用户名: 密码: 验证码:
快速流态化统一动力学模型的构建与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
快速流化床是一种高效的气固接触技术,在化工、冶金、能源等各领域的应用受到人们愈来愈多的关注,显示出了诱人的应用前景。然而,人们对快速床,尤其是高通量快速流化床复杂的气固流动特性的掌握还不够,大部分快速流化床的研究工作是分散和孤立进行的,相互之间缺少必要的联系。为此,本文构建一个快速流态化统一模型。该模型准确描述了各个快速床动力学参数,并通过实验加以验证。本文对快速流化床气固流动特性和放大规律进行了较系统深入的研究。
     根据快速流化床的基本流动特性、A型噎塞和C型噎塞的特征与定义,本文建立了一个统一的快速床模型——分相共存模型。以A型噎塞的修正Yang公式为本构方程‘,很好预报了快速床在固体流率不变的条件下降低操作气速时床层由A型噎塞向C型噎塞的连续过渡。在分相共存快速床动力学模型的基础上进行分析,导出了上部稀相固含率与下部浓相固含率的表达式。同时模型很好预报了高密度快速床的形成,且上下部固含率不再随固体循环流率的增加而发生明显的变化。
     通过介观机理解析及子模型的优化,对已建立的快速流化床动力学统一模型进行了改进。包括:i)模型参数n和气相速度有效系数F(β)的介观模型确定方法; ii)A型噎塞Yang公式摩擦系数的实验相关;以及iii)Harris团聚物尺寸关联式的无因次重建。统一模型的预报得到了文献中数百个不同实验结果很好的验证。
     推导了快速床底部―一次携带最大固体流率‖Gs,th的计算方法,对快速床颗粒浓度轴向分布由―指数单调下降‖到―S型分布‖的转变做出了合理的解释和预报。分析整理了浓相区高度的实验关联式。推导了过渡段和加速段的―动量平衡高度‖的计算方法,并给出了整个床层固含率轴向分布的模型预报方法。模型对于快速流态化的最小固体流率也做了预报,实现了模型的完整性。
     将本模型推广到加压快速流化床实验当中进行验证,得到了相似的结果,为快速流化床系统的结构设计、运行和优化提供参考。
Fast fluidization is a high efficient technology for gas-solids contacting,heat and mass transfer, and reaction process. It has arrested more and moreattention in the chemical industry, metallurgy, energy and other fields,showing very good prospects. However, the master of gas-solid flowcharacteristics of fast fluidization, especially of high-density fluidized bed isnot enough. Most research work was done dispersed and isolated. They arelack of contacting. Therefore,it is necesory to develope a unified model forfast fluidization dynamics, in which various dynamic characteristics andrelated parameters should be fully descripted and predicted.
     According to the basic flow characteristics of fast fluidization, thedefinitions of type A choking and type C choking, an separate-phase-coexisted model was established on the thesis. Modified Yang‘s formulapredicting type A choking is used as the ' constitutive equation '. The modelpredicted successfully the continuous transition from type A to type Cchoking under the conditions of constant solid flow rate and reducedoperating gas velocity. Based on the force analysis for the upward dilutephase, the method for calculating the solids holdups of upper and bottomregions were obtained. Then, the model predicted the formation ofhigh-density circulating bed, showing that the solids holdups in the upper and the bottom regions were no longer changed with the increasing solid flowrate after high-density circulating bed formed.
     The established dynamic model was further improved through themechanistic analysis and model optimization. They are: i) the mesoscopicmechanistic ananysis to determine model parameter n and gas phase velocityeffective coefficient F(β); ii) the experimental re-correlation of friction factorfor modified Yang‘s formula; iii) the dimensionless reconstruction ofHarris‘s correlation for cluster size. The model results were well matchedwith hundreds experimental results available in the literature.
     The calculation method of―the maximum one-though solid carring forthe bottom bed‖Gs,thwas derived. The transition of axial solids holdupdistribution from―exponential function‖to―S distribution‖was explainedreasonably. The calculation method for―momentum balance height‖oftransition section and accelerating section was deducted. Then,the method topredict the axial distribution of bed solids holdup was completed. The modelpredictions of the minimum solid flow rate for fast fluidization were alsoperformed, which brought further the completeness of the model.
     Finally, the model was extended to the pressurized circulating fluidizedbed, and similar results were obtained. It provides useful reference forstructure design, operation and optimization of fast fluidized bed system.
引文
[1] Andreux R, Gauthier T, Chaouki J et,―New Description of Fluidization Regimes‖, AIChE Journal,2005,51,1125-1130.
    [2]白丁荣、金涌、俞芷青.循环流态化(I),化学反应工程与工艺,1991,7(2),202-206.
    [3] Wilhelm R H, Kwauk M. Chem Eng Prog,1948,44(3):201.
    [4] Lewis W K, Gillilan E R, and Bauer W C. Characteristics of Fluidized Particles, Ind. Eng.Chem.,1949,41,1104-1117.
    [5] Shingles T M, and McDonald A F. Commercial Experience with Synthol CFB Reactors, CirculatingFluidized Bed Technology II (Edited by Basu P, and Large J F),1988, pp.43-50, Pergamon Press,Oxford.
    [6] Reh L. Fluidized Bed Processing, Chem. Eng. Prog,1971,67(2).58-63.
    [7] Grace J R. Contacting Modes and Behaviour Classification of Gas-solid and Other Two-PhaseSuspensions, Can. J. Chem. Eng,1986,64,353-361.
    [8] Yerushami J, Tuner D H, and Squires A M. The fast Fluidized Bed, Ind. Eng. Chem. Process Des. Dev.,1976,15(1),47-53.
    [9] Li Y and Kwauk M. The Dynamics of Fast Fluidization, Fluidization (Edited by Grace J R, andMatsen J L M),1980, pp.537-544, Plenum Press, New York.
    [10] Tung Y, Li J, Kwauk M, Radial voidage profiles in a fast fluidized bed, Fluidization’88: Science andTechnology (edited by Kwauk M, Kunii D), Beijing: Science Press,1988,139-145.
    [11] Avidan A A. Yerushalmi J., Bed expansion in high velocity fluidization, Powder Tech,1982,32:223-232.
    [12]李佑楚,陈丙瑜,王凤鸣,王永生,郭慕孙.快速流态化的研究,化工冶金,1980,(4):20.
    [13] Monceaux L, Azzi M Molodtsof Y, Large J R, Overall and local characterization of flow regimes in acirculating fluidized bed, Circulating Fluidized Bed (Edited by Basu P), Pergamon Press,1986:147.
    [14]张斌.快速流化床中气体速度径向分布的研究[D].北京:中国科学院化工冶金研究所,1990.
