用户名: 密码: 验证码:
室内环境颗粒物浓度预测模型及污染控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,室内外颗粒物污染问题已经受到国内外学者的广泛关注,越来越多的流行病学研究表明,即使在非常低的浓度下,大气悬浮颗粒物质量浓度与人群发病率和死亡率仍存在显著的正相关性。大量资料及科研成果表明室外大气悬浮颗粒物与建筑室内颗粒物污染有明显的正相关性。当建筑室内没有明显污染源时,室外大气悬浮颗粒物可以通过建筑围护结构穿透进入室内环境,并较长时间的停留在室内空气中而不会发生沉降。因此大气悬浮颗粒物向室内的运动和传播规律是一个主要的研究课题。
     本文首先从流行病学和毒理学角度介绍了大气悬浮颗粒物对人体健康的影响,目的是认识颗粒物对人体健康的各种急性和慢性效应及其生物学机理。然后针对目前我国居民的日常生活习惯与室内颗粒物污染水平,进行了一次全国范围内的颗粒物污染调查研究,包括问卷调查和实地测试,问卷调查结果显示,居民平均每天约有85%以上的时间是在室内度过的,其中住宅室内约占50%;实地测试结果表明,目前我国住宅室内存在着相当严重的污染现象,尤其是当存在室内活动时。由于对室内环境进行检测不仅费时费力,而且费用昂贵,而室外大气中颗粒污染物监测体系已经建立,根据大气环境监测网络中的室外颗粒物数据,预测和分析室内环境中的大气悬浮颗粒物的粒径分布是一个可能的解决方案。
     由于很少见到将室内外浓度变化直接联系起来进行综合性观测与理论分析的研究结果,因此本研究以建立物理机理为基础的颗粒物传输半经验数学模型,颗粒物粒径和环境参数作为输入,预测和分析室内环境中悬浮颗粒物的粒径分布和浓度变化特征。其中,穿透因子和沉积率是该模型的两个重要输入参数。基于气溶胶力学理论,在假设围护结构隙缝内表面光滑、通过围护结构隙缝的气流均匀稳定的条件下,本文建立了颗粒物的穿透因子理论模型;同时,考虑到缝隙内表面的粗糙对颗粒物穿透因子的影响,将穿透因子理论模型进行了进一步的改进,得到了颗粒物在粗糙内表面缝隙中的穿透因子模型。利用颗粒物在壁面边界层的流通量平衡方程,得到了颗粒物在布朗扩散和紊流扩散沉积机理下向垂直表面的迁移微分方程;并在边界层的粘性底层、过渡层和紊流核心层三部分内对颗粒物的沉降速度进行积分,得到了颗粒物在室内各表面的沉降速度和室内沉积率模型
     利用得到的穿透因子理论模型、沉积率模型和实验测得的三类过滤器效率作为输入,结合颗粒物数量平衡模型,得到了预测室内大气悬浮颗粒物浓度的稳态模型和动态模型,并对五类具有代表性的建筑,预测了其室内颗粒物粒度分布。并讨论分析了房间换气次数、穿透因子、沉积率和再悬浮速度对颗粒物室内浓度的影响
     本文最后提出了室内颗粒物的污染控制措施,从减少或消除室内颗粒物污染源、控制颗粒物由室外向室内的传输量和净化室内污染空气三方面,对室内空气品质进行了改善。
     本文建立的根据室外环境监测数据来预测室内颗粒污染物粒度分布和浓度变化的模型,有助于了解和分析室内的颗粒物化学成分和粒度分布,揭示大气悬浮颗粒物影响人体健康的致病机理。同时结合实验结果得到的室内颗粒物污染控制措施,可以更好的指导人们的日常生活,降低室内人员的颗粒物污染暴露。
The topic of indoor and outdoor particle pollution has triggered quite a lot of concern in recent years. Increasing epidemiological studies have reported that particulate air pollution is associated with increased morbidity and mortality even at the generally low levels of air pollution. However, the biological mechanisms have not been understood. This issue becomes more complicated in a situation when the outdoor air is always contaminated by traffic exhaust, industrial activities, construction activities, etc. Particles entering indoor environment suspend for a long time and are inhaled by humans which aggravates the risk of health. Thus, prediction of indoor particle concentration of outdoor origin is extremely important.
