricular fibrosis and dysfunction following myocardial infarction [J]. J Mol CellCardiol,2005,39:213-221.
    [78] Connelly KA, Kelly DJ, et al. Inhibition of protein kinase C-beta by ruboxistaurinpreserves cardiac function and reduces extracellular matrix production in diabeticcardiomyo-pathy [J]. Circ Heart Fail,2009,2:129-137.
    [79] Klein G, Schaefer A, Hilfiker-Kleiner D, et al. Increased collagen deposition anddiastolic dysfunction but preserved myocardial hypertrophy after pressure overload inmice lacking PKC epsilon [J]. Circ Res,2005,96:748-755.
    [80] Inagaki K, Koyanagi T, Berry NC, et al. Pharmacological inhibition of epsilon-proteinkinase C attenuates cardiac fibrosis and dysfunction in hypertension-induced heartfailure [J]. Hypertension,2008,51:15651569.
    [81] Zara S, Rapino M, Centurione L, et al. Inducible nitric oxide synthase-activatedmitochondrial apoptotic pathway in hypoxic and aged rat hearts [J]. Gerontology,2010,2(1):15351539..
    [82] Xu C,Lee S,Shu C,et al.Expression of of TGF-β1and-β3but not apoptosis factorsrelates to flow induced aortic enlargement [J].BMC Cardiovascular Disorders,2002,2(1):11-16
    [83] Chung HT,Pae HO,Choi BM,et al.Nitric oxide as a bioregulator of apoptosis [J].Biochem Biophys Res Commun,2001,28(5):1075-1079
    [84] Meng X, Harken AH. The interaction between HSP70and TNFa expression: a novelmechanism for protection of the myocardium against post injury depression.Shock,2002,17:345-353.
    [85] Juliann G.KIANG. Inducible heat shock protein70kD and inducible nitric oxidesynthase in hemorrhage/resuscitation-induced injury. Cell Research,2004,14(6):450-459
    [86] Bueno OF, De Windt LJ, Tymitz KM, Witt SA,Kimball TR, Klevitsky R, et al.TheMEK1–ERK1/2signaling pathway promotes compensated cardiac hypertrophy intransgenic mice[J]. EMBOJ,2000,19:6341–6350.
    [87] Choukroun G, Hajjar R, Fry S, del Monte F, Haq S, Guerrero JL, Picard M, RosenzweigA, Force T. Regulation of cardiac hypertrophy in vivo by the stress-activated proteinkinases/c-Jun NH(2)-terminal kinases[J]. J Clin Invest.1999,104(4):391-398.
    [88]Weinbrenner C, Liu GS, Cohen MV. Phosphorylation of tyrosine182of P38mitogen-activated protein kinase correlates with the protection of preconditioning in therabbit heart[J]. J Mol Cell Cardiol,1997,29(9):2383-2391.
    [89] Capano M, Crompton M. Bax translocates to mitochondria of heart cells duringsimulated ischaemia: involvement of AMP-activated and p38mitogen-activated proteinkinases[J]. Biochem J,2006,395(1):57-64.
    [90] Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, et al. MitochondrialPKCe and MAPK form signaling modules in the murine heart: enhanced mitochondrialPKCε–MAPK interactions and differential MAPK activation in PKCε-inducedcardioprotection[J]. Circ Res2002,90:390-397.
    [91] Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the humangenome[J]. Science,2002,298(5600):1912-1934
    [92] Black EJ, Walker M, Clark W, et al. Cell transformation by vJun deactivates ERK MAPkinase signalling[J]. Oncogene,2002,21(42):6540-6548.
    [93] Tang D, Wu D, Hirao A, et al. ERK activation mediates cell cycle arrest and apoptosisafter DNA damage independently of p53[J]. J Biol Chem,2002,277(15):12710-12717.
    [94] Garrington TP, Johnson GL. Organization and regulation of mitogenactivated proteinkinase signaling pathways[J]. Curr Opin Cell Biol.1999,11:211-218.
    [95] Grohe C,Kahlert LC. Angiotensin converting enzyme inhibition modulate cardiacfibroblast growth[J]. Hypertension,1998,16:377-384
    [96] Sakai H, Urasawa K, Oyama N,et al. Induction of c-fos mRNA expression by purepressure overload in cultured cardiac myocytes[J]. Int Heart J.2007,5,48(3):359-367.
