用户名: 密码: 验证码:
介观化学体系中涨落的作用机制与规律的研究:非高斯非马尔科夫效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着纳米技术和生命科学的发展,介观体系的理论与实验研究已成为科学技术发展的前沿领域。介观尺度上的化学反应可以用离散的随机过程描述,涨落是其内禀属性。按照统计力学的基本原理,介观化学反应体系中的涨落可以达到相当显著的水平,会对体系的统计力学性质产生明显的影响。因而对于介观化学体系中涨落作用机制与规律的研究是目前统计物理领域重要的前沿科学问题之一。
     对于真实的介观化学体系而言,由于其本身的复杂性,涨落的作用会随着体系内部机制的差异表现出不同的特性。要想获得对涨落作用的机理上的认识,就必须了解体系的复杂性与涨落之间的内在联系,并深入研究这些复杂因素的特征,机理和调控作用。在本论文中,我们着重介绍了介观化学体系中与涨落作用相关的两类重要机制:
     介观化学体系中的非高斯效应
     在涨落的作用下,体系的非线性动力学行为会发生显著的改变。以往对涨落效应的理论研究认为涨落的分布满足高斯分布,然而,实际体系的涨落分布通常会对高斯分布有较大偏离。对于非高斯涨落效应的研究近年来吸引了人们的广泛关注,研究的对象涉及非线性动力学的很多领域。但是在一类重要的化学振荡体系——Hopf分岔体系中,非高斯涨落的效应尚未得到系统的研究。在本论文中,我们考察了涨落的非高斯效应在Hopf分岔体系中对噪声诱导振荡行为的调控作用,数值模拟的结果表明非高斯效应会对噪声诱导振荡的规则性产生非平凡的作用,并且涨落的分布和时间相关性在调节噪声诱导振荡的时间行为上存在着密切的联系。利用随机范式理论我们成功的对这一现象的内在机理进行了解释。
     介观化学体系中的非马尔科夫效应
     近十年来,随着科学技术的发展,人们对介观尺度下生命体系的结构与功能有了越来越多的认识。由于生物体内化学反应过程的随机性与复杂性,其非马尔科夫效应不可避免。一方面,非马尔科夫效应会与体系中的涨落效应相互作用,产生新的有趣的现象;另一方面,非马尔科夫效应本身也会对体系的动力学行为产生显著影响。在本论文中,我们以生理时钟体系为例,利用数值模拟及随机范式分析方法,研究了内涨落与非马尔科夫效应在基因调控过程中的协同效应。我们发现内涨落可以增强体系对非马尔科夫效应的鲁棒性,且随着控制参量的变化,这种鲁棒性会呈现出不同的变化趋势。此外,我们还以基因开关体系为研究对象,考察了非马尔科夫效应对基因网络稳定性的影响。结果表明,非马尔科夫效应不仅可以显著改变基因开关的稳定性,而且会对内涨落作用下稳态之间转变过程的具体动力学性质产生不可忽略的作用。
In recent years, theoretical and experimental studies of mesoscopic systems have become the frontier of science development. In mesoscopic scale, the chemical reactions could be described as discrete stochastic processes and the fluctuation is the intrinsic property. The principal of statistic mechanics indicates that the fluctuation in mesoscopic chemical system is so significant that it will affect the dynamics of the system dramatically. By far, study on the effect of fluctuation in mesoscopic systems has become an important issue for statistic mechanics. It is noted that mesoscopic chemical systems exhibit quite different phenomena under the influence of fluctuation due to the complexity of their intrinsic dynamical features. Therefore, study of the character, mechanism and regulation of these complex factors and the interaction between the complex dynamical behaviors and the fluctuation in the system is crucial for getting an insight to the underlying mechanism of the phenomena induced by fluctuation. In this thesis, we have studied the following two kinds of complex dynamical features in mesoscopic systems which are related with fluctuation:
     The non-Gaussian behavior
     Fluctuation plays an important role in affecting the non-linear dynamical behaviors of the mesoscopic system. Former works on the effect of fluctuation assume that the fluctuation obeys Gaussian distribution. However, in real physical and chemical systems, the fluctuation constantly exhibits non-Gaussian behavior. The effect of such non-Gaussian fluctuation has drawn great interests in recent years and plenty of interesting features have been uncovered. Nevertheless, the effect of non-Gaussian fluctuation on the oscillation behavior in chemical systems with Hopf bifurcation has not been studied yet. In this thesis, we have investigated the effect of non-Gaussian fluctuation on the noise induced oscillation in the vicinity of Hopf bifurcation. It is found that the non-Gaussian behavior of the fluctuation could induce nontrivial effect on the regularity of the noise induced oscillation. We also found that the correlation time and the distribution of the fluctuation work cooperatively to tune the oscillation behavior. By performing stochastic normal form analysis, we illuminate the underlying mechanism of such phenomenon.
