用户名: 密码: 验证码:
天然胶体化学组成及其生物效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以光合细菌、天然菌群、海洋薇藻为生物对象,研究不同水体、不同粒径和有机碳浓度不同的胶体对生物生长的影响,同时测定了福建九龙江河口海区河水、河口水和海水的氮、磷、铁、氨基酸和碳水化合物在真溶液和胶体中的含量和分布,以期探讨天然胶体对生物的可利用性及其与胶体化学组成的关系,了解天然胶体对生物生长影响的机制。主要研究结果如下:
     1.在九龙江河口海区调查期间,河水、河口水和海水中的无机氮、各种形态磷和Fe~(3+)主要分布在真溶液(<10 kDa)中,有机氮和Fe~(2+)主要分布在胶体(10kDa~0.22μm)中;在真溶液和胶体中,各种形态的氮和总铁的含量从河流至海洋依序递减;真溶液中的Fe~(2+)在河口区最低,胶体中的Fe~(2+)在河口最高。
     2.在九龙江河口海区调查期间,海水中的可水解氨基酸(THAA)和碳水化合物(CHO)主要存在于真溶液中,在河口水和河水THAA主要存在于胶体中,CHO主要存在真溶液中。三种水体中胶体的氨基酸组成最齐全,达16种,优势组成依序是甘氨酸+苏氨酸、天冬氨酸、谷氨酸、丙氨酸+酪氨酸;三种水体中胶体的中性醛糖组成相似,葡萄糖和半乳糖占优势。
     3.海水胶体对光合细菌(PSB)的生长有显著的促进效应,在适宜PSB生长的条件下,粒径为10 kDa~0.22μm的海水胶体,其相对增长率平均可提高11.3%~22.6%,对PSB生长的促进作用大于粒径为1 kDa~10 kDa的海水胶体。有机碳浓度不同的三种胶体对PSB的相对增长率平均值Y为3.6%~196.2%,对天然菌群的Y值为48.4%~133.9%,Y均与有机碳浓度无相关关系;河水胶体对PSB生长的促进作用>>海水胶体>河口水胶体。高分子量的海洋胶体可以提高PSB单不饱和脂肪酸C_(16∶1)和C_(18∶1)和高度不饱和脂肪酸C_(20∶4)的含量。
     4.海洋胶体对海水小球藻、亚心形扁藻和球等鞭金藻的生长有明显的促进作用,在有机碳浓度为4.8μmol/L~238.4μmol/L、粒径为10 kDa~0.22μm的海水胶体中,其增长率的平均值Y为2.9%~28.9%,与有机碳浓度相关。粒径为10 kDa~0.22μm的海水胶体对三种海洋微藻的促进作用是粒径为1 kDa~10 kDa的海水胶体的1.2~1.9倍,表明高分子量胶体的生物活性高于低分子量胶体。河水胶体对海水小球藻的促进作用>河口水胶体。胶体中N、P和Fe同样对三种微藻的生长有促进作用,增长率的平均值Y为19.3%~498.5%,其中胶体Fe对球等鞭金藻和亚心形扁藻的效应比胶体N和P约大6~7倍,而胶体N和P对海水小球藻的促进作用则约比胶体Fe大3倍。
     5.天然胶体对海洋微藻脂肪酸组成的影响因藻而异。海水小球藻和亚心形扁藻的脂肪酸在真溶液(<10 kDa)的培养介质中含量最高,球等鞭金藻脂肪酸在胶体有机碳浓度为119.2μmol/L的海水胶体(粒径为10 kDa~0.22μm)培养介质中最高。粒径为10 kDa~0.22μm的海水胶体介质中的海水小球藻、球等鞭金藻的脂肪酸含量大于粒径为1 kDa~10 kDa的海水胶体,而亚心形扁藻的脂肪酸含量相反。海水小球藻在河水胶体中的饱和脂肪酸含量大于在河口水胶体,不饱和脂肪酸含量小于河口水胶体。三种微藻的总不饱和脂肪酸含量,在以海洋胶体为惟一N源介质中最高,以海洋胶体为惟一P源介质中次高,以海洋胶体为惟一Fe源介质中最小。
Colloids generally refer to microparticles, macromolecule or macromoleculepolymers, of which molecular weights range from 1 k Dalton to 100 k Dalton, orparticle size between 1 nm to 1μm. They widely exist in natural fresh water orseawater environment and origin mainly from terrigenous river input, resuspendedseawater sediment and biological metabolism process in water column. Besides,colloidal organic substance can also be produced by the transformation of particleorganic substance during biological or non-biological processes. Therefore naturalcolloid mainly contains organic polymer(such as polyoses, protein, polypeptide, fulvicacid and cell chippings) and inorganic particle(such as iron oxides, manganese oxides,silicon dioxide and clay minerals), as well as living body(bacteria and virus). Becauseof the small size, huge specific area and abundance of organic functional group, theybecome important vector of nutritive organic carbon, nutrients, trace metal, traceorganic matter and pigment. Researches showed that growth and metabolism rate ofbacteria in the existence of high molecular weight colloids were three to six timeshigher than those of lower molecular weight colloids. Colloidal organic mattersexposed to sunshine can release bio-available nitrogen-rich components and promotebiological degradation. Dissolved organic matter is an important source ofbio-available nitrogen for coastal bacteria and phytoplankton. Increase of their contentswill promote the propagation and growth of sea algae, and lead to red tide at certainconditions. As the result, studies on chemical compositions of natural colloids and their biological effects will make significant sense for discovering the mechanism of globalclimate change and marine red-tide as well as further understanding the bioavailabilityof biogenic element and their biological effects.