     In this paper, the impacts of ambient particle on human health are introduced, two methods are involved in current study: epidemiology and toxicology, which are used to cognize the chronic and acute effect based on biology mechanism. In order to advance our understand on the indoor particle level and habit of human during daily life, a large-scale investigation is carried out, results show that people spend 85% of their time indoors, and 50% for residential indoor environment; also, indoor particle pollution is a universal problem, especially when indoor activities exist. Due to the inconvenient and unpractical of measurement for indoor particle concentration in common residence, the establishing of modeling is an optimal method to predict and analyze indoor particle concentration.
     Developing and validating a model for predicting the indoor concentration of particles of outdoor origin is a key objective of this paper is to, taking particle diameter and climate parameter as input value. This model is based on aerosol dynamics, penetration factor and deposition loss-rate coefficient are two important parameters. For penetration factors, the roughness of crack inner surface is taken into consideration; for deposition loss-rate coefficient, the boundary layer is divided into three sublayers, the deposition velocity can be obtained by integrating particle flux equation in the three sublayers, and then deposition loss-rate coefficient is gained.
     Taking penetration model, deposition model and filter efficiency theory into particles mass & quantity equation, the evaluation model of indoor particle concentration is gained. As the level of ambient particles is steady or instantaneous, indoor particle concentration is evaluated under different condition in five kinds of typical buildings. Also, the impact of air exchange rate, penetration factor, deposition loss-rate coefficient and resuspension on indoor particle level are discussed.
     Control strategy of indoor particle pollution is another key objective in this paper, three types of control strategies are presented, which include: decreasing or eliminating indoor particle sources, reducing the transport of outdoor particles into indoor environment and cleaning indoor polluted air with appliances.
     The evaluation model, which is based on outdoor environmental monitoring data to predict indoor particle size distribution and concentrations of particle pollution, can help to analyze the chemical composition and particle size distribution of indoor particles and reveal the human health pathogens mechanism affected by atmospheric particles at the same time, indoor particulate pollution control strategy which was obtained by the experimental results can guide people's daily lives and reduce indoor persons exposure to particulate pollution.
引文
[1] Zhang Z, Chen Q. Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms. Atmospheric Environment, 2006, 40(18): 3396-3408
    [2] Marsika T, Johnson R. HVAC air-quality model and its use to test a PM2.5 control strategy. Building and Environment, 2008, 43(11): 1850-1857
    [3] Shehabi A, Horvath A, Tschudi W, et al. Particle concentrations in data centers. Atmospheric Environment, 2008, 42(24): 5978-5990
    [4] Zhang J P, Li AG. Study on particle deposition in vertical square ventilation duct flows by different models. Energy Conversion and Management, 2007, 49(5): 1008-1018
    [5] Zhao B, Wu J. Modeling particle deposition onto rough walls in ventilation duct. Atmospheric Environment, 2006, 40(36): 6918-6927
    [6] Wu J, Zhao B. Effect of ventilation duct as a particle filter. Building and Environment, 2007, 42(7): 2523-2529
    [7] Guo L, Morawska L, He C, et al. Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an air-conditioned classroom. Atmospheric Environment, 2008, 42(4): 757-768
    [8] Dockery D W, Pope C A, Xu X P, et al. An association between air pollution and morality in six United-States cities. New England Journal of Medicine, 1993, 329(24): 753-759
    [9] Klemm R J, Mason R M, Heilig C M, et al. Is daily mortality associated specifically with fine particles? Journel of the Air & Waste Management Association, 1996, 46(10): 927-965
    [10] Hamdan S E, Limam K, Abadie M O, et al. Deposition of fine particles on building internal surfaces. Atmospheric Environment, 2008, 42(39): 8893-8901
    [11] Li M, Wu C, Pan W. Sedimentation behavior of indoor airborne microparticles. Journal of China University of Mining and Technology, 2008, 18(4): 588-593