     The non-Markovian behavior
     In the last decade, with the development of life science, several interesting characters of the structures and functions in living organism have been uncovered. It is demonstrated that the non-Markovian behavior induced by the high degree of complexity during the gene expression process is inevitable in vivo. On one hand, such non-Markovian behavior may interact with the internal fluctuation and trigger many nontrivial dynamical phenomena. On the other hand, the non-Markovian behavior itself could significantly affect the dynamics of mesoscopic chemical systems. In this thesis, we have studied the cooperative effect of internal noise and the non-Markovian behavior in gene regulatory process by using numerical simulation together with stochastic normal form analysis. It is found that internal noise could enhance the robustness of system to non-Markovian behavior and such robustness shows different dependence on the synthetic and degradation rate of the protein. We also study the effect of non-Markovian behavior on the stability of a genetic toggle switch. The results indicate that the non-Markovian behavior could not only affect the stability of the bistable switch, but also the dynamics of the transition process.
引文
1. Hasty, J., Noise-based switches and amplifiers for gene expression. Proceedings of the National Academy of Sciences, 2000. 97(5): p. 2075-2080.
    2. McAdams, H.H. and A. Arkin, Stochastic mechanisms in gene expression. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(3): p. 814-819.
    3. Morton-Firth, C.J. and D. Bray, Predicting temporal fluctuations in an intracellular signalling pathway. Journal of Theoretical Biology, 1998. 192(1): p. 117-128.
    4. Qian, H., Concentration fluctuations in a mesoscopic oscillating chemical reaction system. Proceedings of the National Academy of Sciences, 2002. 99(16): p. 10376-10381.
    5. Raser, J.M. and E.K. O'Shea, Noise in gene expression: Origins, consequences, and control. Science, 2005. 309(5743): p. 2010-2013.
    6. Thattai, M., Intrinsic noise in gene regulatory networks. Proceedings of the National Academy of Sciences, 2001. 98(15): p. 8614-8619.
    7. Rao, C.V., D.M. Wolf, and A.P. Arkin, Control, exploitation and tolerance of intracellular noise. Nature, 2002. 420(6912): p. 231-237.
    8. Blake, W.J., et al., Noise in eukaryotic gene expression. Nature, 2003. 422(6932): p. 633-637.
    9. Paulsson, J., Summing up the noise in gene networks. Nature, 2004. 427(6973): p. 415-418.
    10. Shuai, J.W. and P. Jung, Optimal intracellular calcium signaling. Physical Review Letters, 2002. 88(6): p. 068102.
    11. Shuai, J.W. and P. Jung, Optimal ion channel clustering for intracellular calcium signaling. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(2): p. 506-510.
    12. Gardiner, C.W., Handbook of Stochastic Methods for physics, chemistry, and the natural science. 1983, Berlin: Springer-Verlag.
    13. Kampen, N.G., Stochastic Processes in Physics and Chemistry. 1987, Amsterdam North-Holland.
    14. D. T. Gillespie, Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. , 1977. 81: p. 2340.
    15. Gillespie, D.T., General Method for Numerically Simulating Stochastic Time Evolution of Coupled Chemical-Reactions. Journal of Computational Physics, 1976. 22(4): p. 403-434.