    [97] Mehta PK, Griendling KK. Angiotensin II cell signaling:physiological and pathologicaleffects in the cardiovascular system[J]. Am J Physiol Cell Physiol2007,292(3):82-97
    [98] Chen K, Chen J, Li D, et al. Angiotensin II regulation of collagen type I expression incardiac fibroblasts: modulation by PPAR-gamma ligand pioglitazone. Hypertension2004,44:655-661.
    [99]顾玉梅,吴扬.氧化应激在心肌肥厚中的作用及其机制[J].南通大学学报(医学版),2005,25(3):233.
    [100] Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular andcellular mechanisms[J]. Hypertension,2003,42(6):1075.
    [101] Munzel T, HarrIson DG.Increased superoxide in heart failure [J]. Circulation,1999,100(3):216.
    [102] Vaziri ND, Wang XQ, Oveisi F, et al.Induction of oxidative stress by glutath ionedepletion cause severe hypertension in normal rats[J]. Hypertension,2000,36(1):142.
    [103] Sorescu D, Griendling KK. Reactive oxygen species, mitochondria, andNAD(P)H oxidases in the development and progression of heartfailure[J]. Congest Heart Fail,2002,8(3):132.
    [104] Giordano FJ. Oxygen,oxidative stress, hypoxia, and heart failure[J].J Clin Invest,2005,115(3):500.
    [105] Sabri A, Hughie HH, Lucchesi PA.Regulation of hypertrophic and apoptotic signalingpathways by reactive oxygen species in cardiac myocytes[J]. AntioxidRedox Signal,2003,5(6):731.
    [106] Krijnen PA, Meischl C, Visser CA, et al. NAD(P)H oxidase in the failing humanheart[J]. J Am Coll Cardiol.2003,42(12):2170.
    [107] Sorescu D,Griendling KK. Reactive Doxygen species, mitochondria and NAD(P)Hoxidases in the development and progression of heart failure [J].Congest Heart Fail,2002,8(3):132.
    [108] Azumi H, Inoue N, Ohashi Y, et al. Superoxide genetation in directional coronaryatherectomy specimens of patients with angina pectoris: important role of NAD(P)Hoxidase [J].Arterioscler Thromb Vasc Biol,2002,22(11):1838.
    [109] Seshiah PN, Weber DS, Rocic P, et al. Angiotensin II stimulation of NAD(P)H oxidaseactivity:upstream mediators[J]. Circ Res,2002,91(5):406.
    [110] Ando K. Oxidative stress[J]. Nippon Rin sho,2003,61(7):1130..
    [111] NakagamiH, Takemoto M, Liao JK. NADPH oxidase-derived superoxide anionmediates angiotensin II-induced cardiac hypertrophy[J]. J Mol Cell Cardiol,2003,35(7):851.
    [112]吴扬,刘霞.卡托普利防治心肌肥厚效应与心肌肌球蛋白重链基因表达及儿茶酚胺氧自由基代谢的关系[J].临床心血管病杂志,2003,19(7):103.
    [113] Amin JK, Xiao L, Pimentel DR, et al. Reactive oxygen species mediate alphaadrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes[J]. J MolCell Cardiol,2001,33:131.
    [114] MacCarthy PA, Grieve DJ, Li JM, et al. Impaired endothelial regulation of ventricularrelaxation in cardiac hypertrophy:role of reactive oxygen species and NADPHoxidase[J]. Circulation,2001,104(24):2967.
    [115] Shiomi T, Tsutsui H, Matsusaka H, et al. Overexpression of Glutathione PeroxidasePrevents Left Ventricular Remodeling and Failure After Myocardial Infarction in Mice[J]. Circulation,2004,109(4):544
    [116] Allen RG, Tresini M. Oxidative stress and gene regulation[J]. Free Radic Biol Med,2000,28:463.
    [117] Masutani H. Oxidative stress response and signaling in hematological malignancies andHIV infection[J].Int J Hematol,2000,71:25.
    [118] Viedt C,Soto U,Krieger-Brauer HI,etal.Endothelin-1and smooth muscle cells:inductionof jun amino-terminal kinase through an oxygen radical-sensitive mechanism[J].Arterioscler Thromb Vasc Biol,2000,20:940.
    [119] Yang CM, Chien CS, Hsiaoj LD, et al. Mitogenic effect of oxidized low densitylipoprotein on vascular smooth muscle cells mediated by activation ofRas-Raf-MEK-MAPK pathway[J]. Br J Phamacol,2000,132(7):31.