    [15] Yang Y, Jin Y, Yu Z, Wang Z,Bai D. Circulating Fluidized Bed Technology III(Edited by Basu P,Horio M, Hasatani M), Pergamon Press,1991:201-206.
    [16]李佑楚,王凤鸣,戴殿卫,王永生,朱谦.快速流态化——攀枝花铁精矿快速流态化特性.北京:中国科学院化工冶金研究所,1978,02.
    [17] Jin Y, Yu Z, Qi C, Bai D, Fluidization’88: Science and Technology (edited by Kwauk M, Hasatani M),Beijing: Science Press,1988,165-173.
    [18]吴培.快速流化床中气体混合特性的研究[D].北京:中国科学院化工冶金研究所,1988.
    [19] Grace J R. High-velocity Fluidized Bed Reactors, Chem. Eng. Sci.,1990,45,1953-1966.
    [20]张瑞英等.化学反应工程与工艺,1985,1(2).25-29.
    [21] Grace J R, Issangya A S, Bai D, Bi H T, and Zhu J X, Situating the High-Density Circulating FluidizedBed, AICHEJ,1999,45,2108-2116.
    [22] Bi H T and Zhu J X, Static Instability Analysis of Circulating Fluidized Beds and Concepts of HighDensity Risers, AICHEJ,1993,39,1272-1280.
    [23] Zhu J X and Bi H T, Distinctions between Low Density and High Density Circulating Fluidized Beds,Can. J. Chem. Eng.,1995,73,644-649.
    [24] Issangya A S, Bai D R, Grace J R and Zhu J X, Solids Flux Profiles in a High–Density CirculatingFluidized Bed Riser, Fluidization IX,(eds by Fan L S, and Knowlton T M), Engineering Foundation,New York,1998,pp.197-204.
    [25] Issangya A S, Bai D R, Bi H T, Lim K S, Zhu J X and Grace J R, Axial Solids Holdup Profiles in aHigh-Density Circulating Fluidized Bed Riser, Circulating Fluidized Bed Technology V,(eds byKwauk M and Li J), Science Press, Beijing,1997,pp.60-65.
    [26] Issangya A S, Bai D R, Bi H T, Lim K S, Zhu J X and Grace J R, Suspension Densities in aHigh-Density Circulating Fluidized Bed Riser, Chem.,Eng.,Sci.,1999,54,5451-5460.
    [27] Issangya A S, Bai D R, Grace J R, Lim K S and Zhu J X, Flow Behavior in the Riser of aHigh-Density Circulating Fluidized Bed, AICHE Symp, Ser.,1997,93(317),25-30.
    [28] Issangya A S, Grace J R, Bai D R and Zhu J X, Further Measurements of Flow Dynamics in aHigh-Density Circulating Fluidized Bed Riser, Powder Technol.,2000,111,104-113.
    [29] Wei F, Yang G Q, Jin Y and Yu Z, The Characteristics of Cluster in a High Density CirculatingFluidized Bed, Can J Chem. Eng.,1995,73,650-655.
    [30] Wei F, Lu F B, Jin Y and Yu Z, Mass Flux Distribution in Circulating Fluidized Bed, PowderTechnol.,1997,91,189-195.
    [31] Bai D, Shibuya E, Masuda Y, Nishio K, Nakagawa N and Kato K, Distinction between Upward andDownward Flows in Circulationg Fluidized Beds, Powder Technol.,1995,84,75-81.
    [32] Bai D, Shibuya E, Masuda Y, Nakagawa N and Kato K, Characteriztion of the Gas FluidizationRegimes Using Pressure Fluctuations, Powder Technol.,1996,87,105-111.
    [33] Kunni D and Levenspiel O, Fluidization Engneering (2nd), Butterworth-Heinemann, New York,1991.
    [34]漆小波,循环流化床提升管气固两相流动力学研究,博士学位论文,2003,四川大学化学工程所.
    [35]金涌、祝京旭、汪展文、俞芷青等.流态化工程原理,北京,清华大学出版社,2001年8月第1版.
    [36] Bai D R, Jin Y, and Gan N J, The Axial Distribution of the Cross Sectionally Averaged Voidage in FastFluidized Beds, Powder Technol.,1992,(71),51-58.
    [37] Yu Z Q and Jin Y, Applications of Circulating Fluidized Bed, Chapter2in: Fast Fluidization-Advances in Chemical Engineering, eds by Kuwak M, New York, Acadamic Press,1994.
    [38] Mastellone M L and Arena U, The effect of Particle Size and Density on Solids Distribution along theRiser of a Circulating Fluidized Bed, Chem.,Eng.,Sci.,1999,54,5383-5391.
    [39] Avidan A A, Edwards M M and Owen H, Innovative Improvements Highlight FCC‘s Past and Future,Oil Gas J.,1990,8,33-58.
    [40] Pugsley T, Lapointe D, Hirschberg B and Werther J, Exit Effects in Circulating Fluidized Bed Risers,Can,J,Chem.Eng.1997,75,1001-1010.
    [41]黄卫星、石炎福、祝京旭.16m高提升管中FCC颗粒固含率的研究,石油化工,2001,30(3),354-357.
    [42]黄卫星、肖泽仪、石炎福、祝京旭.气固两相上行流动中颗粒加速行为的研究.化学反应工程与工艺,2001,17(2),101-106.
    [43]黄卫星、易彬、杨颖.循环床气固提升管中颗粒浓度的轴向分布,四川大学学报(工程科学版),2000,32(6),38-41.
    [44] Brereton C M H and Grace J R, End Effects in Circulating Fluidized Bed Hydrodynamics, CirculatingFluidized Bed IV,(ed. by Avidan A A.),AICHE, New York,1994,pp.137-144.
    [45]白丁荣、易江临、金涌、俞芷青.快速流化床入口结构对床层流化的影响,化工机械,1995,第22卷第2期,10-14.
    [46] Bi J J and Zhu J X, Influence of Ring-Type Internals on Axial Pressure Distribution in CirculatingFluidized Bed. Can.J. of Chem.Eng.1999,77(1),26-34.
    [47] Zhu J X, Salah M, and Zhou Y M, Effect of Ring-Type Internals to the Flow Structure inside aCirculating Fluidized Bed, J.Chem.Eng.Japan,1997,30,928-937.
    [48] Blackadder W, Morris M, Renfelt E and Wardheim L, Development of an Integrated Gasification andHot Gas Cleaning Process Using Circulating Fluidized Bed Technology. Circulating Fluidized BedTechnology III,(eds. Basu P, Horio M and Hasatani M), Pergamon Press, Oxford,1991, pp.511-518.
    [49] Kullendorff A, and Anderson S, A General Review of Combustion in Circulating Fluidized Beds,Circulating Fluidized Bed Technology,(ed. by Basu P), Pergamon Press, Toronto,1986,pp.83-96.