    16. Gillespie, D.T., The chemical Langevin equation. Journal of Chemical Physics, 2000. 113(1): p. 297-306.
    17. Gillespie, D.T., Approximate accelerated stochastic simulation of chemically reacting systems. Journal of Chemical Physics, 2001. 115(4): p. 1716-1733.
    18. Elowitz, M.B., et al., Stochastic gene expression in a single cell. Science, 2002. 297(5584): p. 1183-1186.
    19. Tian, T.H. and K. Burrage, Binomial leap methods for simulating stochastic chemical kinetics. Journal of Chemical Physics, 2004. 121(21): p. 10356-10364.
    20. Haseltine, E.L. and J.B. Rawlings, Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. Journal of Chemical Physics, 2002. 117(15): p. 6959-6969.
    21. Burrage, K., T.H. Tian, and P. Burrage, A multi-scaled approach for simulating chemical reaction systems. Progress in Biophysics & Molecular Biology, 2004. 85(2-3): p. 217-234.
    22. Hirata, H., et al., Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science, 2002. 298(5594): p. 840-843.
    23. Lewis, J., Autoinhibition with transcriptional delay: A simple mechanism for the zebrafish somitogenesis oscillator. Current Biology, 2003. 13(16): p. 1398-1408.
    24. Ribeiro, A.S. and J. Lloyd-Price, SGN Sim, a stochastic genetic networks simulator. Bioinformatics, 2007. 23(6): p. 777-779.
    25. Roussel, M.R. and R. Zhu, Validation of an algorithm for delay stochastic simulation of transcription and translation in prokaryotic gene expression. Physical Biology, 2006. 3(4): p. 274-284.
    26. Bratsun, D., et al., Delay-induced stochastic oscillations in gene regulation. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(41): p. 14593-14598.
    27. Gibson, M.A. and J. Bruck, Efficient exact stochastic simulation of chemical systems with many species and many channels. Journal of Physical Chemistry A, 2000. 104(9): p. 1876-1889.
    28. Tian, T.H., et al., Stochastic delay differential equations for genetic regulatory networks. Journal of Computational and Applied Mathematics, 2007. 205(2): p. 696-707.
    29. Bolhuis, P.G., et al., Transition path sampling: Throwing ropes over rough mountain passes, in the dark. Annual Review of Physical Chemistry, 2002. 53: p. 291-318.
    30. Dellago, C. and P.G. Bolhuis, Transition path sampling simulations of biological systems. Atomistic Approaches in Modern Biology: From Quantum Chemistry to Molecular Simulations, 2007. 268: p. 291-317.
    31. Dellago, C., et al., Transition path sampling and the calculation of rate constants. Journal of Chemical Physics, 1998. 108(5): p. 1964-1977.
    32. Dellago, C., P.G. Bolhuis, and P.L. Geissler, Transition path sampling. Advances in Chemical Physics, Vol 123, 2002. 123: p. 1-78.
    33. van Erp, T.S. and P.G. Bolhuis, Elaborating transition interface sampling methods. Journal of Computational Physics, 2005. 205(1): p. 157-181.
    34. van Erp, T.S., D. Moroni, and P.G. Bolhuis, A novel path sampling method for the calculation of rate constants. Journal of Chemical Physics, 2003. 118(17): p. 7762-7774.
    35. Allen, R.J., D. Frenkel, and P.R. ten Wolde, Forward flux sampling-type schemes for simulating rare events: Efficiency analysis. Journal of Chemical Physics, 2006. 124(19): p. 194111.
    36. Allen, R.J., D. Frenkel, and P.R. ten Wolde, Simulating rare events in equilibrium or nonequilibrium stochastic systems. Journal of Chemical Physics, 2006. 124(2): p. 024102.
    37. Allen, R.J., et al., Homogeneous nucleation under shear in a two-dimensional Ising model: Cluster growth, coalescence, and breakup. Journal of Chemical Physics, 2008. 129(13): p. 134704.
    38. Allen, R.J., C. Valeriani, and P.R. ten Wolde, Forward flux sampling for rare event simulations. Journal of Physics-Condensed Matter, 2009. 21(46): p. 463102.