    [120] Cheng TH, Shi NL, Chen SY, Wang DL. Reactive oxygen species modulateendothelin-1-induced c-fos gene expression in cardiomyocytes [J].Cardio vasc Res,1999,41:654.
    [121] Li D, Seldeen T, Romeo F, et al. Oxidized LDL upregulates angiotensinIItype1receptor expression in cultured human coronary artery endothelial cells: The potentialrole of transcription factor NF-κB[J]. Circulation,2000,102(16):1970.
    [122] Guha M, BaiW, Nadler JL, et al. Molecular mechanisms of tumor necrosis factor alphagene expression in monocytic cells via hyperglycemia-induced oxidantstress-dependent and independent pathways [J]. J Biol Chem,2000,275(23):17728.
    [123] Sasaguri M, Noda K, Tashiiro E, et al. The regression of left ventricular-hypertrophy by cirmidapirl and the reduction of serum procollaygen of type IIIamino-terminal peptide in hypertensive patients[J].Hypertens Res,2000,23(4):317-322.
    [124] Sato A,Takane H,Saruta T.High serum level of procollagen type III aminoter-minapeptide contributes to the efficacy of spironolactore andangiotensin-convertingenzyme inhibitor therapy on left ventricular hypertrophy in essential hypertensivepatients[J].Hypertens Res,2001,24(2):99-104.
    [125] Nadal JA, Scicli GM, Carbini LA, et al. Angiotensin II stimulates migration of retinalmicrovascular pericytes:involvement of TGF-beta and PDGF-BB[J]. Am J PhysiolHeart Circ Physiol,2002,282(2):H739-748.
    [126] Devereux RB, Palmieri V, Liu JE, et al. Progressive hypertrophy regression withsustained pressure reduction in hypertension: the Losartan Intervention For EndpointReduction study[J].J Hypertension,2002,20(7):1445-1450.
    [127] Chua CC, Chua BHL, Zhao ZY, Krebs C, et al. Effect of growth factors on collagenmetabolism in cultured human heart fibroblasts[J].Connect Tissue,1991,26:271-81.
    [128] Zannad F,Alla F,Dousset B, et al. Limitation of excessive extracellular matrix turnovermay contribute to survival benefit of spironolactone therapy in patients with congestiveheart failure[J]. Circulation,2000,102(2):2700-2703.
    [129]唐忠志,郑智,唐瑛等.丹参对自发性高血压大鼠心肌纤维化的逆转作用及其机制研究[J].华中科技大学学报(医学版),2002,313(3):292-294.
    [130]陈静,许喜泳,刘淑华.银杏叶片对冠心病心绞痛患者血浆内皮素和一氧化氮含量的影响[J].数理医药学杂志,2002,15(6):517-518.
    [131]韩启德,陈维洲.肾上腺受体药物.见:韩启德,文允镒主编.血管生物学.北京:北京医科大学协和医科大学联合出版社,1997,322-341
    [132] Yamada T,Fukunami M,Ohmori M,et al.Which subgroup ofpatients with di1atedcardiomyopathy would benefit from long-term beta—blocker therapy? a hitologicviewpoint. J Am Coll Cardiol,1993,2:628-633
    [133] NwoguJ I,Geenen D,Bean M,Brenner MC,et al.Inhibition of collagen synthesiswith prolyl42hydroxy-lase inhibitor improves left ventricular functionand alters the pattern of left ventricular dilatation after myocardialinfarction[J].Circulation,2001,104(18):2216-21.
    [134] Lindsey ML, Gannon J, Aikawa M, Schoen FJ, et al. Selective matrix-metalloproteinase inhibition reduces left ventricular remodeling but does not inhibitangiogenesis after myocardial infarction[J].Circulation,2002,105(6):753-8.135] Chancey AL, Brower GL, Peterson JT, Janicki JS. Effects of matrix metalloproteinaseinhibition on ventricular remodeling due to volume overload[J].Circulation,2002105(16):1983-8.
    [136] Pu Q, Neves MF, Virdis A, Touyz RM, et al. Endothelin antagonism on aldosteroneinduced oxidative stress and vascular remodeling[J]. Hypertension,2003,42(1):49-55.
    [137] Mulder P, Boujedaini H, Richard V, Derumeaux G, et al. Selective endothelin-A versuscombined Endothelin-a/endothelin-breceptor blockade in rat chronic heartfailure[J].Circulation.2000,103(5):491-3.