    [50] Zhu J X and Wei F, Recent Developments of Downer Reactors of other Types of Short ContactReactors, Fluidization VIII,(eds. by Large J F and Laguerie C), Engineering Foundation, NewYork,1996,pp.501-510.
    [51] Liang W G, Jin Y and Yu Z Q, Synthesis of Linear Alkylbenzene in a Liquid-Solid CirculatingFluidized Bed Reactor, J. Chem. Tech. Biotech,1994,61,4-8.
    [52] Liang W G, Wu Q W, Yu Z Q, Jin Y and Wang Z W, Hydrodynamics of Gas-Liquid-Solid Three-PhaseCirculating Fluidized Bed, Fluidization’94: Science and Technology,(ed. Organizing Committe),Chemical Industry Press, Beijing,1994,pp.329-337.
    [53] Berruti F, Chaouki J, Godfroy L, Pugsley R S and Patience G Y, Hydrodynamics of CirculatingFluidized Ved Risers: A Review. Can.J.Chem.Eng,1995,73:579-602.
    [54] Reh L, New Efficient High-Temperature Processes with Circulating Fluid Bed Reactors,Chem.Eng.Technol.1995,18,75-89.
    [55] Kwauk M, Wang N D, Li Y, Chen B Y and Shen Z Y, Fast Fluidization at ICM, Circulating FluidizedBed Technology,(ed. by Basu P), Pergamon Press, Oxford,1986,pp.33-62.
    [56] Rhodes M J, and Geldart D, The Hydrodynamics of Recirculating Fluidized Beds, CirculatingFluidized Bed Technology,(ed. by Basu P), Pergamon Press, New York,1986, pp.193-200.
    [57] Rhodes M J, and Geldart D, A Model for the Circulating Fluidized Bed, Powder Technol.,1987,53,155-162.
    [58] Rhodes M J, Modelling the Flow Structure of Upward-flowing Gas-solid Suspensions, PowderTechnol.,1990,60,27-38.
    [59] Rhodes M J, Zhou S, Hirama T and Cheng H, Effects of Operating Conditions on LongitudinalMixing in a Circulating Fluidized Bed Riser, AIChEJ.,1991,37,1450-1458.
    [60] Rhodes M J, Mineo H and Hirama T, Particle Motion at the Wall of Circulating Fluidized Bed,Powder Technol.,1992,70,207-214.
    [61] Rhodes M J, Zhou S, Hirama T and Cheng H, Effects of Operating Conditions and Scale on SolidsMixing in Risers of Circulating Fluidized Beds, Fluidization IV,(ed. by Potter O E and Nicklin D J),Engineering Foundation, New York,1992,pp.249-256.
    [62] Rhodes M J and Cheng M, Operation of an L-valve in a Circulating Fluidized Bed of Fine Solids,Circulating Fluidized Bed Technology IV,(ed. by Avidan A A), AIChE, New York,1994, pp.240-245.
    [63] Yang W C, A Model for the Dynamics of a Circulating Fluidized Bed Loop, Circulating Fluidized BedTechnology II,(ed. by Basu P, and Large J F), Pergamon Press, New York,1988,pp.181-191.
    [64] Adanez J, Gayan P, Garcia-Labiano F and de Diego L F, Axial Voidage Profiles in Fast Fluidized Beds,Powder Technol.,1994,81,259-268.
    [65] Li Y and Wang F, CREEM Seminar. Beijing: Institute of Chemical Metallurgy,1985,183.
    [66]王维,李佑楚.快速流化床的整体模拟,化工冶金,2000,21(3),274-277.
    [67] Bai D, Jin Y and Yu Z, Acceleration of Particles and Momentum Exchange Between Gas and Solids inFast Fluidized Beds, Fluidization’91-Science and Technology,(ed. by Kwauk M. and Hasatani, M),Science Press, Beijing,1991,pp.46-55.
    [68]白丁荣,金涌,俞芷青.快速流化床一维轴向稳态流动模型,高校化学工程学报,1990,4(2),112-121.
    [69]白丁荣,甘俊,金涌,俞芷青.催化裂化提升管再生器烧焦过程的简化模拟计算,石油炼制,1991,(10),20-27.
    [70]甘俊,白丁荣,金涌,俞芷青.催化裂化提升管烧焦的主要影响因素,石油炼制,1992,22(4),26-33.
    [71]甘俊,白丁荣,俞芷青,金涌.催化裂化提升管再生器多段进气及其模拟,石油炼制,1993,23(11),49-56.
    [72]甘俊,金涌,俞芷青,白丁荣,魏飞.两段提升管催化裂化再生器的计算机模拟,石油加工及化工,1995,26(2),1-6.
    [73] Bai D, Zhu J X, Jin Y and Yu Z, Novel Designs and Simulations of FCC Riser Regeneration, Ind. Eng.Chem. Res.,1997,36,4543-4538.
    [74] Nakamura K and Capes C E, Vertical Pneumatic Conveying: A Theoretical Study of Uniform andAnnular Particle Flow Model, Can.J.Chem.Eng,1973,51,39-46.
    [75] Bai D, Zhu J, Jin Y and Yu Z, Internal Recirculation Flow Structure in vertical Upward FlowingGas-Solids Suspensions, Part I. A core/annular model, Powder Technol.,1995,85,171-178.
    [76] Bai D, Jin Y and Yu Z, The Two-channel Model for Fast Fluidization, Fluidization’88-Science andTechnology,(ed. by Kwauk M and Hasatani M), Science Press, Beijing,1988,pp.110-115.
    [77] Brereton C M H, Grace J R and Yu J, Axial Gas Mixing in a Circulating Fluidized Bed, CirculatingFluidized Bed Technology III,(ed. by Basu P and Large J F), Pergamon Press, Toronto,1988,pp.307-314.
    [78] Berruti F and Kalogerakis N, Modelling of the Internal Flow Structure of Circulating Fluidized Beds,Can. J. Chem. Eng.,1989,67,1010-1014.
    [79] Kagawa H, Mineo H, Yamazaki R and Yoshida K, A Gas-solid Contacting Model for Fast FluidizedBed, Circulating Fluidized Bed Technology III,(ed. by Basu P, Horio M and Hasatani M), PergamonPress, Oxford,1991,pp.551-556.
    [80] Bi H T, Jiang P J, Jean R H and Fan L S, Coarse-particle Effects in a Multisolid Circulating FluidizedBed for Catalytic Reactions, Chem.Eng.Sci.,1992,47,3113-3124.
    [81] Senior R C and Brereton C, Modelling of Circulating Fluidized Bed Solids Flow and Distribution,Chem. Eng. Sci.,1992,47,281-296.