    39. Allen, R.J., P.B. Warren, and P.R. ten Wolde, Sampling rare switching events in biochemical networks. Physical Review Letters, 2005. 94(1): p. 118104.
    40. Borrero, E.E. and F.A. Escobedo, Reaction coordinates and transition pathways of rare events via forward flux sampling. Journal of Chemical Physics, 2007. 127(16): p. 164101.
    41. Valeriani, C., et al., Computing stationary distributions in equilibrium and nonequilibrium systems with forward flux sampling. Journal of Chemical Physics, 2007. 127(11): p. 114109.
    42. Morelli, M.J., et al., Reaction coordinates for the flipping of genetic switches. Biophysical Journal, 2008. 94(9): p. 3413-3423.
    43. Juan, M., Z.H. Hou, and H.W. Xin, Theoretical study on the effects of internal noise for rate oscillations during CO oxidation on platinum(110) surfaces. Journal of Physical Chemistry A, 2007. 111(45): p. 11500-11505.
    44. Hou, Z.H., Two system-size-resonance behaviors for calcium signaling: For optimal cell size and for optimal network size. Physical Review E, 2006. 74(3): p. 031901.
    45. Wang, Z.W., Z.H. Hou, and H.W. Xin, Internal noise stochastic resonance of synthetic gene network. Chemical Physics Letters, 2005. 401(1-3): p. 307-311.
    46. Wang, M.S., Z.H. Hou, and H.W. Xin, Internal noise-enhanced phase synchronization of coupled chemical chaotic oscillators. Journal of Physics a-Mathematical and General, 2005. 38(1): p. 145-152.
    47. Hou, Z.H., T. Rao, and H. Xin, Effects of internal noise for rate oscillations during CO oxidation on platinum surfaces. Journal of Chemical Physics, 2005. 122(13): p. 134708.
    48. Gong, Y.B., Z.H. Hou, and H.W. Xin, Internal noise stochastic resonance in NO reduction by CO on platinum surfaces. Journal of Physical Chemistry A, 2005. 109(12): p. 2741-2745.
    49. Wang, M.S., Z.H. Hou, and H.W. Xin, Double-system-size resonance for spiking activity of coupled Hodgkin-Huxley neurons. Chemphyschem, 2004. 5(10): p. 1602-1605.
    50. Hou, Z.H. and H.W. Xin, Optimal system size for mesoscopic chemical oscillation. Chemphyschem, 2004. 5(3): p. 407-410.
    51. Gong, Y.B., Z.H. Hou, and H.W. Xin, Optimal particle size for reaction rate oscillation in CO oxidation on nanometer-sized palladium particles. Journal of Physical Chemistry B, 2004. 108(46): p. 17796-17799.
    52. Hou, Z.H. and H.W. Xin, Internal noise stochastic resonance in a circadian clock system. Journal of Chemical Physics, 2003. 119(22): p. 11508-11512.
    53. Freidlin, A.D.W.a.M.I., Random Perturbations of Dynamical Systems. 1998, New York: Springer.
    54. Arnold, L., N.S. Namachchivaya, and K.R. SchenkHoppe, Toward an understanding of stochastic Hopf bifurcation: A case study. International Journal of Bifurcation and Chaos, 1996. 6(11): p. 1947-1975.
    55. Spanos, J.B.R.a.P.D., Stochastic averaging: An approximate method of solving random vibration problems. Int. J. Non-linear. Mech, 1986. 21: p. 111-134.
    56. Seydel, R., Practical Bifurcation and Stability Analysis: From Equilibrium to Chaos. Second Edition ed. 1994, New York: Springer-Verlag.
    57. J. Guckenheimer, P.H., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vertor Fields. 1983, New York: Springer-Verlag.
    58. Gardiner, C.W., Handbook of Stochastic Methods for Physics,Chemistry and the Natural Sciences,. 1983, Heidelberg: Springer.
    59. Ma, J., Z.H. Hou, and H.W. Xin, Control coherence resonance by noise recycling. European Physical Journal B, 2009. 69(1): p. 101-107.