    [138] Timothy C. Birdsall, ND. Therapeutic Applications of Taurine[J].Altern Med Rev1998Apr;3(2):128-36
    [139] Wang K,Yan W H,Yie F.Effects of taurine on collagen network remodeling inrenovascular hypertensive rats[J]. The Journal of Clinical Pediatrics.2005,23(2):115-6
    [140] GurujeyalakshmiG,WangY,GiriSN.Taurine and niacin block lung injury and fibrosis bydown-regulating bleomycin-induced activation of Transcription nuclear factor-кB inmice.J Pharmacol ExpTher,2000,293:82-90..[141] Schuppan D,Koda M,Bauer M,et al.Fibrosis of liver,pancreas and intestine:commonmechanismsandclear targets?[J] Acta Gastroenterol Belg,2000,Oct-Dec;63(4):366-370
    [142] Chen YX, Zhang XR, Xie WF, et al. Effects of taurine on proliferation and apoptosis ofhepatic stellate cells in vitro [J]. Hepatobiliary Pancreat Dis Int,2004,Feb;3(1):106-109
    [143] Gordon RE,Shaked AA,Solano DF.Taurine protects hamster bronchioles from acuteNO2-induced alterations. A histologic,ultrastructural, and freeze-fracturestudy.AmJPathol,1986,125:585-600.
    [144]李晶,赵丽晶,李红等.牛磺酸对原代培养新生大鼠乳鼠心肌细胞和心肌成纤维细胞的作用[J].吉林大学学报,医学版,2006,32(2):245-247.
    [145] Miachael C, Surrenti C, Milani S. Transforming growth factors beta I and beta2arediferentially expressed in fibrotic liver disease J Bone Joint Surge,1991,73A:14-18.
    [146] Amatayakul C S, Qian S W Gakenheimer K. Transforming growth factor-beta1.Selective biological activity and receptor binding in mink lungepithelial cells. Journalof Biological Chemistry,1994,269(44):276-87.
    [147] Rueperz M, Lorenzo O, Bianco-Colio L M, et al. Connective tissue growth factor is amediator of angiotensin II-induced fibrosis. Circulation,2003,10(12):1499.
    [148] Huang R J, Liu T W, Pang Y S.Influence of taurine on expression of transforminggrowth factor β1in left ventricular myocardium in rats with dilated cardiomyopathy[J].Mod Diagn Treat,2004,15(2):83-5.
    [149] Fans H, Leenen H, Rosel YN. Isoproterenol-induced cardiac hypertrophy: role ofcirculatory versus cardiac renin-angiotensin system[J].Am J Physiol Heart CircPhysiol.2001.281:H2410-H2416.
    [150] Grimm D, Holmer SR. Riegger GA.Effects of beta-receptor blockade and angiotensinIItype I receptor antagonism in Isoproterenol-induced heart failure in therat[J].Cardiovascular Pathology.1999,8(6):315-23.
    [151]符民桂,王晓红,姜志胜等.环孢素A对儿茶酚胺诱导的大鼠心肌肥大的作用[J].中华心血管病杂志,2001,29(1):41.
    [152] Dubus I, Samuel JL, Marotte F, Delcayre C, et al. Beta-adrenergic agonists stimulatethe synthesis of noncontractile but not contractile proteins in culturedmyocytes isolated from adult rat heart[J].Circ Res,1990,66:867-74.
    [153] Ocaranza MP, Diaz-Araya G, Chiong M, et al. Isoproterenol and angiotensinI-converting enzyme in lung, left ventricle, and plasma during myocardial hypertrophyand fibrosis[J].J Cardiovasc Pharma-col,2002,40(2):246.
    [154] Takemoto Y.Increased JNK, AP-1and NF-kappa B DNA-binding activities,31(11):2017.
    [155]周青,何蔚,周俐,连其深.三七总皂苷对异丙肾上腺素致大鼠心肌肥厚的保护作用[J].中药药理与临床,2005,21(4):27-29.
    [156]孙敬春,培莉.心肌细胞外基质重塑及其影响因素[J],高血压杂志,2003,11(3):200-203.
    [157]汪明慧,梁文同,曹雪滨.MAPK激酶及其在心肌肥厚中作用的研究[J].医学综述,2003,9(3):146-148.
    [158] Schaeffer HJ, Weber MJ. Mitogen-Activated ProteinKinases: Specif-icMessagesfrom Ubiquitous Messengers[J]. Mol Cell Biol1999,19(4):2435-2444.
    [159]谭子虎,涂晋文,张金凤.参麦注射液对腹主动脉缩窄大鼠心肌细胞JNK,P38MAPK蛋白表达的影响[J].中国中医急症,2006,15(11):1254.