    [82] Ouyang S and Potter O E, Consistency of Circulating Fluidized Bed Experimental Data, Ind. Eng.Chem. Res.,1993,32,1041-1045.
    [83] Horio M, Morishita K, Tachibana O and Murata M, Solid Distribution and Movement in CirculatingFluidized Beds, Circulating Fluidized Bed Technology II,(ed. by Basu P, and Large J F), PergamonPress, Oxford,1988,pp.147-154.
    [84] Ishii H, Nakajima T and Horio M, The clustering Annular Flow Model of Circulating Fluidized Beds,J. of Chem. Eng. Japan,1989,22,484-490.
    [85] Richardson J F, and Zaki W N, Sedimentation and Fluidization: Part I, Trans. Inst. Chem. TransportBed, Chem. Eng. Sci.,1954,40,259~267.
    [86] Harris B J, Davidson J F and Xue Y, Axial and Radial Variation of Flow in Circulating Fluidized BedRisers, Circulating Fluidized Bed Technology IV,(ed. by Avidan A A), AIChE, New York,1994,pp.103-110.
    [87] Bai D, Zhu J, Jin Y and Yu Z, Internal Recirculation Flow Structure in vertical Upward FlowingGas-Solids Suspensions, Part II. Flow structure Predictions, Powder Technol.,1995,85,179-188
    [88] Hartge E U, Li Y and Werther J, Analysis of the Local Structures of the Two-Phase Flow in FastFluidized Bed, Circulating Fluidized Bed Technology,(ed. by Basu P), PergamonPress,Oxford,1986,pp.153-160.
    [89] Hartge E U, Li Y and Werther J, Flow Structures in Fast Fluidized Beds, Fluidization V,(Edited byOstergaard O and Sorensen A), Engineering Foundation, New York,1986, pp.345-352.
    [90] Hartge E U, Resner D and Werther J, Solids Concentration and Velocity Patterns in CirculatingFluidized Beds, Circulating Fluidized Bed Technology II,(ed. by Basu P and Large J F), PergamonPress, Oxford,1988, pp.165-180.
    [91] Koenigsdorff R and Werther J, Gas-solids Mixing and Flow Structure Modeling of Upper Dilute Zoneof a Circulating Fluidized Bed, Powder Technol,1995,82,317-329.
    [92]李静海,两相流多尺度作用模型和能量最小方法,博士学位论文.1987,北京:中国科学院化工冶金研究所.
    [93] Li J, Tung Y, and Kwauk M, Energy Transport and Regime Transition in Particle-fluid Two-PhaseFlow, Circulating Fluidized Bed Technology II,(ed. by Basu P and Large J F), Pergamon Press,Oxford,1988, pp.75-87.
    [94] Li J, Tung Y, and Kwauk M, Method of Energy Minimization in Multi-scale Modelling ofParticle-fluid Two-Phase Flow, Circulating Fluidized Bed Technology II,(ed. by Basu P and Large J F),Pergamon Press, Oxford,1988, pp.89-103.
    [95] Li J, Tung Y, and Kwauk M, Axial Voidage Profile of Fluidized Beds in Different Operating Regions,Circulating Fluidized Bed Technology II,(ed. by Basu P and Large J F), Pergamon Press, Oxford,1988, pp.193-203.
    [96] Li J, Tung Y, and Kwauk M, Application of the Principle of Energy Minimization to Fluid-dynamicsof Circulating Fluidized Bed, Circulating Fluidized Bed Technology III,(ed. by Basu P, Horio M, andHasatani M), Pergamon Press, Oxford,1991, pp.581-586.
    [97] Sinclair J L and Jackson R, Gas-particle Flow in a Vertical Pipe with Particle-particle Interactions,AIChE. J.1989,35,1473-1486.
    [98] Gidaspow D, Bezburuah R and Ding J, Hydrodynamics of Circulating Fluidized Beds: Kinetic TheoryApproach, Fluidization VII,(ed. by Potter O E and Nicklin D J), Engineering Foundation, New York,1994,pp.75-82.
    [99] Gidaspow D, Tsno Y P and Luo K M, Computed and Experimental Cluster Formation and VelocityProfiles in Circulating Fluidized Beds, Fluidization VI,(ed. by Grace J R, Shemilt L W andBergougnou M A), Engineering Foundation, New York,1989,pp.81-88.
    [100] Pita J A and Sundaresen S, Gas-solid Flow in Vertical Tubes, AIChE J.,1991,37,1009-1018
    [101] Pita J A and Sundaresen S, Developing Flow of a Gas-particle Mixture in a Vertical Riser, AIChEJ.,1993,39,541-552
    [102] Louge M, Masktorakos E and Jenkins J T, The Role of Particle Collisions in Pneumatic Transport,J Fluid Mech.,1991,231,345
    [103] Zhang C, Lin Y Y, Zhang M C, Zhang J. Experimental Study of CaO Facilitated CellulosePyrolysis in a Drop Tube Pyrolyzer[J]. Energy source part A. Accepted at August9th,2012
    [104] Lin Y Y, Zhang C, Zhang M C, Zhang J. Deoxygenation of Bio-oil during Pyrolysis of Biomassin the Presence of CaO in a Fluidized-Bed Reactor[J]. Energy&Fuels.2010,24:5686-5695
    [105]林郁郁,张楚,章明川,张健,徐旭常.CaO伴随生物质热裂解制油同时脱氧的小型流化床实验研究[J].燃料化学学报.2011,39(3).
    [106]林郁郁,张楚,张健,章明川.CaO伴随生物质热裂解固体产物分析[J].工程热物理学报,2011,第32卷第12期,2133-2136.
    [107]林郁郁,陶然,张楚,张健,章明川.CaO伴随纤维素快速热裂解的落体试验研究[J].动力工程,2009,第29卷第5期,492-496.
    [108] Lim K S, Zhu J X and Grace J R, Hydrodynamics of Gas Fluidization, Int. J. MultiphaseFlow,1995,21(supplyment),141-193
    [109] Marcus S, Chaplin G and Pugsley T, The Hydrodynamics of the High-Density Bottom Zone in aCFD Riser Analyzed by Means of Electrical Capacitance Tomography(ECT), Chem. Eng.Sci.,2000,55,4129-4138
    [110] Schlichthaerle P, Werther J, Axial pressure profiles and solids concentration distributions in theCFB bottom zone, Chemical Engineering Science,1999,54,5485-5493.
    [111] P rssinen J H and Zhu J X, Particle Velocity and Flow Development in a Long and High-FluxCirculating Fluidized Bed Riser, Chem. Eng. Sci.,2001,56,5295-5303.
    [112] P rssinen J H and Zhu J X, Solid Concentration and Flow Development in a Long, High-FluxCirculating Fluidized Bed Riser, AIChE J.,2001,47,2197-2205.