    [12] Pereira M L, Graudenz G, Tribess A, et al. Determination of particle concentration in the breathing zone for four different types of office ventilation systems. Building and Environment, 2009, 44(5): 904-911
    [13]张源辉.室内颗粒物的描述、测试方法及污染控制.北京:第251次香山科学会议《室内空气质量和污染物控制》学术研讨会, 2006.6, 53-60
    [14]王嘉松,陈达良,宁治等.不同燃料汽车排放超细微粒特性的实验研究.环境科学, 2006, 27(12): 16-19
    [15] Dockery D W, Spengler J D. Indoor-outdoor relationship of respirable sulfates and particles. Atmospheric Environment, 1981, 15(3): 335-343
    [16] Spengler J D, Treitman R D, Tosteson T D. Personal exposures to respirable particulates and implications for air pollution epidemiology. Environment Science and Technology, 1985, 19(8): 700-707
    [17] Leaderer B, Koutrakis P, Briggs S, et al. Impact of indoor sources on residential aerosol concentrations. In: Proc Indoor Air’90, Toronto, Canada, 1990 (2): 269-273
    [18] Abt E, Suh H H, Allen G, et al. Characterization of indoor particle sources: a study conducted in the metropolitan Boston area. Environmental Health Perspectives, 2000, 108(1): 35-44
    [19] Wallace L. Indoor particles: a review. Journal of the Air & Waste Management Association, 1996, 46(2): 98-126
    [20]许钟麟.室内颗粒污染产生、传播与防治.北京:第251次香山科学会议《室内空气质量和污染物控制》学术研讨会, 2006.6, 48-52
    [21] Zhang K M, Wexler A S. Modeling the number distributions of urban and regional aerosols: theoretical foundations. Atmospheric Environment, 2002, 36(11): 1863–1874
    [22]殷小雯.上海市2002年以来空气中可吸入颗粒物浓度变化特征.上海应用技术学院学报, 2005, 5(3): 175-178
    [23] Seaton A, MacNee W, Donaldson K, et al. Particulate air pollution and acute health effects. Lancet, 1995, 345(8943): 176-178
    [24] Wilson W E, Mage D T, Grant L D. Estimating separately personal exposure to ambient and non-ambient particulate matter for epidemiology and risk assessment: why and how. Journal of the Air & Waste Management Association, 2000, 50(7): 1167-1183
    [25] Klemm R J, Mason R M J, Heilig C M, et al. Is daily mortality associated specifically with fine particles? Data reconstruction and replication of analyses. Journal of Air & Waste Managment Association. 2000, 50(7): 1215-1234
    [26] McClellan R O. Setting ambient quality standards for particulate matter. Toxicology, 2002, 181(27): 329-347
    [27] Liu D L. Air pollution penetration through airflow leaks into buildings:[dissertation]. Berkeley: Univ. of California, 2002, 2-4
    [28] Andersen I. Relationship between outdoor and indoor air pollution. Atmospheric Environment, 1972, 6(4): 275-278
    [29] Alzona J, Cohen B L, Rudolph H, et al. Indoor-outdoor relationships for airborne particulate matter of outdoor origin. Atmospheric Environment, 1979, 13(1): 55-60;
    [30] Cohen A F, Cohen B L. Protection from being indoors against inhalation of suspended particulate matter of outdoor origin. Atmospheric Environment, 1980, 14(2): 183-184
    [31] Spengler J D, Dockery D W, Turner W A, et al. Long-term measurement of respirable sulfates and particles inside and outside homes. Atmospheric Environment, 1981, 15(1): 23-30
    [32] El-Shobokshy M S. Experimental measurements of aerosol deposition to smooth and rough surfaces. Atmospheric Environment, 1983, 17(3): 639-644
    [33] Thatcher T L, Layton D W. Deposition, resuspension, and penetration of particles within a residence. Atmospheric Environment, 1995, 29(13): 1487-1497
    [34] Tung C W, Chao Y H, Burnett J. A methodology to investigate the particulate penetration coefficent through building shell. Atmospheric Environment, 1999, 33(6): 881–893
    [35] Vette A F, Rea A W, Lawless P A, et al. Characterization of indoor-outdoor aerosol concentration Relationships during the Fresno PM exposure studies. Aerosol Science Technology, 2001, 34(1): 118-126
    [36] Thatcher T L, Lunden M M, Revzan K L, et al. A concentration rebound method for measuring particle penetration and deposition in the indoor environment. Aerosol Science and Technology, 2003, 37(11): 847–864
    [37] Lewis S. Solid particle penetration into enclosures. Journal of Hazardous Materials, 1995, 43(3): 195-216
    [38] Mosley R B, Greenwell D J, Sparks L E, et al. Penetration of ambient fine particles into the indoor environment. Aerosol Science and Technology, 2001, 34(1): 127-136
    [39] Liu D L, Nazaroff WW. Particle Penetration through Building Cracks. Aerosol Science and Technology, 2003, 37(7): 565–573
    [40] Abt E, Suh H H, Catalano P, et al. Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environmental Science and Technology, 2000, 34(17): 3579-3587.