    60. Ma, J., et al., Coherence resonance induced by colored noise near Hopf bifurcation. Chaos, 2008. 18(4): p. 043116.
    61. Xiao, T.J., et al., Effects of internal noise in mesoscopic chemical systems near Hopf bifurcation. New Journal of Physics, 2007. 9: p. 403.
    62. Hou, Z.H., T.J. Xiao, and H.W. Xin, Internal noise coherent resonance for mesoscopic chemical oscillations: A fundamental study. Chemphyschem, 2006. 7(7): p. 1520-1524.
    63. McAdams, H.H. and A. Arkin, It's a noisy business! Genetic regulation at the nanomolar scale. Trends in Genetics, 1999. 15(2): p. 65-69.
    64. Sachs, C., et al., Spatiotemporal self-organization in a surface reaction: From the atomic to the mesoscopic scale. Science, 2001. 293(5535): p. 1635-1638.
    65. Peskov, N.V., M.M. Slinko, and N.I. Jaeger, Stochastic model of reaction rate oscillations in the CO oxidation on nm-sized palladium particles. Journal of Chemical Physics, 2002. 116(5): p. 2098-2106.
    66. Zhang, J.Q., Z.H. Hou, and H.W. Xin, System-size biresonance for intracellular calcium signaling. Chemphyschem, 2004. 5(7): p. 1041-1045.
    67.胡岗,随机力与非线性系统. 1994:上海科技教育出版社.
    68. Jung, P., et al., Thermal activation by power-limited coloured noise. New Journal of Physics, 2005. 7: p. 17.
    69. Pikovsky, A.S. and J. Kurths, Coherence resonance in a noise-driven excitable system. Physical Review Letters, 1997. 78(5): p. 775-778.
    70. Nozaki, D., K. Nakazawa, and Y. Yamamoto, Supraspinal effects on the fractal correlation in human H-reflex. Experimental Brain Research, 1996. 112(1): p. 112-118.
    71. Soma, R., et al., 1/f noise outperforms white noise in sensitizing baroreflex function in the human brain. Physical Review Letters, 2003. 91(7): p. 078101.
    72. Nozaki, D., et al., Effects of colored noise on stochastic resonance in sensory neurons. Physical Review Letters, 1999. 82(11): p. 2402-2405.
    73. Zhang, L., A.G. Song, and J. He, Logic signals driven stochastic resonance in bistable dynamics subjected to 1/f noise floor. The European Physical Journal B, 2011. 80(2): p. 147-153.
    74. Cáceres, M.O., Non-Markovian processes with long-range correlations: fractal dimension analysis. Brazilian Journal of Physics, 1999. 29(1).
    75. Plastino, A.R. and A. Plastino, Tsallis Entropy, Ehrenfest Theorem and Information-Theory. Physics Letters A, 1993. 177(3): p. 177-179.
    76. Tsallis, C., Possible generalization of Boltzmann-Gibbs statistics Journal of Statistical Physics, 1988. 52: p. 479-487.
    77. Tsallis, C., A. Plastino, and W.M. Zheng, Power-law sensitivity to initial conditions—New entropic representation. Chaos, Solitons & Fractals, 1997. 8: p. 885-891.
    78. Curado, E.M.F. and C. Tsallis, Generalized Statistical-Mechanics - Connection with Thermodynamics. Journal of Physics a-Mathematical and General, 1991. 24(2): p. L69-L72.
    79. Baldovin, F. and A. Robledo, Nonextensive Pesin identity: exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map. Phys. Rev. E 2004. 69: p. 045202.
    80. Lyra, M.L. and C. Tsallis, Nonextensivity and multifractality in low-dimensional dissipative systems. Physical Review Letters, 1998. 80(1): p. 53-56.
    81. Wang, Q.P.A. and A. LeMehaute, On the generalized distribution functions of quantum gases. Physics Letters A, 1997. 235(3): p. 222-226.
    82. Tsallis, C., et al., Statistical-Mechanical Foundation of the Ubiquity of Lévy Distributions in Nature. Phys. Rev. Lett. , 1995. 75: p. 3589-3593.