    [113] Bai D, Jin Y and Yu Z Q, Flow Regimes in Circulating Fluidized Beds, Chem. Eng.Technol.,1993,16,307-313.
    [114] Bi H T, Grace J R and Zhu J X, Regimes Transitions Affecting Gas-Solids Suspensions andFluidized Beds, Chem. Eng. Res. Des.,1995,73,155-161.
    [115]章明川,张楚,林郁郁,徐旭常.快速床动力学统一模型–由A型噎塞向C型噎塞的连续转变I:模型构建.工程热物理学报,2011,第32卷第5期:895-899.
    [116]张楚,林郁郁,章明川.快速床动力学统一模型II:上部稀相与下部浓相固含率的预报.工程热物理学报,2012,第33卷第4期:694-698.
    [117]张楚,林郁郁,章明川.快速床动力学统一模型III:高密度流化床的预报.工程热物理学报,2013,第34卷第1期:177-180.
    [118]章明川,张楚.快速床动力学统一模型IV:介观解析与子模型优化.工程热物理学,2013,第34卷第4期:清样已校.
    [119]张楚,章明川.快速床动力学统一模型:固含率轴向分布的预报.中国工程热物理学会2012年燃烧学术年会会议论文,并已被工程热物理学报录用(2012,12,11).
    [120] Mingchuan Zhang, Chu Zhang, A type-A-choking-oriented unified model for fast fluidizationdynamics [J]. Powder Technology,2013,241:126-141.
    [1] Li Y, Hydrodynamics, in Advances in Chemical Engineering Volume20: Fast fluidization,(ed. byKwauk M), San Diego, Academic Press,1994,85-146.
    [2]李佑楚,陈丙瑜,王凤鸣等,快速流态化的研究,化工冶金,1980(4):20-45.
    [3]李佑楚,流态化过程工程导论,科学出版社,2008(1):36-38.
    [4] Bi H T, Grace J R, and Zhu J X. On Types of Choking in Vertical Pneumatic Systems, Int. J.Multiphase Flow,1993,19,1077~1092.
    [5] Zenz F A and Othmer D F, Fluidization and Fluid-Particle Systems, New York, Reinhold,1960.
    [6] Yousfi Y, Gau G., Aerodynamique de l‘ecoulement vertical de suspensionsconcentreesgaz-solides-I.regimesd‘ecoulement et stabliliteaerodynamique, Chemical EngineeringScience,1974, Vol.29.pp.1939-1946.
    [7] Yang, W, A Mathematical Definition of Choking Phenomenon and a Mathematical Model forPredicting Choking Velocity and Choking Voidage, AIChE J.,1975,21,1013-1015.
    [8] Smith T N, Limiting Volume Fractions in Vertical Pneumatic Transport, Chem. Eng. Sci.,1978,33,745-750.
    [9]白丁荣,金涌,俞芷青,循环流态化(I),化学反应工程与工艺,1991,7(2),202-213.
    [10] Xu G W, Nomura K, Gao S Q, and Kato K. More fundamentals of dilute suspension collapse andchoking for vertical conveying systems [J]. AIChE J,2001,47(10):2177-2196.
    [11] Leung, L S, Wiles R J, and Nicklin D J, Correlation for PredictingChoking Flowrates in VerticalPneumatic Conveying, Ind. Eng.Chem. Process Des, Dev.,1971,10,183.
    [12] Chong Y O, and Leung L S, Comparison of Choking Velocity Correlations in VerticalPneumaticConveying,‘‘Powder Technol.,1986,47,43.
    [13] Matsen J M, Mechanics of Choking and Entrainment, Powder Technol.,1982,32,21.
    [14] Yang W C. Criteria for Choking in Vertical Pneumatic Conveying Lines, Powder Technology,1983,35,143-150.
    [15] Punwani D V, Modi M V, and Tarman P B, A Generalized Correlation for Estimating ChokingVelocity in Vertical SolidsTransport, Int. Powder Bulk Solids Handling and Processing Conf.,Chicago,1976, p. I11.
    [16] Bi H T, and Fan L S. Regime Transitions in Gas-solid Circulating Fluidized Beds,AIChE AnnualMeeting, LA,1991,Nov.17~22.
    [17] White B R. Chapter8: Particle Dynamics in Two-phase Flows. In Encyclopedia of Fluid Mechanics,in Vol.4. Solids and Gas-Solids Flows.(ed. by Cheremisinoff N P). Houston: Gulf PublishingCompany,1986;239.
    [18]岑可法,樊建人,工程气固多想流动的理论及计算,杭州,浙江大学出版社,1990.
    [19]刘大有,两相流体动力学,北京:高等教育出版社,1993,25.
    [20] Soo S L, Pariculates and Continuum: Multiphase Fluid Dynamics. London, Hemisphere PublishingCorporation,1989,4.
    [21] Soo S L, Multiphase Fluid Dynamics, Beijing, Science Press,1990,17.
    [22] Morsi S A and Alexander A J, J of Fluid Mechanics,1972,55,193.
    [23] Clift R and Gauvin W H, Can. J. Chem. Eng.,1971,49(4),439.
    [24] Kunni D and Levenspiel O, Fluidization Engineering, New York, John Wiley&Sons, Inc.,1969.
    [25] Li Y, Chen B, Wang F and Wang Y, Fluidization‘82, Science and Technology,(ed. by Kwauk M,Kunni D), Beijing, Science Press,1982,124.
    [26]白丁荣,金涌,化工学报,1991,42(6),697.
    [27]李静海,两相流多尺度作用模型和能量最小方法,博士学位论文.1987,北京:中国科学院化工冶金研究所.
    [28] Li J, Tung Y, and Kwauk M, Energy Transport and Regime Transition in Particle-fluid Two-PhaseFlow, Circulating Fluidized Bed Technology II,(ed. by Basu P and Large J F), Pergamon Press,Oxford,1988, pp.75-87.
    [29] Li J, Tung Y, and Kwauk M, Method of Energy Minimization in Multi-scale Modelling ofParticle-fluid Two-Phase Flow, Circulating Fluidized Bed Technology II,(ed. by Basu P and Large J F),Pergamon Press, Oxford,1988, pp.89-103.
    [30] Li J, Tung Y, and Kwauk M, Axial Voidage Profile of Fluidized Beds in Different Operating Regions,Circulating Fluidized Bed Technology II,(ed. by Basu P andLarge J F), Pergamon Press, Oxford,1988,pp.193-203.
    [31] Lewis W K, Gilliland E R and Bauer W C, Characteristics of Fluidized Particles, Ind. Eng.Chem.,1949,41,1104-1117.