    [41] Long C M, Suh H H, Catalano P J, et al. Using time and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environmental Science and Technology, 2001, 35(10): 2089-2099
    [42] Wood N B. A simple method for the calculation of turbulent deposition to smooth and rough surfaces. Journal of Aerosol Science, 1981, 12(3): 275-290
    [43] Lu W Z, Howarth A T. Numerical Analysis of Indoor Aerosol Particle Deposition and Distribution in Two-Zone Ventilation System. Budding and Environment, 1996, 31(1): 41-50
    [44] Guha A. A unified Eulerian theory of turbulent deposition to smooth and rough surfaces. Journal of Aerosol Science. 1997, 28(8): 1517-1537
    [45] Lai A C K, Nazaroff W W. Modeling indoor particle deposition from turbulent flow onto smooth surfaces. Journal of Aerosol Science, 2000, 31(4): 463-476
    [46] Matson U. Comparison of the modeling and the experimental results on concentrations of ultra-fine particles indoors. Building and Environment, 2005, 40(7): 996-1002
    [47] Lai A C K. Modeling indoor coarse particle deposition onto smooth and rough vertical surfaces. Atmospheric Environment, 2005, 39(21): 3823-3830
    [48]中华人民共和国卫生部.中华人民共和国国家标准居住区大气中可吸入颗粒物卫生标准(GB11667-89).北京:中国建筑工业出版社, 1989
    [49]中华人民共和国卫生部,国家技术监督局.中华人民共和国国家标准室内空气中可吸入颗粒物卫生标准(GB/T 17095-1997).北京:中国建筑工业出版社, 1997
    [50]国家质量监督检验检疫总局,卫生部,国家环境保护总局.中华人民共和国国家标准室内空气质量标准(GB/T 18883-2002) .北京:中国建筑工业出版社, 2002
    [51] Zhao B, Zhang Y, Li X T, et al. Comparison of indoor aerosol particle concentration and deposition in different ventilated rooms by numerical method. Building and Environment, 2004, 39(1): 1-8
    [52]李念平,张丽薇,付峥嵘等.气溶胶颗粒在风管系统中沉降的实验研究.建筑热能通风空调, 2006, 25(6): 8-10, 37
    [53]朱青松,李念平,付峥嵘等.气溶胶粒子在矩形风管中沉降速度的试验研究.流体机械, 2007, 35(11): 5-9
    [54]付峥嵘,李念平,王汉青.风管中颗粒物沉降速度的解析法预测模型.湖南大学学报, 2008, 35(2): 35-38
    [55]姚国财,李念平,李灿等.地板送风系统室内可吸入颗粒物沉降特性的试验研究.安全与环境学报, 2008, 8(1): 79-81
    [56]李孔清,龚光彩,汤广发.室内悬浮颗粒的数值模拟.暖通空调, 2005, 35(2): 20-24
    [57]李孔清,龚光彩,汤广发等.悬浮颗粒物数值模拟模型改进研究.暖通空调, 2005, 35(11): 1-5
    [58]李孔清,龚光彩,汤广发等.悬浮颗粒物数值模拟模型的改进研究及应用.建筑热能通风空调, 2006, 25(2): 86-90
    [59]沈晋明,许钟麟.空调系统的二次污染与细菌控制.暖通空调, 2002, 32(5): 30-33
    [60]沈晋明,许钟麟.采用生物洁净技术控制医院空调系统的微生物污染.洁净与空调技术, 2003, 10(2): 3-7
    [61]邓伟鹏,沈晋明,唐喜庆等. SARS隔离病房内的气流组织优化研究.建筑热能通风空调, 2005, 24(2): 9-14
    [62]聂一新,沈晋明,邱济夫.抗菌空气过滤器滤料抑菌性能试验方法的研究.建筑热能通风空调, 2006, 25(6): 11-14
    [63]饶松涛,沈晋明,陈巍等.负离子对某食堂环境改善效果的实验研究.建筑热能通风空调, 2008, 27(3): 1-5
    [64]赵彬,陈玖玖,陈曦.室内颗粒浓度影响因素的集总模型分析.清华大学学报(自然科学版), 2005, 45(12):1589-1591
    [65]赵彬.室内颗粒运动和分布的模拟方法.建筑热能通风空调, 2006, 25(5): 51-58
    [66]赵彬,王冰,陈曦.基于简化分区模型的室内污染源位置辨识方法.建筑科学, 2008, 24(10): 101, 201
    [67] Zhao B, Wu J. Modeling particle fate in ventilation system-Part I: Model development. Building and Environment, 2009, 44(3): 605-611
    [68] Zhao B, Wu J. Modeling particle fate in ventilation system-Part II: Case study. Building and Environment, 2009, 44(3): 612-620
    [69]张金萍,李安桂.方形通风管道中粒子沉积的拉格朗日模拟.暖通空调, 2006, 36(6): 10-17
    [70]张金萍,李安桂.通风空调管道内灰尘沉积的研究进展.暖通空调, 2008, 38(2): 22-30
    [71] Zhang J P, LI A G, Li D S. Modeling deposition of particles in typical horizontal ventilation duct flows. Energy Conversion and Management, 2008, 49(12): 3672-3683