    [160]李向东,覃数.p38MAPK在心肌肥厚中的作用机制[J].重庆医学,2007,36(14):1438-1440.
    [161] Chin BY, Mohsenin A, LiS X, et al. Stimulation of pro-αl(I) collagen by TGF-β1inmesangial cells: role of the p38MAPK pathway[J]. Am J Physiol Renal Physiol,2001,280:F495-F504.
    [162]王岚,李英.p38激活丝裂原活化蛋白激酶和转化生长因子-β1在糖尿病大鼠肾小管间质表达的动态观察[J].华北煤炭医学院学报,2007,9(3):289-291.
    [163]齐晓艳,路欣,多景华.转化生长因子β与纤维化疾病[J].医学综述,2005,11(12):1062-1064.
    [164] EghaliM, Tomek R, Sukhatme UP, et al. Differential factors of transforming growthfactor-β1and phorbol myristate acetate on cardiac fibroblasts: regulation offibrillar collaga mRNA and expression of early transcriptio-nfactors[J]. Circ Res,1991,69(2):483-490.
    [165] Yu G, Liang X, Xie X, etal. Apoptosis,m yocardial fibrosis and angiotension II in theleft ventricle hypertensive rats treated with fosinopril or losartan-[J].Chin Med.2002,115(9):1287-91.
    [166]邓长柏,杨作成.转化生长因子β1在心肌纤维化中的作用[J].医学综述,2007,10(11):662-663.
    [167]焦扬,天宇,周平安.肺痹汤对肺纤维化大鼠肺组织中p38分裂原激活蛋白酶及转化生长因子β1的影响[J]中医杂志,2008,48(3):259-261.
    [168] Sorescu D,Griendling KK, Reactive oxygen species,mitochondria and NAD(P)Hoxidases in the development and progression of heart failure [J]. Congest Heart Fail,2002,8(3):132.
    [169]付燕燕,蒲淑萍,段昌柱.周期素激酶抑制剂P27与心血管疾病[J].国外医学,临床生物化学与检验学分册,2004,25(6):522-523.
    [170] Lloyd RV, Erickson LA, Jin L,et al.p27kip1:a multifunctional cyclin-ependent kinaseinhibitor with prognostic significance in human cancers [J]. Am J Pathol,1999,154(2):313-323.
    [171] BaldinV,LukasJ,et al. cyclinDl is a nuclear protein required for cell cycleprogressioning[J].GenesDevel,1993,7:812-821.
    [172] Weinberg RA.The retinoblastoma protein and cell cycle control[J].Cell,1995,81(3):323-330.
    [173] Sherr C, Roberts JM. Inhibitors of mammalian G1cyclin dependent kinases. Genes,1995,9:1149-1163.
    [174] Button PB, Yacoub MH, Barton PJ.Cyclin-dependent kinase inhibitor expression inhuman heart failure.A comparison with fetal development [J]. Eur Heart J (Europeanheart journal.)1999, Apr,20(8):604-11.
    [175] Martin van Eickels, Hans Vetter, Christian Grohe. Angiotensin-converting enzyme(ACE) inhibition attenuates insulin-like growth factor-I (IGF-I) induced cardiacfibroblast proliferation, BritishJournal of Pharmacology2000,131:1592-1596.
    [176] Sherr CJ. Cancer cell cycles[J]. Science,1996,274(5293):1672-1677.
    [177] Philipp-Staheli J,Payne SR,Kemp CJ.p27(Kipl): regulation and function ofahaploinsufficient tumor suppressor and its misregulation in cancer[J]. Exp Cell Res,2001,264(1):148-68.
    [178] Wolf G,Wenzal UO.AngiotensinII and cell cycle regulation[J]. Hypert-ension,2004,43(4):693-698.
    [179]周秀荣,赵连友,陈永清等.IL-1B对鼠心肌成纤维细胞增殖和p27蛋白表达的影响,心脏杂志[J],2001,13(1):8-10.
    [180]许顶立,袁勇,刘伊丽等.血管紧张素II和血小板源生长因子对血管平滑肌细胞和心肌细胞细胞周期素及p27蛋白的不同影响[J].中华医学杂志,1999,79(9):657.
    [181] Rao GN. Differential regulation of p27kip1levels and CDK activities by hypertrophicand hyperplastic agents in vascular smooth muscle cells[J]. Biochimica etBiochimica Acta(BBA),1999,1448(3):525-532.