    [32] Yerushami J and Cankurt N T, Further Studies of the Regimes of Fluidization, Powder Technol.,1979,24,187-205.
    [33] Li Y and Kwauk M, The Dynamics of Fast Fluidization, Fluidization,(ed. by Grace J R, and Matsen JM), Plenum Press, New York,1980, pp.537-544.
    [34] Chen J C, Clusters, AIChESymp. Ser.92(313)1996,1–5.
    [35] Sharma A K, Tuzla K, Matsen J, Chen J C, Parametric effects ofparticle size and gas velocity oncluster characteristics in fast fluidizedbeds, Powder Technol.2000,111,114–122.
    [36] Fligner M, Schipper P H, Sapre A V, Krambeck F J, Two-phasecluster model in riser reactors: impactof radial density distributionyields, Chem. Eng. Sci.1994,49,5813–5818.
    [37] Gu W K, Chen J C, A model for solid concentration in circulatingfluidized beds,(ed. by Fan L S,Knowlton T M), Proceedings of the9th Engineering Foundation Conference on Fluidization,Durango,CO, Engineering Foundation, NY,1998, pp.501–508.
    [38] Xu G and Li J, Analytical solution of the energy minimisationmultiscalemodel for gas–solidtwo-phase flow, Chem. Eng. Sci.,1998,53(7),1349–1366.
    [39] Wei F, Cheng Y, Yu Z, Axial and lateral solids dispersion in a binarysolid riser, Circulating FluidizedBedTechnology V,(ed. by Kwauk M, Li J H), Blackie Academic and Professional, London,1996,pp.182–187.
    [40] Van der Meer E H, PhD dissertation, University of Cambridge,1997.
    [41]毕小涛,祝京旭,金涌,俞芷青.快速床中颗粒凝聚形态的分类与讨论,第六届全国流态化会议文集,1993,162-167.
    [42] Bai D, Jin Y and Yu Z., Cluster Observation in a Two-dimensional Fast Fluidized Bed,Fluidization’91, Science and Technology,(ed. by Kwauk M and Hasatani M), Science Press, Beijing,1991,00.110-115.
    [43] Horio M and Kuroki H, Three-dimensional Flow Visualization of Dilutely Dispersed Solids inBubbling and Circulating Fluidized Beds, Chem.Eng.Sci.1994,49,2413-2421.
    [44] Fujima Y, Tagashira K, Tagahashi Y, Ohme S, Ichimura S and Arakawa Y, Conceptual Study on FastFluidization Formation, Circulating Fluidized Bed Technology III,(ed. by Basu P, Horio M andHasatani M), Tokyo, Japan,1991,pp.129-138.
    [45] Harris A T, Davidson J F, and Thorpe R B, The prediction of particle cluster properties in the near wallregion of a vertical riser, Powder Technol.2002,127,128–143.
    [46] Subbarao D, A model for cluster size in risers, Powder Technology.2010,199,48–54.
    [47] Bi H T and Zhu J, Static Instability Analysis of Circulating Fluidized Bed and the Concept of HighDensity Risers, AIChEJ.,1993,39,1272-1280.
    [48] Bi H T, Grace J R and Zhu J X, Flow Regime Diagrams for Gas-solid Fluidization and UpwardTransport, Int. J. Multiphase Flow.,1995,57,261-271.
    [49] Issangya A S, Bai D, Bi H T, Lim K S, Zhu J X and Grace J R, Axial Voidage Profiles in a HighDensity Circulating Fluidized Bed Riser, Circulating Fluidized Bed V (Edited by Kwauk M and Li J),1997, pp.60-65, Science Press, Beijing.
    [50] Wei F, Yang G Q, Jin Y and Yu Z, The Characteristics of Cluster in a High Density CirculatingFluidized Bed, Can J Chem. Eng.,1995,73,650-655.
    [51] Wei F, Lu F B, Jin Y and Yu Z, Mass Flux Distribution in Circulating Fluidized Bed, PowderTechnol.,1997,91,189-195.
    [52] Bai D, Shibuya E, Masuda Y, Nishio K, Nakagawa N and Kato K, Distinction between Upward andDownward Flows in Circulationg Fluidized Beds, Powder Technol.,1995,84,75-81.
    [53] Bai D, Shibuya E, Masuda Y, Nakagawa N and Kato K, Characteriztion of the Gas FluidizationRegimes Using Pressure Fluctuations, Powder Technol.,1996,87,105-111.
    [54] Weinstein H, Graff R A, Meller M and Shao M J, The Influence of Imposed Pressure Drop Across aFast Fluidized Bed, Fluidization IV,(ed. by Kunni D and Toei R), Engineering Foundation, New York,1984, pp.299-306.
    [55]高士秋,快速流化床颗粒循环速率及轴向空隙率分布,硕士学位论文,沈阳化工研究院,1990.
    [56] Yerushami J and Avidan A, High-velocity Fluidization, Fluidization,(ed. by Davison J F, Clift R andHarrison D), Acadamic Press, London,1985, pp.225-291.
    [57] Yang G L and Sun J K, Transition of Flow Regime from Turbulent to Fast Fluidization and from Fastto Dilute Phase Transport, Fluidization’91, Science and Technology(ed. by Kwauk M and Hasatani M),Science Press, Beijing,1991,pp.37-45.
    [58] Bai D, Jin Y, Yu Z and Zhu J X, The Cross-sectionally Averaged Voidage Profiles in Fast FluidizedBeds, Powder Technol,1992,71,51-58.
    [59] Bai D and Kato K, Saturation Carrying Capacity of Gas and Flow Regimes in CFB, J. Chem. Eng.Japan,1995,28,179-185.
    [60]李佑楚,王凤鸣,戴殿卫等.快速流态化——攀枝花铁精矿快速流态化特性.中国科学院化工冶金研究所,1978,02.
    [1] Dry R, Beeby C J, Applications of CFB technology to gas-solid reaction, Circulating fluidized Beds,(Ed. by Grace J R, Avidan A A, and Knowlton T M), Black Academic&Professional, London,1997,Chapter12
    [2] Avidan A A, Fluid catalytic cracking, Circulating fluidized Beds.(Ed. by Grace JR, Avidan A A, andKnowlton T M), Black Academic&Professional, London,1997, Chapter13.
    [3] Masten J M, Design and scale-up of CFB catalytic reactors, Circulating fluidized Beds,(Ed. by GraceJR, Avidan A A, and Knowlton T M), The Black Academic&Professional, London,1997, Chapter14.
    [4] Du B, Warsito W, and Fan L S, Behavior of the dense phase transportation regime in a circulatingfluidized bed, Ind. Eng. Chem. Res.45(2006)3741-3751.