     In our previous work, biogeochemical behavior and chemical compositions, ofmarine colloid had been studied, however, the description of chemical composition, aswell as bioavailability need to be farther proved. In this work, photosynthetic bacteria,natural bacterial community; marine algae were the targets for study of influence ofcolloids collected from different sources and with different particle size and organiccarbon content, on the growth of organism. Nitrogen, phosphorus, iron, amino acid andcarbohydrate contents in their truly dissolved phase and colloidal phase fromJiulongjiang river, Jiulongjiang estuary and seawater of Fujian, as well as theirdistribution pattern were also investigated to reveal the relationship between thechemical compositions and the bioavailability of natural colloids, and explore themechanism that how natural colloids effect the organism growth. The results are asfollows:
     1. In the water samples of Jiulongjiang river, Jiulongjiang estuary and XiamenBay, inorganic nitrogen, all species of phosphorus and ferric ion mainly distributed intheir truly dissolved phase(<10 kDa), and organic nitrogen and ferrous iron mainly incolloidal phase(10 kDa~0.22μm), during the study period. In both truly dissolvedand colloidal phase, all species of nitrogen and total iron contents decreased fromriver-end to sea-end. Content of truly dissolved Fe~(2+) was the lowest in estuary sampleswhile contents of "dissolved" and colloidal Fe~(2+) was the highest in estuary samples.
     2. In the Jiulongjiang river estuary, amino acids and carbohydrate from seawatersample mainly distributed in truly dissolved phase, and amino acid from both river andestuarine water samples mainly in colloidal phase. while their carbohydrate mainly intruly dissolved phase. Colloids had 16 kinds of amino acid components from threesources. The dominance components were glycine+ threonine, aspartate, glutamic acidand alanine+tyrosine. The compositions of neutral aldose from three sources were similar with each other. Glucose and galactose were dominant components in colloidalphase.
     3. Marine colloids had significant enhancement effect on the growth of PSB. Withthe condition suitable for PSB, marine colloids with particle size of 10 kDa~0.22μmcan increase the relative growth rate by 11.3%~22.6%, which were higher than that ofmarine colloids with particle size of 1 kDa~10 kDa. Relative growth rates of PSB ofsamples from three sources with different organic carbon concentrations were 3.6%~196.2% on average, and 48.4%~133.9% for natural bacterial community on average,both of which had non-correlation with organic carbon concentration. Enhancementeffect for PSB of colloids of river water was much higher than that of seawater, both ofwhich were higher than that of estuarine water. Marine colloids of high molecularweigh could increase contents of monounsaturated fatty acid C_(16:1) and C_(18:1) andcontent of high unsaturated fatty acid C_(20:4) in PSB.