    [72] Wang J S, Chan T L, Ning Z, et a1. Roadside measurement and prediction of COand PM2.5 dispersion from on-road vehicles in Hong Kong. Transportation Research, 2006, 11(4): 242-249
    [73]李劲松.试论室内空气生物污染.中国预防医学杂志, 2002, 3(3): 174-177;
    [74] Chau C K, Tu E Y, Burnett J, et al. Estimating the total exposure of the Hong Kong population. Environment International, 2002, 27(8): 617-630
    [75] Khuntong N, Khuntong P, Nitatwichit C, et al. Indoor/outdoor relationships of size-resolved particle concentrations in naturally ventilated school environments. Building and Environment, 2009, 44(1): 188-197
    [76] Johansson D. The life cycle costs of indoor climate systems in dwellings and offices taking into account system choice, airflow rate, health and productivity. Building and Environment, 2009, 44(2):368-376
    [77]中国建筑科学研究院.民用建筑热工设计规范(GB50176-93).北京:中国建筑工业出版社, 1993, 1-10
    [78] Spurny K R. Aerosol air pollution its chemistry and size dependent health effects. Journal of Aerosol Science, 1996, 27(Suppl 1): S473-S474
    [79] Taylor B J, Webster R, Imbabi M S. The building envelope as an air filter. Building and Environment, 1999, 34(3): 353-361
    [80] Riley W J, McKone T E, Lai A C K, et al. Indoor particulate matter of outdoor origin: importance of size-dependent removal mechanisms. Environmental Science and Technology, 2002, 36(2): 200–207
    [81] Liao C M, Huang S J, Yu H. Size-dependent particulate matter indoor/outdoor relationships for a wind-induced naturally ventilated airspace. Building and Environment, 2004, 39(4): 411-420
    [82] Nazaroff W W. Indoor particle dynamics. Indoor Air 2004; 14 (Supp l7): 175–183
    [83] Chao C Y H, Wan M P, Cheng C K. Penetration coefficient and deposition rate as a function of particle size in non-smoking naturally ventilated residence. Atmospheric Environment, 2003, 37(30): 4233–424
    [84] Liu D L, Nazaroff W W. Modeling pollutant penetration across building envelopes. Atmospheric Environment, 2001, 35(26): 4451–4462
    [85]周涛,杨瑞昌.应用微通道热泳脱除可吸入颗粒物的可行性研究.环境科学学报, 2004, 24(6): 1079-1083
    [86] Talbot L, Cheng R K, Schefer R W, et al. Thermophoresis of particles in a heated boundary layer. Journal of Fluid Mechanics, 1980, 101(4): 737-758
    [87]刘树森.人体散发微生物气溶胶在室内的传播和运动规律的研究: [天津大学博士学位论文].天津:天津大学, 2007, 18-24
    [88]由长福,祁海鹰,徐旭常. Basset力研究进展与应用分析.应用力学学报, 2002, 19(2): 13, 23, 33
    [89] Saffman P G. The lift on a small sphere in a slow shear flow. Journal of Fluid Mechanics, 1965, 22(2): 385-400
    [90] Baker P H, Sharples S, Ward I C. Air flow through cracks. Building and Environment, 1987, 22(4): 293-304
    [91] Hanley J T, Ensor D S, Smith D D, et al. Fractional aerosol filtration efficiency of in-duct ventilation air cleaners. Indoor Air, 1994, 4(3): 169-178
    [92] Lee K W, Gieseke J A. Simplified calculation of aerosol penetration through channels and tubes. Atmospheric Environment, 1980, 14(9): 1089-1094
    [93] Xu M D, Nematollahi M, Sextro R G, et al. Deposition of tobacco-smoke particles in a low ventilation room. Aerosol Science and Technology, 1994, 20(2): 194-206