    [5] Yang W C, Proc. of Pneumotransport III, BHRA Fluid Engineering, Cranfield, Bedford, U.K.1976,Paper E5, E5.49~E5.55
    [6] Yang W C, Criteria for Choking in Vertical Pneumatic Conveying Lines, Powder Technology,1983,35,143-150
    [7] Yousfi Y, Gau G., Aerodynamique de l‘ecoulement vertical de suspensions concentreesgaz-solides-I.regimes d‘ecoulement et stablilite aerodynamique, Chemical Engineering Science,1974,Vol.29.pp.1939-1946
    [8] Punawani D V, Modi M V, Trarman P B, Proc. Int. Powder and Build Solids Handling andProcessing Conference, Chicago, Illinois. May,1976.
    [9] Leung L S, Vertical pneumatic conveying: A flow regime diagram and a review of choking versusnon-choking systems, Powder Technology25(1980):185
    [10] Xu G W, Nomura K, Gao S Q, and Kato K. More fundamentals of dilute suspension collapse andchoking for vertical conveying systems [J]. AIChE J,2001,47(10):2177-2196.
    [11] Bai D, Kato K, Quantitative estimation of solids holdups at dense and dilute regions of circulatingfluidized beds, Powder Technol.1999,101,183–190.
    [12] Qi X B, Zhu J, Huang W X, A new correlation for predicting solids concentration in the fullydeveloped zone of circulating fluidized bed risers, Powder Technology,2008,188,64–72
    [13] Kunii D, Levenspiel O, Flow modeling of fast fluidized beds, in: P. Basu, M. Horio, M. Hasatani(Eds.), Circulating Fluidized Bed Technology, vol. III, Pergamon Press, Oxford,1991, pp.91–98.
    [14] Ouyang S, Potter O E, Consistency of circulating fluidized bed experimental data, Ind. Eng. Chem.Res.1993,32,1041–1045.
    [15] Issangya A S, Grace J R, Zhu J X, Bottom and exit region solids hold-ups in circulating fluidized bedrisers,, Circulating Fluidized Bed Technology, vol. VIII(ed. by Cen K), International AcademicPublishers, Hangzhou,2005, pp.209–215.
    [16] Issangya A S, Bai D, Bi H T, Lim K S, Zhu J, Grace J R, Suspension densities in a high-densitycirculating fluidized bed riser, Chemical Engineering Science,1999,54,5451-5460
    [17] Grace J R, Issangya A S, Bai D, Bi H, Zhu J, Situating the high-density circulating fluidized bed,AIChE J.45(1999)2108-2116.
    [18] Smith T N. Limiting volume fractions in vertical pneumatic transport. Chem. Eng. Sci,1978(33):745~749
    [19] Bi H T, Grace J R, and Zhu J X. On Types of Choking in Vertical Pneumatic Systems, Int. J.Multiphase Flow,1993,19,1077~1092
    [20] Bi H T, and Fan L S. Regime Transitions in Gas-solid Circulating Fluidized Beds, AIChE AnnualMeeting, LA,1991,Nov.17~22
    [21]李佑楚,流态化过程工程导论[M],北京,科学出版社,2008.
    [22] Mueller P, Reh L, Drag and pressure drop in accelerated gas-solid flow, Preprint Volume for CFB-IV,(ed. by Aviadn A A), AIChE, New York,1993.
    [23] Yang N, Wang W, Ge W, Wang L N, and Li J H, Simulation of heterogeneous structure in acirculating fluidized bed riser by combining the two-fluid model with the EMMs approach, Ind. Eng.Chem. Res.43(2004)5548-5561
    [24] Richardson J F, and Zaki W N. Sedimentation and Fluidization: Part I, Trans. Inst. Chem. TransportBed, Chem. Eng. Sci.,1954,40,259~267
    [25] Harris A T, Davidson J F, Thorpe R B, The prediction of particle cluster properties in the near wallregion of a vertical riser, Powder Technol.2002,127,128–143
    [26] Li Y,3. Hydrodynamics. Advances in Chemical Engineering Vol.20: Fast fluidization (ed. by KwaukM). San Diego: Acadamic Press,1994.86~146
    [27] Li Y, Chen B, Wang F et al, Hydrodynamic correlations for fast fluidization. In Fluidization: Scienceand technology (ed. by Kwauk M, Kunii D). Beijing: Science Press,1982.124~134
    [28] Jin Y, Yu Z, and Zhu J X Novel Configurations and Variants, Circulating Fluidized Bed(Edited byGrace J R, Avidan A A, and Knowlton T M), Blackie Academic and Professional, London,1997,pp.525~567
    [29] Leva M, Fluidization, McGraw-Hill Book Company, New York,1959.
    [30] Bi H T, and Zhu J, Static Instability Analysis of Circulating Fluidized Bed and the Concept of HighDensity Risers, AIChE J.,1993,39,1272-1280
    [31] Wei F, Lin H, Jin Y, and Yu Z, Profiles of Particle Velocity and Solids Fraction in a High Density Riser,Powder Technol.1998,100,183-189
    [32] Bai D, and Kato K, Generalized Correlations of Solids Holdups at Dense and Dilute Regions ofCirculating Fluidized Beds, Proceedings7thSCEJ Symp on CFB, Tokyo, Japan,1994, pp.137-144
    [33] Issangya A S, Bai D, Grace J.R, Zhu J X, Lim K S and Bi H T, Flow behaviour in the Riser of ahigh-density Circulating Fluidized Bed, AIChESymp. Ser.,93(317),25-30
    [1]章明川,张楚,林郁郁,徐旭常.快速床动力学统一模型–由A型噎塞向C型噎塞的连续转变I:模型构建.工程热物理学报,2011,第32卷第5期:895-899.
    [2]张楚,林郁郁,章明川.快速床动力学统一模型II:上部稀相与下部浓相固含率的预报.工程热物理学报,2012,第33卷第4期:694-698.
    [3]张楚,林郁郁,章明川.快速床动力学统一模型III:高密度流化床的预报.工程热物理学报,2013,第34卷第1期:177-180.
    [4] Basu P, and Fraser S A, Circulating Fluidized Bed Boilers: Design and Operations. The Butterworth-Heinemann Press, Boston,1991.
    [5] He Y, Deen N G, Ven Annaland S, and Kuipers J A M, Gas-solid turbulent flow in a circulatingfluidized bed riser: Experimental and numerical study of monodisperse particle system. Ind. Eng.Chem. Res.,2009,48:8091-8097.
    [6] Davidson J F, and Harrison D, Fluidised Particles. The University Press, Cambridge,1963.
    [7] Yang N, Wang W, Ge W, Wang L N, and Li J H, Simulation of heterogeneous structure in acirculating fluidized bed riser by combining the two-fluid model with the EMMs approach, Ind. Eng.Chem. Res.43(2004)5548-5561.
