用户名: 密码: 验证码:
陕西省农业非点源污染评价与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境是人类赖以生存和发展的基础。然而,人类活动过程中不断地产生和释放污染物进入地球环境,当污染物超过环境容量时,就会对生态系统产生损害,形成污染现象。点源污染由于有明确的排污点,排污过程简单,容易控制。农业非点源污染起源于分散、多样的地区,地理边界和发生位置难以识别和确定,随机性强、成因复杂、潜伏周期长,因而很难有效控制。本研究在对农业非点源污染的相关概念及污染的特征与途径进行明确界定与分析下,构建了农业非点源污染研究的理论方法体系,并结合具体实际,对陕西省农业非点源污染进行了研究。
     1.构建了农业非点源污染研究的理论方法体系。禽畜粪尿、农村生活污染等营养污染物的估算采用排污系数法,根据产生污染的动物个体数量和各污染物的排污系数估算;而化肥、农药、农膜等农资投入型的污染采用农资投入的耕地负荷来衡量;固体废弃物中,作物秸秆和农村生活垃圾分别根据经济系数和人均排放量估算其产生总量。农业非点源污染的农业生态安全评价指标体系是评价污染的重要手段,遵循其构建原则,建立指标体系并通过层次分析法,综合评价农业非点源污染的农业生态安全;农业非点源污染作为一种社会经济现象,农业经济的发展必然对环境产生重要影响,环境库兹涅茨曲线作为反映农业经济增长和环境污染之间关系的假说,在农业非点源污染研究中具有广泛的应用价值。作为非市场价值评估法的一种,意愿价值评估法在农户支付意愿和农户意识行为对农业非点源污染的影响研究中具有重要作用。
     2.对陕西农业非点源污染进行了定量估算与衡量。通过计算分析,2008年陕西农村生活污染物排放总量达830154.14 t,其中COD_(cr)的排放量710594.65 t,占85.6%,TN排放量100990.91 t,占12.17%,TP排放量18568.58 t,占2.24%。农村生活污染等标污染负荷为56.32×10~9 m~3,其中TP最多,占总等标污染负荷排放的43.42%。2008年陕西省禽畜粪尿污染物排放总量为102.00万t,其中TN、TP、COD_(cr)污染物分别为18.51万t、4.27万t、79.23万t。禽畜粪尿总等标污染负荷达63.42×10~9 m~3,其中TN和TP所占比例较高,分别达65.18%和28.84%。2008年全省平均化肥耕地负荷为585.84 kg/hm~2,远远超过世界平均及发达国家为控制化肥污染所设定的225 kg/hm~2的施用水平上限,也高于全国的平均水平(430.43 kg/hm~2),而农药施用量变化不大,2008年农药耕地负荷为3.85 kg/hm~2。2008年陕西省作物秸秆产生量达2003.82万t,其中,小麦和玉米秸秆是作物秸秆的主要来源,分别占作物秸秆总产生量的43.91%和50.99%。自1990年以来,农膜施用水平不断攀升,2008年农膜耕地负荷已达到9.85 kg/hm~2。2008年陕西省农村生活垃圾产生量为869.95万t,耕地负荷平均为3.06 t/hm~2,农村生活垃圾产生总量主要分布在农村人口多的地区,而耕地较少、农村人口密度大的地区其耕地负荷较高。通过聚类分析法,全省11个地区可分为4类污染类型区:杨凌和汉中属于重度污染区;宝鸡、安康和商洛属于中度污染区;西安、铜川、咸阳和渭南属于化肥过量施用型的中度污染区;延安和榆林属于轻度污染区。
     3.建立了陕西省农业非点源污染的农业生态安全评价指标体系。并从社会经济安全、农业资源安全和资源环境安全3个层次,共选取15个指标,利用层次分析法,建立相应的评价模型,进行综合评价。结果显示,陕西省农业非点源污染的总体生态安全性介于一般和较差之间,属于中等偏低的安全水平。对农业生态安全性进行分区发现:高安全性地区包括延安和榆林;一般安全性地区包括宝鸡、铜川和渭南;较差安全性地区包括咸阳、商洛和安康;极差安全性地区包括杨凌、汉中和西安。全省11个地区农业非点源污染农业生态安全性排名由大到小的顺序为:榆林>延安>渭南>铜川>宝鸡>安康>商洛>咸阳>西安>汉中>杨凌。
     4.对陕西省农业经济发展和农业非点源污染之间库兹涅茨曲线验证表明,农村生活污染、农膜污染和农村生活垃圾污染与农业经济增长之间存在着倒“U”型的EKC关系,且转折点分别为313.18元、336.75元和313.50元(为消除价格变动的数据),目前污染水平已经进入转折期,有降低的趋势。农业财政支持变量和对外开放水平变量的加入,并没有改变各污染源与农业经济增长之间的EKC关系,但城市化水平对各污染的EKC曲线有重大的影响。城乡收入差距对EKC关系的影响是复杂的,未改变生活污染和生活垃圾的EKC曲线,但改变了禽畜粪尿污染的EKC曲线。
     5.通过杨凌和汉中的实地调查,农户对农业非点源污染及治理现状满意度普遍较低,而对农业非点源污染排放认知度比较分散。对于农业非点源污染控制的支付意愿来说,杨凌的农户支付意愿为8.17元,高于汉中农户的支付意愿(4.26元)。农户的收入水平不同,受教育程度差异和农户对污染的感知不同可能是造成支付意愿差异的主要原因。通过相关性分析,男性的支付意愿好于女性;农户年龄越大,其支付意愿越小;农户受教育水平越高,农户收入水平越高,其支付意愿越大。
     6.农业非点源污染控制应从经济手段和管理手段综合进行。其中,庇古手段可以通过对市场化程度高的农业生产资料进行污染税征收,也可以对具有正外部效应的退耕还林还草、废弃物资源化、废弃物处理等工程采取补贴手段实现,而押金退款手段在治理生活垃圾方面具有较好的作用。科斯手段控制陕西农业非点源污染,主要是通过建立排污权交易市场,通过市场作用进行污染调节。排污权交易可以发生在点源污染和农业非点源污染之间,也可以发生在在农业非点源污染的内部,但是政府应当建立适合陕西省实际的排污权(排污许可)。管理手段主要通过最佳管理措施实现(BMPs),是一种重要的非经济手段,包括工程措施体系、耕作措施和管理措施体系,其中工程措施体系可以通过梯田工程、植被过滤带工程、人工湿地系统、多水塘系统等形式实现;耕作措施可以通过少耕、免耕、缓坡地等高耕作、沟垄耕作、残茬覆盖耕作、秸秆覆盖等保护性耕作技术以及配套技术措施。管理措施可以通过综合肥力管理、病虫害综合管理、农田灌溉制度等实现全省农业非点源污染的控制。