    [94] Fogh C L, Byrne M A, Roed J, et al. Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios. Atmospheric Environment, 1997, 31(15): 2193-2203
    [95] Abadie M, Limam K, Allard F. Indoor particle pollution: effect of wall textures on particle deposition. Building and Environment, 2001, 36(7): 821-827
    [96] Thatcher T L, Lai A C K, Moreno-Jackson R, et al. Effects of room furnishings and airspeed on particle deposition rates indoors. Atmospheric Environment, 2002, 36(11): 1811-1819
    [97] Byrne M A, Goddard A J H, Lange C, et al. Stable tracer aerosol deposition measurements in a test chamber. Journal of Aerosol Science, 1995, 26(6): 645-653.
    [98] Offermann F J, Sextro R G, Fisk W J, et al. Control of respirable particle in indoor air with portable air cleaners. Atmospheric Environment, 1985, 19(11): 1761-1777
    [99] Lai A C K, Byrne M A, Goddard A J H. Experimental studies of the effect of rough surfaces and air speed on aerosol deposition in a test chamber. Aerosol Science and Technology, 2002, 36(10): 973-982
    [100] Corner J, Pendlebury E D. The coagulation and deposition of a stirred aerosol. In: Proceedings of the Physical Society. Fort Halstead, 1951, B64: 645-654
    [101] Crump J G, Seinfeld J H. Turbulent deposition and gravitational sedimentation of an aerosol in a vessel of arbitrary shape. Journal of Aerosol Science, 1981,12(5): 405-415
    [102] McMurry P H, Stanbouly S H, Dean J C, et al. Air and aerosol infiltration into homes. ASHRAE Transactions, 1985, 91A: 255-263
    [103] Nazaroff W W, Cass G R. Mass-transport aspects of pollutant removal at indoor surfaces. Environment International, 1989, 15(1-6): 567-584
    [104] Shimada M, Okuyama K, Kousaka Y. Influence of particle inertia on aerosol deposition in a stirred turbulent flow field. Journal of Aerosol Science, 1989, 20(4): 419-429
    [105] Benes M, Holub R F. Aerosol wall deposition in enclosures investigated by means of a stagnant layer. Environment International, 1996, 22(S1): S883-S889
    [106] Okuyama K, Kousaka Y, Yamamoto S, et al. Particle loss of aerosol with particle diameters between 6 and 200nm in stirred tank. Journal Collide Interface Science, 1986, 110(1): 214-223
    [107] Uijttewaal W S J, Oliemans R V A. Particle dispersion and deposition in direct numerical and large eddy simulations of vertical pipe flows. Physics Fluids, 1996, 8(10): 2590-2604
    [108]谷长城.矩形通风空调管道内尘粒子沉降速度的预测: [建筑科技大学硕士学位论文],西安:西安建筑科技大学, 2006, 6-28
    [109] Caporaloni M, Tampieri F, Trombetti F. Transfer of particles in nonisotropic air turbulence. Journal of the atmospheric sciences, 1975, 32(3): 565-568
    [110] Zhao B, Wu J. Particle deposition in indoor environment: analysis of influencing factors. Journal of Hazardous materials, 2007, 147(1-2): 439-448
    [111] Thatcher T L, Fairchild W A, Nazaroff W W. Particle deposition from natural convection enclosure flow onto smooth surfaces. Aerosol Science and Technology, 1996, 25(4): 359-374
    [112] Schlichting H. Boundary-Layer Theory, 7th Edition. New York: McGraw-Hill, 1979, 29-51