    83. Castro, F.J., et al., Experimental evidence of stochastic resonance without tuning due to non-Gaussian noises. Physical Review E, 2001. 6405(5): p. 051105.
    84. Fuentes, M.A., R. Toral, and H.S. Wio, Enhancement of stochastic resonance: the role of non Gaussian noises. Physica a-Statistical Mechanics and Its Applications, 2001. 295(1-2): p. 114-122.
    85. Fuentes, M.A., H.S. Wio, and R. Toral, Effective Markovian approximation for non-Gaussian noises: a path integral approach. Physica a-Statistical Mechanics and Its Applications, 2002. 303(1-2): p. 91-104.
    86. Fuentes, M.A., et al., Stochastic resonance in bistable and excitable systems: Effect of non-Gaussian noises. Fluctuation and Noise Letters, 2003. 3(4): p. L365-L371.
    87. Wio, H.S. and R. Toral, Effect of non-Gaussian noise sources in a noise-induced transition. Physica D-Nonlinear Phenomena, 2004. 193(1-4): p. 161-168.
    88. Bouzat, S. and H. Wio, Current and efficiency enhancement in Brownian motors driven by non Gaussian noises. European Physical Journal B, 2004. 41(1): p. 97-105.
    89. Bouzat, S. and H.S. Wio, New aspects on current enhancement in Brownian motors driven by non-Gaussian noises. Physica a-Statistical Mechanics and Its Applications, 2005. 351(1): p. 69-78.
    90. Goswami, G., et al., Colored multiplicative and additive non-Gaussian noise-driven dynamical system: Mean first passage time. Physica a-Statistical Mechanics and Its Applications, 2007. 374(2): p. 549-558.
    91. Majee, P., G. Goswami, and B.C. Bag, Colored non-Gaussian noise induced resonant activation. Chemical Physics Letters, 2005. 416(4-6): p. 256-260.
    92. Mangioni, S.E. and H.S. Wio, A random walker on a ratchet potential: effect of a non Gaussian noise. European Physical Journal B, 2008. 61(1): p. 67-73.
    93. Wu, D., X.Q. Luo, and S.Q. Zhu, Stochastic system with coupling between non-Gaussian and Gaussian noise terms. Physica a-Statistical Mechanics and Its Applications, 2007. 373: p. 203-214.
    94. Wu, D. and S.Q. Zhu, Stochastic resonance in a bistable system with time-delayed feedback and non-Gaussian noise. Physics Letters A, 2007. 363(3): p. 202-212.
    95. Gong, Y.B., Y.H. Xie, and Y.H. Hao, Coherence resonance induced by the deviation of non-Gaussian noise in coupled Hodgkin-Huxley neurons. Journal of Chemical Physics, 2009. 130(16): p. 165106.
    96. Gong, Y.B., Y.H. Xie, and Y.H. Hao, Coherence resonance induced by non-Gaussian noise in a deterministic Hodgkin-Huxley neuron. Physica a-Statistical Mechanics and Its Applications, 2009. 388(18): p. 3759-3764.
    97. Tirapegui, P.H.C.a.C.E.a.E., Normal form of a Hopf bifurcation with noise. Phys. Lett. A, 1985. 111: p. 277-282.
    98. Arnold, L. and P. Imkeller, Normal forms for stochastic differential equations. Probability Theory and Related Fields, 1998. 110(4): p. 559-588.
    99. Arnold, L. and K.D. Xu, Normal Forms for Random Differential-Equations. Journal of Differential Equations, 1995. 116(2): p. 484-503.
    100. Roberts, A.J., Normal form transforms separate slow and fast modes in stochastic dynamicalsystems. Physica a-Statistical Mechanics and Its Applications, 2008. 387(1): p. 12-38.
    101.陆启韶,分岔与奇异性. 1995:上海科技教育出版社.
    102. Francois, P. and V. Hakim, Design of genetic networks with specified functions by evolution in silico. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(2): p. 580-585.
    103. Gardner, T.S., C.R. Cantor, and J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature, 2000. 403(6767): p. 339-342.