Environment is the base of survival and development depended by human being. While as, pollution is always released in global environment during the activities of mankind. Pollution is formed and ecological system is damaged when the amounts of pollutants surpass the environmental capacity. Point source pollution can be easily controlled because of definite pollution discharging pot and simply discharging process. But with scatter source, indiscernibly geographical frontier and releasing pot, strong randomicity, complicated reason of formation, and long latent period, agriculture non-point source pollution is quite difficult to control. In this study, under the definite analysis of conception, characteristics and path of agriculture non-point source pollution, theoretical and methodological systems of agriculture non-point source pollution were erected. And also, empirical studies were made for agriculture non-point source pollution in Shaanxi province based on these theories and methodologies.
     1. Theories and methodologies are built to research agriculture non-point source pollution. Livestock’s manure & urine pollutants and rural domestic pollutants can be computed by being based on pollutant discharging index and the number of livestock or rural population. Pollutants derived from fertilizer, pesticide or agricultural film can be assessed by their load in per capita land area. Crop residues and rural domestic rubbish, as solid wastes, can be assessed based on crop’s harvest indexes and rubbish discharging amounts per capita, respectively. Evaluating indexes system of agricultural ecological security for agriculture non-point source pollution is a very important method to assess pollution, but basic principles and suitable analyzing methods are quite important for indexes system building. As a social and economic phenomenon, development of agricultural economy must effect the environment. As a hypothesis of reflecting the relation between agricultural economic development and environmental pollution, environmental Kuznets curve have widely using value, even if there have some limitation be existed. As one of non-market valuation methods, contingent valuation method plays an important role in researching on how to effect agriculture non-point source pollution by farmer’s willingness to pay and farmer’s conscious.