    [113] Sippola M R, Nazaroff W W. Modeling particle loss in ventilation ducts. Atmospheric Environment, 2003, 37(5): 597–609
    [114] Hussein T, Hameri K, Heikkinenc M S A, et al. Indoor and outdoor particle size characterization at a familyhouse in Espoo–Finland. Atmospheric Environment, 2005, 39(20): 3697–3709
    [115] Cheng Y S. Wall deposition of radon progeny and particles in a spherical chamber. Aerosol Science and Technology, 1997, 27(2): 131-146
    [116] Osunsanya T, Prescott G, Seaton A. Acute respiratory effects of ultrafine particles: mass or number? Occupational and Environmental Medicine, 2001, 58(3): 154–159
    [117] Peters A, Wichmann H E., Tuch T, et al. Respiratory effects are associated with the number of ultrafine particles. American Journal of Respiratory and Critical Care Medicine, 1997, 155(4): 1376–1383
    [118] Penttinen P, Timonen K L, Tiittanen P, et al. Number concentration and size of particles in urban air: Effects on spirometric lung function in adult asthmatic subjects. Environmental health Perspectives, 2001, 109(4): 319–323
    [119] Oberdorster G, Gelein R M, Ferin J, et al. Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhalation Toxicology, 1995, 7(1): 111–124
    [120] Oberdorster G, Seaton A W, MacNee K, et al. Particulate air pollution and acute health effects. Lancet, 1995, 345(8943): 176–178
    [121] Berghmansa P, Bleuxa N, Panis L I, et al. Exposure assessment of a cyclist to PM10 and ultrafine particles. The Science of the Total Environment, 2009, 407(4): 1286-1298
    [122] Fisk W J, Faulkner D, Palonen J, et al. Performance and costs of particle air filtration technologies. Indoor Air, 2002, 12(4): 223-234
    [123] Morawska L, He C, Hitchins J, et al. The relationship between indoor and outdoor airborne particles in the residential environment. Atmospheric Environment, 2001, 35(20): 3463-3473
    [124] Koponen I K, Asmi A, Keronen P, et al. Indoor air measurement campaign in Helsinki, Finland-the effect of outdoor air pollution on indoor air. Atmospheric Environment, 2001, 35(8): 1465-1477
    [125]熊志明,张国强,彭建国等.大气可吸入颗粒物对IAQ的影响研究进展.建筑热能通风空调, 2004, 24(2): 32-36;
    [126]熊志明,张国强,彭建国等.室内可吸入颗粒物污染研究现状.暖通空调, 2004, 34(4): 32-36
    [127] Ozkaynak H, Xue J, Weker R, et al. The Particle TEAM (PTEAM) study: analysis of the data. North Carolina: US EPA. Draft Final Report(Ⅲ), 1993
    [128] Koutrakis P, Briggs S L K. Source apportionment of indoor aerosols in Suffolk and Onondaga Counties. Environment Science and Technology, 1992, 26(3): 521-527
    [129] Ozkaynak H, Xue J, Spengler J, et al. Personal exposure to airborne particles and metals: results from the Particle TEAM Study in Riverside, CA. Journal of Exposure Analysis and Environment Epidemiology, 1996, 6(1): 57-78
    [130] Jones A P. Indoor air quality and health. Atmospheric Environment, 1999, 33(28): 4535-4564;
    [131] Rufus D E, Jurvelin J, Saarela K, et al. VOC concentrations measured in personal samples and residential indoor, outdoor and workplace microenvironments in EXPOLIS-Helsinki, Finland. Atmospheric Environment, 2001, 35(27): 4531-4543
    [132]程胜高,刘卓,黄凡等.吸烟对室内空气的影响及防治措施.环境保护, 2002, 04: 30-31