    104. Leloup, J.C. and A. Goldbeter, A model for circadian rhythms in Drosophila incorporating the formation of a complex between the PER and TIM proteins. Journal of Biological Rhythms, 1998. 13(1): p. 70-87.
    105. Kobayashi, T., L.N. Chen, and K. Aihara, Modeling genetic switches with positive feedback loops. Journal of Theoretical Biology, 2003. 221(3): p. 379-399.
    106. Elowitz, M.B. and S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature, 2000. 403(6767): p. 335-338.
    107. Fung, E., et al., A synthetic gene-metabolic oscillator. Nature, 2005. 435(7038): p. 118-122.
    108. Xiong, W. and J.E. Ferrell, A positive-feedback-based bistable 'memory module' that governs a cell fate decision. Nature, 2003. 426(6965): p. 460-465.
    109. Leloup, J.C. and A. Goldbeter, Toward a detailed computational model for the mammalian circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(12): p. 7051-7056.
    110. Wagemakers, A., et al., Synchronization of electronic genetic networks. Chaos, 2006. 16(1): p. 013127.
    111. L.Stryer, Biochemistry. 3rd ed. 1988, New York: W H Freeman.
    112. Yu, J., et al., Probing gene expression in live cells, one protein molecule at a time. Science, 2006. 311(5767): p. 1600-1603.
    113. Levchenko, I., et al., A specificity-enhancing factor for the ClpXP degradation machine. Science, 2000. 289(5488): p. 2354-2356.
    114. Talora, C., et al., Role of a white collar-1-white collar-2 complex in blue-light signal transduction. Embo Journal, 1999. 18(18): p. 4961-4968.
    115. Denault, D.L., J.J. Loros, and J.C. Dunlap, WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. Embo Journal, 2001. 20(1-2): p. 109-117.
    116. Sriram, K. and M.S. Gopinathan, A two variable delay model for the circadian rhythm of Neurospora crassa. Journal of Theoretical Biology, 2004. 231(1): p. 23-38.
    117. Smolen, P., D.A. Baxter, and J.H. Byrne, Reduced Models of the Circadian Oscillators in Neurospora crassa and Drosophila melanogaster Illustrate Mechanistic Similarities. Omics-a Journal of Integrative Biology, 2003. 7: p. 337-354.
    118. Buchler, N.E., U. Gerland, and T. Hwa, Nonlinear protein degradation and the function of genetic circuits. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(27): p. 9559-9564.
    119. Vilar, J.M.G., et al., Mechanisms of noise-resistance in genetic oscillators. Proceedings of the National Academy of Sciences of the United States of America, 2002. 99(9): p. 5988-5992.
    120. Maamar, H., A. Raj, and D. Dubnau, Noise in gene expression determines cell fate in Bacillus subtilis. Science, 2007. 317(5837): p. 526-529.
    121. Ji, L., et al., Noise helped manifestation of intrinsic frequency: A case study in the mesoscopic hormone signaling system. Progress in Natural Science, 2009. 19(10): p. 1209-1214.
    122. Li, Q.S. and X.F. Lang, Internal noise-sustained circadian rhythms in a Drosophila model. Biophysical Journal, 2008. 94(6): p. 1983-1994.
    123. Li, Q.S. and H.Y. Li, Internal noise-driven circadian oscillator in Drosophila. Biophysical Chemistry, 2009. 145(2-3): p. 57-63.
    124. Harmer, S.L., S. Panda, and S.A. Kay, Molecular bases of circadian rhythms. Annual Review of Cell and Developmental Biology, 2001. 17: p. 215-253.
    125. Crosthwaite, S.K., J.C. Dunlap, and J.J. Loros, Neurospora wc-1 and wc-2: Transcription, photoresponses, and the origins of circadian rhythmicity. Science, 1997. 276(5313): p. 763-769.
    126. Merrow, M.W., N.Y. Garceau, and J.C. Dunlap, Dissection of a circadian oscillation into discrete domains. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(8): p. 3877-3882.
    127. Golden, S.S., C.H. Johnson, and T. Kondo, The cyanobacterial circadian system: a clock apart. Current Opinion in Microbiology, 1998. 1(6): p. 669-673.