     2. Agriculture non-point source pollutants in Shaanxi province were quantitatively computed in this study. In 2008, the total discharging amounts of rural domestic pollutants were 830154.14 t. Among these pollutants, the amounts of CODcr, TN and TP were 710594.65, 100990.91 and 18568.58 t, respectively, which were respectively 85.6%, 12.17% and 2.24% of the total rural domestic pollutants. The total equivalent pollution loads of rural domestic pollutants were 56.32×10~9 m~3, and of the TP pollutants were highest, which take up 43.42%. The discharging amounts of livestock’s manure & urine pollutants were 102.00×10~4 t, in which TN, TP and CODcr were 18.51×10~4, 4.27×10~4 and 79.23×10~4 t. The total equivalent pollution loads of livestock’s manure & urine pollutants were 63.42×10~9 m~3, in which TN and TP were very high, taken up 65.18% and 28.84%, respectively. In 2008, average loads of fertilizer were 585.84 kg/hm~2, which were much higher than world’s average level and limited input level set to control agriculture non-point source pollution by developed world, and also higher than the average level of China (430.43 kg/hm~2). The consumption of pesticide has no significant variation, and the loads of pesticide were 3.85 kg/hm~2 in 2008. Outputs of crop’s residues were 2003.82×10~4 t. Wheat’s residues and maize’s residues were the main source, which were respectively 43.91% and 50.99% of the total. Since 1990, input levels of agricultural film have kept going up, and the loads have been up to 9.85 kg/hm~2 in 2008. The outputs of rural domestic rubbish have been up to 869.95×10~4 t in 2008, and the loads were 3.06 t/hm~2. The total outputs of rural domestic rubbish mainly distributed in those regions with large rural population, but those regions with less arable lands and higher density of rural people have higher loads of rural domestic rubbish than other regions. Through methodology of clustering analysis, 4 type of pollution were divided for 11 regions in Shaanxi province: Yangling and Hanzhong belong to heavy polluting area; Baoji, Ankang and Shangluo belong to middle polluting area; Xi’an, Tongchuan, Xianyang and Weinan belong to middle polluting area with excessive fertilizer input; Yan’an and Yulin belong to slight polluting area.
     3. Evaluation indexes system was built to analyze agricultural ecological security of agriculture non-point source pollution in Shaanxi province. In this evaluation indexes system, there have 3 guideline level and 15 indexes included. Then comprehensive analysis was made based on analytic hierarchy process and evaluation model. The results displayed: the general ecological security level of agriculture non-point source pollution in Shaanxi province was between normal security level and low security level. Results of regional zoning of agricultural ecological security for Shaanxi province display: Yan’an and Yulin have high security; Baoji, Tongchuan and Weinan have middle security; Xianyang, Shangluo and Ankang have low security; Yangling, Hanzhong and Xi’an have very low security. The order of agricultural ecological security level for agriculture non-point source pollution in Shaanxi province is: Yulin>Yan’an>Weinan>Tongchuan>Baoji>Ankang>Shangluo>Xianyang>Xi’an>Hanzhong>Yangling.
     4. Through Kuznets hypothesis, Empirical study has been made to analyze the relation between agricultural economic development and agriculture non-point source pollution in Shaanxi province. There exist the inverted-U relation between rural domestic pollutants, agricultural film pollutants, rural domestic rubbish pollution and agricultural economic development. The kickpoint are at the agricultural gross output value per capita of 313.18, 336.75 and 313.50 yuan, respectiovely (without price fluctuation), and at present, pollution levels have been overpass the kickpoint and have the decreasing trends. The variables of agricultural fiscal supports and the opening levels don’t change the EKC relation between agriculture non-point source pollution and agricultural economic development. But urbanization level has great affection to EKC curve of pollutants. The affection of income gap between urban and rural region is complicated to EKC, which doesn’t change the EKC of rural domestic pollution and rural domestic rubbish, but change EKC of livestock’s manure & urine.
     5. Through field studying for Yangling and Hanzhong, results display: farmers have low satisfaction to the current of agriculture non-point source pollution and controlling measures or policies. And also, farmers’cognition degrees were scatter to agriculture non-point source pollution. For controlling agriculture non-point source pollution, the farmer’s willingness to pay in Yangling was 8.17 Yuan which was higher than that in Hanzhong (4.26 yuan). The difference of farmers’income level, education level and perception to pollution may be the main reasons of different willingness to pay. Correlation analysis displays: masculine willingness to pay is higher than feminine; the older the farmers are, the lower the willingness to pay is; those who have higher education level and higher income have higher willingness to pay.
     6. Control of agriculture non-point source pollution should be made integrated environmental economic measures and managing measures. For Pigou measures, pollutants taxes can be levied to well market-oriented agricultural production materials, and also subsidies can give to those engineering with positive externality, such as grain for green projects, project of rural waste resources utilization, treating project for rural waste. Meanwhile, deposit-refund measure can play a positive role in control rural rubbish pollution. Control agriculture non-point source in Shaanxi province with Coase measures mainly need to erect the market of tradable emissions rights, and regulate the pollutants level by market. Deal of tradable emissions rights can be executed between point source pollutants and agriculture non-point source pollutants or within agriculture non-point source pollutants. But tradable emission rights or tradable pollution permits. Managing measures, as a non-economic measure, mainly based on best management practices (BMPs). Managing measures include engineering measure system, tillage management and managing measure system. Among them, engineering measure system mainly include terrace project, vegetative filter strips project, constructed wetland project, multi-ponds system project, et al. Tillage measures mainly include some conservation tillage technologies and their supporting measures, minimum tillage, no-tillage, contour plantation in slope areas, ridge and furrow plantation, stubble mulch plantation, straw mulching, et al. Managing measures can effectively control agriculture non-point source pollution in Shaanxi province by integrated fertility management, integrated pest management and irrigation management.