     4. Marine colloids also had significant enhancement effect on the growth ofmarine Chlorella, Platymonas subcordiformis and Isochrysis galbana. Their averagegrowth rates were 2.9%~28.9% in marine colloids with particle size of 10 kDa~0.22μm and organic carbon concentrations of 4.8μmol/L~238.4μmol/L, havingrelationship with organic carbon concentrations. Enhancement effect of colloids withparticle size of 10 kDa~0.22μm was 1.2~1.9 times higher than that of colloids withparticle size of 1 kDa~10 kDa for these three algae, indicating that the bioactivity ofhigh molecule weights colloids was higher than low molecule weights colloids. Whatwas more, enhancement effect of river colloids on marine Chlorella was larger thanestuarine colloid.
     5. The influences of colloid to fatty acid components of marine algae differedfrom each alga. Fatty acid contents in Marine Chlorella and P. subcordiformis werehighest when they were cultured in truly dissolved phase while fatty acid contents in I.galbana were highest when C_(COC)=119.2μmol/L in kinds of culture mediums withdifferent organic carbon concentrations(C_(COC)) and particle size of 10 kDa~0.22μm. Fatty acid contents in marine Chlorella and I. galbana cultured in colloidal mediaswith particle size of 10 kDa~0.22μm were higher than those cultured in colloidalmedias with particle size of 1 kDa~10 kDa, but it was inversed for P. subcordiformis.Saturated fatty acid contents in marine Chlorella cultured in colloids from river waterwere higher than those cultured in colloids from estuarine water; however, theunsaturated fatty acid contents were lower. Contents of total unsaturated fatty acid inthese three kinds of algae were highest in the algae cultured with colloid as solenitrogen source and followed by the algae cultured with colloid as sole phosphorussource, while lowest in the algae cultured with colloid as sole iron source.
引文
1. Aluwihare L I, Repeta D J. A comparison of the chemical characteristics of oceanic DOM and extracelluar DOM produced by marine algae [J]. Mar. Ecol. Prog. Ser., 1999, 186:105-117.
    2. Aluwihare L I, Repeta D J, Chen R F. A major biopolymeric component to dissolved organic carbon in surface sea water [J]. Nature, 1997, 387(6629): 166-169.
    3. Amon R M W, Fitznar I I P, Benner R. Linkages among the bioactivity, chemical composition, and diagenetic state of marine dissolved organic matter [J]. Limnol. Oecanogr., 2001, 46(2): 287-297.
    4. Amon R M W, Benner R. Rapid cycling of high-molecular-weight dissolved organic matter in the ocean [J]. Nature, 1994, 369(6481): 549-552.
    5. Amon RMW, Benner R. Bacterial utilization of different size classes of dissolved organic matter [J]. Limnol. Oceanogr., 1996, 41(1): 41-51.
    6. Bauer J E, Buesseler K O, Chen R F, et al., Seasonal isotopic (~(13)C and~(14)C) signature of dissolved and colloidal organic carbon in the eastern North Pacific Ocean [J]. Trans. Am. Geophys Union., 1994, 75: 236.
    7. Bauer J E, Ruttenberg K C, Wolgast D M, et al., Cross-flow filtration of dissolved and colloidal nitrogen and phosphorus in seawater: results from an inter comparison study [J]. Mar. Chem., 1996, 55: 33-52.
    8. Baskaran M, Santschi P H, Benoit G, et al, Scavenging of Th iostopies by colloids in seawater of the Gulf of Mexico, Geochim. Cosmochim. Acta, 1992, 56: 3375-3388.
    9. Benner R, Pakulski J D, McCarthy M, et al., Bulk chemical characteristic of dissolved organic matter in the ocean [J]. Science, 1992, 255:1561-1564.
    10. Benner R, Hedge J I. A test of the accuracy of fresh water DOC measurements by high-temperature catalytic oxidation and UV-promoted persulfate oxidation [J]. Mar. Chem, 1993,41:161-165.
    11. Benner R, Opsapsahl S. Molecular indicators of the source and transformations of dissolved organic matter in the Mississippi river plume [J]. Org. Geochem., 2001, 32: 597-611.
    12. Berg G M, Glibert P M, Lomas M W, et al., Organic nitrogen uptake and growth by the chrysophyte Aureococcus anophagefferens during a brown tide event [J]. Mar. Biol., 1997, 129:377-387.
    13. Berman T. The role of DON and the effect of N:P ratios on occurrence of cyanobacterial blooms: implication from the outgrowth of Aphanizomenon in Lake Kinneret [J], Limnol. Oceanogr., 2001, 46: 443-462.