    128. Darlington, T.K., et al., Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science, 1998. 280(5369): p. 1599-1603.
    129. Scheper, T.O., et al., A mathematical model for the intracellular circadian rhythm generator. Journal of Neuroscience, 1999. 19(1): p. 40-47.
    130. Lema, M.A., D.A. Golombek, and J. Echave, Delay model of the circadian pacemaker. Journal of Theoretical Biology, 2000. 204(4): p. 565-573.
    131. Smolen, P., D.A. Baxter, and J.H. Byrne, Modeling circadian oscillations with interlocking positive and negative feedback loops. Journal of Neuroscience, 2001. 21(17): p. 6644-6656.
    132. Smolen, P., D.A. Baxter, and J.H. Byrne, A reduced model clarifies the role of feedback loops and time delays in the Drosophila circadian oscillator. Biophysical Journal, 2002. 83(5): p. 2349-2359.
    133. Hale, J.K. and S.M.V. Lunel, Introduction to Functional Differential Equations. 1993, New York: Springer.
    134. Amann, A., E. Scholl, and W. Just, Some basic remarks on eigenmode expansions of time-delay dynamics. Physica a-Statistical Mechanics and Its Applications, 2007. 373: p. 191-202.
    135. Smolen, P., et al., Simulation of Drosophila circadian oscillations, mutations, and light responses by a model with VRI, PDP-1, and CLK. Biophysical Journal, 2004. 86(5): p. 2786-2802.
    136. Albrecht, U., et al., A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell, 1997. 91(7): p. 1055-1064.
    137. Dunlap, J.C., Molecular bases for circadian clocks. Cell, 1999. 96(2): p. 271-290.
    138. HunterEnsor, M., A. Ousley, and A. Sehgal, Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell, 1996. 84(5): p. 677-685.
    139. Gracheva, M.E., R. Toral, and J.D. Gunton, Stochastic effects in intercellular calcium spiking in hepatocytes. Journal of Theoretical Biology, 2001. 212(1): p. 111-125.
    140. Gracheva, M.E. and J.D. Gunton, Intercellular communication via intracellular calcium oscillations. Journal of Theoretical Biology, 2003. 221(4): p. 513-518.
    141. Pomerening, J.R., E.D. Sontag, and J.E. Ferrell, Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biology, 2003. 5(4): p. 346-351.
    142. Sha, W., et al., Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proceedings of the National Academy of Sciences of the United States of America, 2003. 100(3): p. 975-980.
    143. Ferrell, J.E. and E.M. Machleder, The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science, 1998. 280(5365): p. 895-898.
    144. Laurent, M. and N. Kellershohn, Multistability: a major means of differentiation and evolution in biological systems. Trends in Biochemical Sciences, 1999. 24(11): p. 418-422.
    145. Aurell, E. and K. Sneppen, Epigenetics as a first exit problem. Physical Review Letters, 2002. 88(4): p. 048101.
    146. Ptashne, M., A Genetic Switch: Phage Lambda and Higher Organisms. 1992, Oxford: Blackwell.
    147. Aurell, E., et al., Stability puzzles in phage lambda. Physical Review E, 2002. 65(5): p. 051914.
    148. Arkin, A., J. Ross, and H.H. McAdams, Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics, 1998. 149(4): p. 1633-1648.
    149. Warren, P.B. and P.R. ten Wolde, Chemical models of genetic toggle switches. Journal of Physical Chemistry B, 2005. 109(14): p. 6812-6823.
    150. Monk, N.A.M., Oscillatory expression of Hes1, p53, and NF-kappa B driven by transcriptional time delays. Current Biology, 2003. 13(16): p. 1409-1413.
    151. Gaffney, E.A. and N. Monk, Gene expression time delays and turing pattern formation systems. Bulletin of Mathematical Biology, 2006. 68(1): p. 99-130.
    152. Pan, W., et al., On multistability of delayed genetic regulatory networks with multivariable regulation functions. Mathematical Biosciences, 2010. 228(1): p. 100-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700