    [133] Hildemann L M, Markowski G R, Cass G R. Chemical composition of emissions from urban sources of fine organic aerosol. Environmental Science & Technology, 1991, 25(4): 744-759
    [134] Martin, P., et al., Environmental tobacco smoke (ETS): a market cigarette study. Environment International, 1997, 23(1): 75-90
    [135] Zhou R, Li S, Zhou Y, et al. Comparison of environmental tobacco smoke concentrations and mutagenicity for several indoor environments. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2000, 465(1-2): 191-200
    [136] Lefcoe N M, Inculet I I. Particulates in domestic premises II. Ambient levels and indoor-outdoor relationship. Archives of Environmental Health, 1975, 30(12): 565-570
    [137] Kamens R, Lee C, Wiener R, et al. A study to characterize indoor particle in three non-smoking homes. Atmospheric Environment, 1991, 25(5-6): 939-948
    [138]Raunemaa T, Kulmala M, Saari H, et al. Indoor air aerosol model: transport indoors and deposition of fine and coarse particles. Aerosol Science and technology, 1989, 11(1): 11-25
    [139] Hambraeus A, Bengtsson S, Laurell G. Bacterial contamination in a modern operating suite. Importance of floor contamination as a source of airborne bacteria. Journal of Hygiene (London), 1978, 80 (2): 169-174.
    [140] Karlsson E, Fangmark I, Berglund T. Resuspension of an indoor aerosol. Journal of Aerosol Science, 1996, 27 (Suppl. 1): S441-S442
    [141] Karlsson E, Berglund T, Stromqvist M, et al. The effect of resuspension caused by human activities on the indoor concentration of biological aerosols. Journal of Aerosol Science, 1999, 30 (Suppl. 1), S737-S738.
    [142] Buttner M P, Cruz-Perez P, Stetzenback L D, et al. Measurement of airborne fungal spore dispersal from three types of flooring materials. Aerobiologia, 2002, 18(1): 1-11.
    [143] Ferro A R, Kopperud R J, Hildemann L M. Source strengths for indoor human activities that resuspend particulate matter. Environmental Science and Technology, 2004, 38(6): 1759–1764
    [144] Gomes C, Freihaut J, Bahnfleth W. Resuspension of allergen-containing particles under mechanical and aerodynamic disturbances from human walking. Atmospheric Environment, 2007, 41(25): 5257-5270
    [145] Sehmel G A. Particle resuspension: a review. Environment International, 1980, 4(1): 107-127
    [146]谢海英,陈康民.街谷交通空气污染对IAQ影响的研究进展.建筑热能通风空调. 2006, 25 (5): 69-72
    [147]张道方,黄晓晶,杨晓燕等.交通主干道旁室内外空气污染物分析.上海理工大学学报, 2005, 27(1): 21-26;
    [148] Bae H, Yangb W, Chung M. Indoor and outdoor concentrations of RSP, NO2 and selected volatile organic compounds at 32 shoe stalls located near busy roadways in Seoul, Korea. Science of the Total Environment, 2004, 323(1-3): 99–105
    [149]吴俊,赵彬.通风管道内颗粒的沉降规律研究及应用.暖通空调, 2008, 38(4): 18-23
    [150]郝翠萍,齐振文,杨艳霞.公共场所集中空调通风管道卫生状况调查.健康教育与健康促进, 2007, 2(4): 36-37
    [151] Bouilly J, Limam K, Beghein C, et al. Effect of ventilation strategies on particle decay rates indoors: An experimental and modelling study. Atmospheric Environment, 2005, 39(27): 4885–4892
    [152]索娜,于振峰,孙鹏程.室内空气净化方法及性能评价.中国医院建筑与装备, 2005, 6(3): 18-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700