    14. Berman T, Chava S. Algal growth on organic compounds as nitrogen sources [J]. J. Plankton Res., 1999,21:1423-1437.
    15. Borch N H and Kirchmann D L. Concentration and composition of dissolved combined neutral sugars (polysaccharides) in seawater determined by HPLC-PAD. Mar. Chem., 1997, 57(1-2): 85-95.
    16. Benoit G, Oktay S, Cant A, et al., Partitioning of Cu, Pb, Ag, Zn, Fe, Al and Mn between filter-retained particles, colloids and solution in 6 Texas estuary, Mar. Chem., 1994, 45: 307-336.
    17. Bushwa K, Zeep R Z, Tarr M A, et al., Photochemical release of biologically available nitrogen from aquatic dissolved organic matter [J]. Nature, 1996, 381: 404-407.
    18. Carlsson P, Segatto A Z, Gran(?)li E. Nitrogen bound to humic matter of terrestrial origin- a nitrogen pool for coastal phytoplankton?[J]. Mar. Ecol. Prog. Ser., 1993, 97: 105-116.
    19. Christian L, Keith D, Xos(?) A (?), et al., Bioavailability and bacterial degradation rates of dissolved organic matter in a temperate coastal area during an annual cycle[J]. Mar. Chem., 2009, 113: 219-226.
    20. Chen M, Robert C H D, Wang W X. Marine diatom uptake of iron bound with natural colloids of different origins [J]. Mar. Chem., 2003, 81: 177-189.
    21. Chen M, Wang W X. Bioavailability of natural colloidal Fe to marine plankton: influence of colloidal size and aging [J]. Limnol. Oceanogr., 2001, 46: 1956-1967.
    22. Cowie G L, Hedges J I. Biochemical indicators of digenetic alteration in natural organic matter mixtures [J]. Nature, 1994, 369: 304-307.
    23. Cullen J J. Oceanography-iron, nitrogen and phosphorus in the ocean [J]. Nature, 1999, 402: 372.
    24. Doblin M A, Blackburn S I, Hallegraeff G M. Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances [J]. J. Exp. Mar. Biol. Ecol., 1999, 236:33-47.
    25. Guo L, Santschi P H, Warnken K W. Dynamics of dissolved organic carbon (DOC) in oceanic environments [J]. Limnol. Oceanogr., 1995, 40: 1392-1403.
    26. Guo L D, Santschi P H. Isotopic and elemental characterization of colloidal organic matter from the Chesapeake Bay and Galveston Bay[J]. Mar. Chem., 1997a, 59: 1-15.
    27. Guo L, Santschi P H. Composition and cycling of colloids in marine environments [J]. Rev. Geophys., 1997b, 35: 17-40.
    28. Guo L D, Santschi P H, Wamken K W. Trace metal composition of colloidal organic material in marine environments [J]. Mar. Chem., 2000, 70: 257-275.
    29. Gremm T J. Dissolved carbohydrates in stream water determined by HPLC and pulsed ampherometric detection[J]. Limnol. Oceanogr., 1997, 42: 385-393.
    30. Grutters M, Raaphorst W. V, Helder W. Total hydrolysable amino acid mineralization in sediments across the northeastern Atlantic continental slope (Goban Spur) [J]. Deep-Sea Res. I, 2001, 48: 811-832.
    31. Guieu C, Martin J M, Tankere S P C,et al, On trace metal geochemistry in the Danube River and Western Black Sea [J]. Estuar. Coastl. Shelf Sci., 1998, 47: 471-485.
    32. Guildford S J, Healey F P, Hecky R E. Depression of primary production by humic matter and suspended sediment in limn corral experiments at southern Indian Lake, Northern Manitoba [J]. Can. J. Fish. Aquat. Sci., 1987,44: 1408-1417.
    33. Gremm, T.J. and Kaplan, L.A. Dissolved carbohydrate concentration, composition, and bioavailability to microbial heterotrophs in stream water. [J]. Acta. Hydrochimica. et Hydrobiologica., 1998, 26: 167-171.
    34. Hedges J I, Hatcher P G, Ertel J E, et al., A comparison of dissolved humic substances from seawater with Amazon River counterpart by 13C-NMR spectrometry [J]. Geochim. Cosmochim. Acta, 1992,56: 1753-1757.
    35. Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean? [J] Org. Geochem., 1997, 27: 195-212.