    [182] Diep QN, EI Mabrouk M. Expression of cell cycle proteins in blood vessels ofangiotensin II-infused rats: role of AT(1) receptors[J]. Hypertension,2001,37(2):604-8.
    [183] Toyoshima H, Hunter T. p27, a novel inhibitor of G1cyclin-Cdk protein kinaseactivity, is related to p21[J]. Cell,1994,78(1):67-74.
    [184]苏云明,刚宏林,王志国.血管紧张素转化酶抑制剂药理作用的研究进展[J].ChinaPharmacist,2005,8(11):950-952.
    [185] Weber KT. Fibrosis and hypertensive heart disease[J]. Curr Opin Cardiol.2000,15:264-272.
    [186] Gomes PM, Mandarim-de-Lacerda CA, Dumas HM.Stereology andimmuno-Histo-chemistry of the myocardium in experimental hypertension: long-termand low-dosage administration of inhibitor of the nitric oxide synthesis[J].Pathobiology,1999,67:26-33.
    [187] Pereira LM, Vianna GM, Mandarim-de-Lacerda CA. Morphology and stereology ofthe myocardium in hypertensive rats. Correlation with the time of nitric oxide synthesisinhibition[J]. Arq Bras Cardiol1998,70:397-402.
    [188] Moreno1IJ, Metze K, Bento AC et al. Chronic nitric oxide inhibition as a model ofhypertensive heart muscle disease[J]. Basic Res Cardiol,1996,91:248-55.
    [189] Hou J, Kato H, Cohen RA et al. Angiotensin II-induced cardiac fibrosis in the rat isincreased by chronic inhibition of nitric oxide synthase[J]. J Clin Invest1995,96:2469-77.
    [190] Wang D, Yu X, Brecher P. Nitric oxide and N-acetylcysteine inhibit the activationof mitogen-activated protein kinases by angiotensin II in rat cardiacfibroblasts.[J]J Biol Chem.1998,273:33027-33034.
    [191] Gu MF, Brecher P. Nitric oxide-induced increase in p21sidl/cipl/wafl expressionduring the cell cycle in aortic adventitial fibroblasts[J]. Arterioscler Thromb VascBiol.2000,20:27-34.
    [192] Salo T, Oikarinen KS, Oikarinen AI. Effect of phenytonin and nifedipine on collagengene expression in human gingival fibroblasts[J]. J Oral Pathol Med,1990,19:404-407.
    [193] Wang D, Yu X, Cohen RA et al. Distinct effects of N-acetylcysteine and nitric oxideon angiotensinII-induced epidermal growth factor receptor phosphorylation andintracellular Ca2+levels[J]. J Biol Chem.2000,275:12223-12230.
    [194] Owens MW, Milligan SA, Jourd'heuil D et al. Effects of reactive metabolites of oxygenand nitrogen on gelatinase A activity[J]. Am J Physiol.1997,273:L445-L450.
    [195] Chatziantoniou C, Pauti MD, Pinet F, et al. Regulation of renin release is impaired afternitric oxide inhibition[J]. Kidney Int.1996,49:626-633.
    [196]孙红霞.依那普利抗心肌纤维化作用及分子机制研究.吉林大学博士论文,2008,4,1.
    [197]王艳春,李红,杨世杰.牛磺酸对心肌成纤维细胞细胞周期的影响及其机制的研究[J].中国药理学通报,2007,23:1193-1197.
    [198]王艳春,关凤英,李红,杨世杰.牛磺酸通过抑制PKCα抗心肌成纤维细胞增殖的作用[J].药学学报,2009,44(6):591-595.
    [199]张爽.蒺藜皂苷单体B对心肌缺血再灌注损伤的保护作用及机制研究.吉林大学博士论文,2011,3,1.
    [200]邢玮.心肌细胞内ROS(活性氧簇)和炎症因子与高血压性心肌肥厚关系研究.中国医科大学硕士论文.2009,9,1.
    [201]张海啸.大蒜素对左室重构和心肌纤维化的影响及机理研究.北京中医药大学博士论文.2007,6,1.
    [202]周艳芳.苦参碱抑制AngII诱导的心肌成纤维细胞增殖的作用及其机制.武汉大学硕士论文,2004,4,1.
    [203]王艳春,李红,杨世杰.牛磺酸对新生大鼠心肌成纤维细胞一氧化氮系统的影响[J].中国生物制品学杂志,2008,21(1):8-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700