    [8] Li J, Kuipers J A M, Gas-particle interactions in dense gas fluidized beds, Chemical EngineeringScience58(2003)711-715.
    [9] Grace J R, and Clift R, On the two-phase theory of fluidization. Chem. Eng. Science,1974,29:327.
    [10] Yang W C, A mathematical definition of choking phenomenon and a mathematical model forpredicting choking velocity and choking volume fraction. AIChE J,1975,21:1013-1018
    [11] Yang W C, Criteria for Choking in Vertical Pneumatic Conveying Lines. Powder Technology,1983,35:143-150.
    [12] Bi H T, Grace J R, and Zhu J X, Types of choking in vertical pneumatic systems. Int. J. MultiphaseFlow,1993,19:1077-1092.
    [13] Xu G, Nomura K, Gao S, and Kato K. More fundamentals of dilute suspension collapse and chockingfor vertical conveying systems. AIChE J.,2001,47:2177-2196.
    [14] Harris A T, Davidson J F, and Thorpe R.B. The prediction of particle cluster properties in the near wallregion of a vertical riser, Powder Technology,2002,127:128–143.
    [15] Subbarao D. A model for cluster size in risers. Powder Technology,2010,199:48-54.
    [16] Ouyang S, and Potter O E, Consistency of circulating fluidized bed experimental data. Ind. Eng. Chem.Res.,1993,32:1041-1045.
    [17] Grace J R, Issangya A S, Bai D, Bi H, and Zhu J, Situating the high-density circulating fluidized bed.AIChE J.,1999,45:2108–2116.
    [18] Issangya A S, Bai D, Bi H T, Lim K S., Zhu J, and Grace J R, Suspension densities in a high-densitycirculating fluidized bed riser. Chem. Eng. Sci.,1999,54:5451–5460
    [1]章明川,张楚,林郁郁,徐旭常.快速床动力学统一模型——由A型噎塞向C型噎塞的连续转变I:模型构建[J],工程热物理学报,Vol32,5(2011),895-899.
    [2]张楚,林郁郁,章明川.快速床动力学统一模型II——上部稀相与下部浓相固含率的预报[J],工程热物理学报,Vol33,4(2012),694-698.
    [3]张楚,林郁郁,章明川.快速床动力学统一模型III:高密度流化床的预报.工程热物理学报,2013,第34卷第1期:177-180.
    [4]章明川,张楚.快速床动力学统一模型IV:介观解析与子模型优化.工程热物理学报,2013,第34卷第4期:清样已校.
    [5]李佑楚.流态化过程工程导论.科学出版社,北京,2008.
    [6]金涌,祝京旭,汪文展,俞芷青.流态化工程原理.清华大学出版社,北京,2011.
    [7] Bai D and Kato K, Saturation Carrying Capacity of Gas and Flow Regimes in CFB,J.Chem.Eng.Japan,1995,28,179-185.
    [8] Ouyang S. and Potter O E., Consistency of Circulating Fluidized Bed Experimental Data, Ind. Eng.Chem. Res.,1993,32,1041-1045
    [9] Li J, Tung Y, and Kwauk M, Application of the Principle of Energy Minimization to Fluid-dynamicsof Circulating Fluidized Bed, Circulating Fluidized Bed Technology III,(ed. by Basu P, Horio M andHasatani M), Pergamon Press, Oxford,1991, pp.581-586.
    [10] Kunni D and Levenspiel O, Fluidization Engneering(2nd), Butterworth-Heinemann, New York,1991.
    [11] Issangya A S, Bai D and Bi H T et al, Suspension densities in a high-density circulating fluidized bedriser, Chemical Engineering Science,54,1999,5451-5460.
    [12]李佑楚,流态化过程工程导论[M],北京,科学出版社,2008.
    [13] Bai D, Nakagawa N, Shibuya E, Kinoshita H and Kato K, Study on Binary Solids CirculatingFluidized Beds, Proceedings of6thSCEJ Symp. on CFB, pp.99-109, Tokyo Japan,1993
    [14] Harris A T, Davidson J F, Thorpe R B, The prediction of particle cluster properties in the near wallregion of a vertical riser, Powder Technology127,2002,128–143.
    [1]章明川,张楚,林郁郁,徐旭常.快速床动力学统一模型I–由A型噎塞向C型噎塞的连续转变I:模型构建.工程热物理学报,2011,第32卷第5期:895-899.
    [2]张楚,林郁郁,章明川.快速床动力学统一模型II:上部稀相与下部浓相固含率的预报.工程热物理学报,2012,第33卷第4期:694-698.
    [3]张楚,林郁郁,章明川.快速床动力学统一模型III:高密度流化床的预报.工程热物理学报,2013,第34卷第1期:177-180.
    [4]章明川,张楚.快速床动力学统一模型IV:介观解析与子模型优化.工程热物理学报,2013,第34卷第4期:清样已校.
    [5]张楚,章明川.快速床动力学统一模型V:固含率轴向分布的预报.中国工程热物理学会2012年燃烧学术年会会议,并已被工程热物理学报录用(2012,12,11).
    [6] Anthony E J. Fluidized bed combustions of alternative solids fuels; status, successes and problems ofthe technology [J]. Progress in Energy and Combustion Science,1995,21(3);239-268.
    [7]殷上轶,金保昇,钟文琪等,加压循环流化床气固流动特性实验研究I——颗粒体积分布特性,东南大学学报,2012,第42卷第2期,308-312.
    [8] Yin S Y, Jin B S, Zhong W Q et al. Solids Holdup of High Flux Circulating Fluidized Bed at ElevatedPressure[J]. Chem.Eng.Technol.2012,35, No.5,904-910.
    [9] Grace J R, Issangya A S, Bai D, et al. Situating the high-density circulating fluidized bed[J]. AICHEJournal,1999,45(10):2108-2116.
    [10] Wang X F, Jin B S, Zhong W Q,et al. Flow behaviors in a high-flux circulating fluidized bed[J].International Journal of Chemical Reactor Engineering,2008,7(6),79-81.
    [11]王小芳,金保昇,钟文琪.高通量循环流化床上升管气固流动特性实验研究[J].中国电机工程学报,2009,29(17):27-31.
    [12] Yang W C, A mathematical definition of choking phenomenon and a mathematical model forpredicting choking velocity and choking volume fraction. AIChE J,1975,21:1013-???.
    [13] Punwani D V, Modi M V, and Tarman P B,―A Generalized Correlation for Estimating ChokingVelocity in Vertical Solids Transport,‖Int. Powder Bulk Solids Handling and Processing Conf.,Chicago, p.I11(1976).
    [14] Yang W C, Criteria for Choking in Vertical Pneumatic Conveying Lines, Powder Technology,1983,35:143-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700