    36. Horiuchi T, Takano Y, Ishibashi J, et al, Amino acids in water samples from deep sea hydrothermal vents at Suiyo Seamount, Izu-Bonin Arc, Pacific Ocean [J]. Org. Geochem., 2004,35: 1121-1128.
    37. Hung C C, Tang D G, Warnken K W, et al. Distributions of carbohydrates, including uronic acids, in estuarine waters of Galveston Bay[J]. Mar. Chem., 2000, 73: 305-318.
    38. Hung C C, Warnken K W, Santschi P H. A seasonal survey of carbohydrates and uronic acids in the Trinity River, Texas [J]. Org. Geochem., 2005: 463-474.
    39. Hutchins D A, Witter A E, Butlert A, et al, Competition among marine phytoplankton for different cheated iron species [J]. Nature, 1999,400: 858-861.
    40. Ingalls AE, Lee C, Wakeham S G, et al. The role of biominerals in the sinking flux and preservation of amino acids in the Southern Ocean along 170° W [J]. Deep-Sea Res. Ⅱ, 2003, 50:713-738.
    41. Ittekkot V. Variations of dissolved of organic matter during a Plankton bloom: qualitative aspects, based on sugar and amino acid analysis [J]. Mar. Chem., 1982, 11: 143-158
    42. Jackson T A, Hecky R E. Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone [J]. Can. J. Fish. Aquat. Sci., 1980, 37: 2300-2317.
    43. Kumak K, Katsumoto A, Ishioka J N, et al, Size-fractionated iron concentrations and Fe(Ⅲ) hydroxide solubilities in various coastal waters [J]. Estuar. Coastl. Shelf Sci., 1998, 47: 275-283.
    44. Landen A, Hall, Per O J. Benthic fluxes and pore water distributions of dissolved free amino acids in the open Skagerrak [J]. Mar. Chem., 2000. 71: 53-68.
    45. Liu Q L, Parrish C C, Helleru R, Lipid class and carbohydrate concentrations in marine colloids [J]. Mar. Chem., 1998, 60: 177-188.
    46. Lovley D R, Coates J D, Blunt-Harris L, et al, Humic substances as electron acceptors for microbial respiration [J]. Nature, 1996, 382: 445-448.
    47. Maestrini S Y, Balode M, Bechemin C, et al. Nitrogenous organic substances as potential nitrogen sources, for summer phytoplankton in the Gulf of Riga, eastern Baltic Sea [J]. Plankton Biol. Ecol., 1999, 46: 8-17.
    48. Martin J M, Dai M H, Cauwet G. Significance of colloids in the biogeochemical cycling of organic carbon and trance metals in the Venice Lagoon (Italy) [J]. Limnol. Oceanogr., 1995, 40: 119-131.
    49. Maurer L G. Organic polymers in seawater: Changes with depth in the Gulf of Mexico [J], Deep-Sea Res., 1976, 23: 1059-1064.
    50. Marie B, Constant M G, Berg V D. Iron availability and the release of iron-complexing ligands by Emiliania huxleyi [J]. Mar. Chem.. 2000, 70: 277-287.
    51. McCarthy M, Hedges J I, Benner R. Major biochemical composition of dissolved high-molecular weight organic matter in seawater [J]. Mar. Chem., 1996, 55: 281-297.
    52. McCarthy M, Hedges J I, Benner R. The chemical composition of dissolved organic matter in seawater[J]. Chem. Geol., 1993, 107:503-507.
    53. Mean J C, Winayaratne R D. Chemical characterization estuarine colloidal organic matter: Implications for adsorb river [J]. Bull. Mar. Sci., 1984, 35: 449-461.
    54. Middelboeg M, Borch N H, Kirchman D L. Bacterial utilization of dissolved combined amino acids and ammonium in the Delaware Bay estuary: effects of carbon and nitrogen limitation [J]. Mar. Ecol. Pro. Ser., 1995, 128: 109-120.
    55. Moran S B, Buesseler K O. Short residence time of colloids in the upper ocean estimated from ~(238)U-~(234)Th disequilibria [J]. Nature, 1992, 359: 221-223.
    56. Nishioka J, Takeda S, Wong C S, et al. Size-fractionated iron concentrations in the northeast Pacific Ocean: distribution of soluble and small colloidal iron[J]. Mar. Chem., 2001, 74: 157-179.
    57. Ogura N. High molecular weight organic matter in seawater [J]. Mar. Chem., 1977, 5: 535-549.
    58. Ozturk M, Bizsel N, Steinnes E. Iron speciation in eutrophic and oligotrophic Mediterranean coastal waters: impact of phytoplankton and protozoan blooms on iron distribution [J]. Mar. Chem.. 2003, 81: 19-36.
    59. Pakulski J D, Benner R. Abundance and distribution of carbohydrates in the ocean [J]. Limnol. Oceanogr., 1994, 39: 930-940.
    60. Pettine M, Capri S, Manganelli M, et al. The Dynamics of DOM in the Northern Adriatic Sea.[J]. Estuar. Coastl. Shelf Sci., 2001, 52: 471-489.
    61. Piorreck M. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes [J]. Phytochem., 1984, 23:3367-3370.
    62. Powell R T, Landng W M, Bauer J E. Colloidal trace metal, organic carbon and nitrogen in a southeastern U.S. estuary [J]. Mar. Chem., 1996, 55: 165-176.
    63. Repeta D J, Quan T M, Aluwithare L I, et al. Chemical characterization of high molecular weight dissolved organic matter in fresh and marine water [J]. Geochi. Cosmochi. Acta, 2002, 66: 955-962.
    64. Santschi P H, Guo L, Baskaran M, et al. Isotopic evidence for the contemporary origin of high-molecular- weight organic matter in ocean environments [J]. Geochi. Cosmochi. Acta, 1995, 59(3): 625-631.
    65. Sakugawa H, Handa N. Isolation and characterization of dissolved and particulate polysaccharides in Mikawa Bay [J]. Geochim. Cosmochim. Acta., 1985, 49:1185-1193.
    66. Schuster S, Arrieta J M, Herndl G J. Adsorption of dissolved free amino acids on colloidal DOM enhances colloidal DOM utilization but reduces amino acid uptake by orders of magnitude in marine bacterieplankton [J]. Mar. Ecol. Prog. Ser.,vl998, 166: 99-108.
    67. Shifrin N S, Chisholm S W. Phytoplankton lipids: interspecific differences and effects of nitrate, silicate and light-dark cycles [J]. Phycol., 1981, 17: 374-384.
    68. Sigleo A C. Biochemical components in suspended particles and colloids: carbohydrates in the Potomac and Patuxent Estuaries [J]. Org. Geochem., 1996, 24: 83-93.
    69. Sigleo A C, Hare P E, Helz G R. The amino acid composition of estuarine colloidal materiall [J]. Estuar. Coastl. Shelf Sci., 1983,17: 87-96.
    70. Sigleo A C, Hoering T C, Helz G R. Composition of estuarine colloidal material: Organic components [J]. Geochim. Cosmochim. Acta., 1982, 46: 1619-1626.
    71. Skoog A, Benner R. Aldoses in various size fractions of marine organic matter: Implications for carbon cycling [J]. Limnol. Oceanogr., 1997,42: 1803-1813.
    72. Suthhof A, Jennerjahn T C, Schafer P, et al. Nature of organic matter in surface sediments from the Pakistan continental margin and the deep Arabian Sea: amino acids [J]. Deep-Sea Res.hⅡ, 2000,47:329-351.
    73. Sunda W G. Trace metal / phytoplankton interactions in the sea [M]. In: Chemistry of Aquatic Systems: Local and global Perspectives (Bidoglio G and Stumm W Ed). Brussels and Luxembourg, Netherlands. 1994, 213-247.
    74. Tranvik L J. Bacterplankton growth on fraction of dissolved organic carbon of different molecular weight from humic and clear waters [J]. Applied Environ. Microbiol, 1990, 56: 1672-1677.
    75. Utting S D. Influence of nitrogen availability on the biochemical composition of three unicellar marine algae of commercial importance [5]Aquacult. Engng., 1985, 4:75-90.
    76. Vazhappilly R, Chen F. Eicosapentaenoic acid and docosahexaenoic acid production potential of micro algae and their heterotrophic growth [J]. J. Am. Oil Chem. Soc, 1998, 75: 393-397.
    77. Wang X C, Lee C. Adsorption and desorption of aliphatic amines, amino acids and acetate by clay minerals and marine sediments [J]. Mar. Chem., 1993, 44: 1-23.
    78. Wang W X, Guo L D. Production of colloidal organic carbon and trace metals by phytoplankton decomposition [J]. Limnol. Oceanogr., 2001, 46: 278-286.
    79. Wang X J, Lou T. Photo degradation of Dissolved Organic Matter and Its Impact on the Biologic Processes [J]. Photogra. Sci. Photochem., 2004, 22: 221-229.
    80. Wells M L, Goldberg E D. Occurrence of small colloids in sea water [J]. Nature, 1991, 353: 342-344.
    81. Wells M L, Smith G J, Bruland KW. The distribution of colloidal and particulate bioactive metals in Narragansett Bay [J]. Mar. Chem., 2000, 71: 143-163.
    82. Wells M L, Goldberg E D. The distribution of colloids in the North Atlantic and Southern Oceans [J]. Limnol. Oceanogr. 1994, 39: 286-302.
    83. Wen L S, Santschi P, Gill G, et al., Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms n the speciation of the dissolved phase [J]. Mar. Chem., 1999. 63: 185-212.
    84. Wheeler J R. Fractionation of molecular weight of organic substances in Georgia coastal water [J], Limnol. Oceanogr., 1976, 21: 846-852.
    85. Whitehouse B G, Yeats P A, Strain P M. Cross flow filtration of colloids from aquatic environments [J]. Limnol. Oceanogr., 1990, 35: 1368-1375.
    86. Wu J F, Boyle E, Sunda W, et al., Soluble and colloidal Fe in the oligotrophic north Atlantic and north Pacific [J]. Science, 2001, 293: 847-849.
    87. Yan L, Stallard R F, Crerar D A, et al. Experiment evidence on the behavior of metal bearing colloids in low-salinity estuarine water [J]. Chem. Geol., 1992, 100: 163-174.
    88. Yongmanitchai W, Ward O P. Omega-3 fatty acids: alternative sources of production [M]. Pro. Biochem., 1989, 117-125.
    89. Zsolnay A. Coastal colloids carbon: A study of its seasonal variation and the possibility of river input [J]. Estuar. Coastl. Shelf Sci., 1979, 9: 559-567.
    90.陈丁,郑爱榕,刘春兰,等.天然胶体中磷的含量及分布[J].海洋学报,2006,28(3);144-150.
    91.陈敏,黄弈普,邱雨生.从~(234)Th的固/液分配看海洋胶体的作用[J].海洋与湖沼,1999,30:726-730.
    92.陈敏.真光层的颗粒动力学-~(234)Th/~(238)U不平衡的应用[D].厦门大学博士论文,1996,1-152.
    93.陈敏,郭劳动,黄奕普,等.错流超滤技术在海水胶体态铀、社、镭同位素和有机碳研究中的应用[J].海洋学报,2000,22:51-59.
    94.陈淑美,卢美鸾,傅天保.九龙江口水体中各形态磷的行为[J].台湾海峡,1997,16:299-305.
    95.陈松,廖文卓,许爱玉.九龙江口磷的界面分配和转移[J].台湾海峡,1997,16:293-298.
    96.陈水土,阮五崎,九龙江口、厦门西海域磷的生物地球化学研究-Ⅱ.表层沉积物中磷形态的分布及在再悬浮过程中的转化[J].海洋学报,1993,15:47-54.
    97.陈水土,吴丽云,吴佳伟.九龙江口海域中磷的化学形态分布[J].热带海洋,1994,13:69-75.
    98.陈水土,阮五奇.九龙江口、厦门西海域磷的生物地球化学研究-Ⅲ.生物活动参与下的磷形态转化及磷循环估算[J].海洋学报,1994b,16:63-71.
    99.戴俊彪,吴庆余.培养海洋微藻Isochiysis galbana生产EPA和DHA[J],海洋科学.1999,3:36-38.
    100.付武胜,程娇英,李青.硫氰酸钾络合比色法测定生血铁口服液中的铁[J].海峡预防医学杂志,1999,5:37-38.
    101.国家环境保护总局.水和废水监测分析方法(第四版)[M].2002,北京:中国环境科学出版社.
    102.洪华生,郭劳动,陈敬虔,等.九龙江河口颗粒磷的分布特征[J].厦门大学学报(自然科学版),1989,28:74-78.
    103.林辉,张元标,陈金民.厦门海域水体富营养程度评价[J].台湾海峡,2002,21:154-161。
    104.李秀珠,黄美珍,陈超群等.海洋光合细菌的分离培养研究[J].福建水产,1993,57:14-18.
    105.李丽,张正斌,刘莲生,等.南黄海胶体有机碳和溶解有机碳的分布[J].青岛海洋大学学报.1999,29:321-324.
    106.梁英,麦康森,孙世春,等.不同培养基对筒株藻Cylindiotheca fisiornis生长及脂肪酸组成的影响[J].海洋湖沼通报,2000,1:60-67.
    107.欧明明,等.海水中铁的几种形态对海生小球藻生长的影响[J].青岛海洋大学学报(自然科学版),2002,32:627-633.
    108.史家梁,等.利用光合细菌处理豆制品废水的研究[J].上海环境科学,1987,6:22-26.
    109.沈萍萍,王朝晖,齐雨藻,等.光密度法测定微藻生物量[J].暨南大学学报(自然科学版),2001,22:115-119.
    110.孙林枫,任素梅,唐思齐.长江口及舟山附近海水中碳水化合物的分布特征[J].海洋与湖沼,1988,4:30-36.
    111.谭丽菊,王江涛.海水中胶体有机碳研究简介[J].海洋科学,1999,23:27-29.
    112.唐思齐,李珊,李莎.海水中碳水化合物测定方法研究:一、苯酚硫酸法测定可溶态碳水化合物总量[J].山东海洋学院学报,1985,15:49-52.
    113.孙小静,张战平,朱广伟,等.太湖水体胶体磷的含量初探[J].湖泊科学,2006,18:231-237.
    114.王江涛.黄河、长江和钱塘江水体中的胶体有机碳[J].科学通报,1998,43:840-843.
    115.王学魁,王云生,孙之南,等.NaNO_3浓度对球等鞭金藻生长及所含脂肪酸的影响[J].生物技术.2006,16:61-63。
    116.厦门市环境保护局,厦门市环境质量概要[M].厦门,2003.
    117.杨登峰.富营养化水体中胶体有机营养物质研究[M].中国海洋大学硕士论文,2004.
    118.杨秀霞,于浩,曾晓起.影响微藻脂肪酸组成因素概述[J].海洋湖沼通报,2001,1:76-81.
    119.杨逸萍,胡明辉,陈海龙,等.河口悬浮物中磷的化学形态分布与转化[J].台湾海峡1995.14:313-319.
    120.杨逸萍,胡明辉,陈海龙,等.九龙江口生物可利用磷的行为与入海通量[J].台湾海峡,1998,17:296-274.
    121.张恩仁,张正斌,田玉红.南沙群岛海域海水中胶体铜、锌、铅[J].海洋学报,2003,25:136-140.
    122.张穗,方正信.大亚湾水体中溶解的碳水化合物[J].热带海洋,1991,10:89-93.
    123.张远辉,王伟强,黄自强.九龙江口盐度锋面及其营养盐的化学行为[J].海洋环境科学,1999,18:1-7.
    124.张艳萍,杨桂朋.分光光度法测定海水中溶解单糖和多糖[J].中国海洋大学学报,2009.39:327-332.
    125.赵新淮,张正斌,韩喜江.海水胶体与PO_4~(3-)、Cu~(2+)的作用及对微藻生长影响[J].哈尔滨工业大学学报,2002,34:776-779.
    126.赵卫红,崔鑫,王江涛.切向超滤技术分离海洋胶体有机碳性能的研究[J].自然科学进展,2004a,14:1447-1451.
    127.赵卫红,王江涛.烟台四十里湾养殖区的胶体有机碳、氮和磷[J].济南大学学报(自然科学版),2004b,18:132-135.
    128.郑爱榕,陈敏,吕娥,等.海洋胶体中的氮、磷和铁对微藻生长的效应[J].自然科学进展,2004,14:339-343.
    129.郑爱榕,郑雪红,陈敏.不同来源和粒径胶体对光合细菌生长的效应[J],生态学报,2005,25:96-102.
    130.郑雪红,郑爱榕,陈祖峰.小球藻和球等鞭金藻胶体中多糖的醛糖组成[J].厦门大学学报(自然科学版),2004,43:225-228.
    131.郑雪红,郑爱榕,陈祖峰.厦门海域水体中胶体多糖的醛糖组成[J].海洋与湖沼,2005,36:10-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700