引文
丁恩俊,谢德体. 2009.基于农业面源污染控制的三峡库区保护性耕作技术.农机化研究, (8): 1-5.
    尹澄清,毛占坡. 2002.用生态工程技术控制农村非点源水污染.人民长江, 13(2): 229-232.
    王志标. 2007.基于SWMM的棕榈泉小区非点源污染负荷研究. [硕士学位论文].重庆:重庆大学.
    王良民,王彦辉. 2008.植被过滤带的研究和应用进展.应用生态学报, 19(9): 2074-2080.
    王莉玮. 2005.重庆市农业面源污染的区域分异与控制. [硕士学位论文].重庆:西南大学.
    王登峰,高超. 2006.农业非点源污染的外部性及其内部化途径分析.生态经济, (10): 256-258.
    王舒曼. 2001.自然资源核算理论与方法.北京:大地出版社.
    代才江,杨卫东,王君丽,等2009.最佳管理措施(BMPs)在流域农业非点源污染控制中的应用.环境管理, (4): 65-67.
    左建武,韩瑞华,王春燕,等. 2008.铜川地区畜禽养殖业污染现状及综合治理.畜禽业, (10): 53-54.
    石晓红. 2008.增长的极限:来自“社会的”和“物理的”制约.经济研究, (5): 31-32.
    曲环. 2007.农业面源污染控制的补偿理论与途径研究. [博士学位论文].北京:中国农业科学研究院.
    朱丹丹. 2007.大庆地区农业非点源污染负荷研究与综合评价. [硕士学位论文].哈尔滨:东北农业大学.
    朱行保. 2008.环境污染:经济增长的极限.沿海企业与科技, (8): 32-35.
    何浩然,张林秀,李强. 2006.农民施肥行为及农业面源污染研究.农业技术经济, (6): 2-10.
    余炜敏. 2005.三峡库区农业非点源污染及其模型模拟研究. [博士学位论文].重庆:西南农业大学.
    宋建辉. 2008.农户经营行为与农业污染关系研究. [硕士学位论文].保定:河北农业大学.
    宋蕾,王永胜,张鸿涛. 2001.关中抽渭灌区农田面源污染对渭河水体的影响.环境保护, (8): 24-26,28.
    宋涛,郑挺国,佟连军. 2007.基于面板协整的环境库茨涅兹曲线的检验与分析.中国环境科学, 27(4): 572-576.
    李怀恩,庞敏,杨寅群,等. 2009.植被过滤带对地表径流中悬浮固体净化效果的试验研究.水力发电学报, 28(6): 176-181.
    李海鹏. 2007.中国农业面源污染的经济分析与政策研究. [博士学位论文].武汉:华中农业大学.
    李东坡. 2004.建设农村全面小康社会的指标体系及评价方法研究. [硕士学位论文].保定:河北农业大学.
    杜江,刘渝. 2009.中国农业增长与化学品投入的库兹涅茨假说及验证.世界经济文汇, (3): 96-108.
    沈满洪. 2001.环境经济手段研究.北京:中国环境科学出版社.
    汪厚安,叶慧,王雅鹏. 2009.农业面源污染与农户经营行为研究——对湖北农户的实证调查与分析. 生态经济, (9): 87-91.
    周立华,杨国靖,张明军,等. 2002.农户经营行为与生态环境的研究.生态经济, (9): 29-31.
    林玉锁,龚瑞忠,朱忠林. 2000.农药与生态环境保护.北京:化学工业出版社.
    武淑霞. 2005.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响. [博士学位论文]. 北京:中国农业科学院.
    金建君,王玉海,刘学敏. 2008.耕地资源非市场价值及其评估方法分析.生态经济, (11): 39-41.
    姜昊. 2009.基于CVM的耕地非市场价值评估研究—以江苏省涟水县为例. [硕士学位论文].北京: 中国农业科学院.
    姜翠玲,崔广柏. 2002.湿地对农业非点源污染的去除效应.农业环境保护, 21(5): 471-473,476.
    姚志勇. 2002.环境经济学.北京:中国发展出版社.
    姚伟,曲晓光,李洪兴,等. 2009.我国农村垃圾产生量及垃圾收集处理现状.环境与健康杂志, 26(1): 10-12.
    胡梅,樊娟,刘春光. 2007.根据根据“源-流-汇”逐级控制理念治理农业非点源污染.天津科技, (6): 14-16.
    胡聃,许开鹏,杨建新,等. 2004.经济发展对环境质量的影响--环境库兹涅茨曲线国内外研究进展. 生态学报, 24(6): 1259-1266.
    茅鼎祥. 1987.也谈等标污染负荷的概念.中国环境监测, (5): 66.
    苑韶峰,吕军,俞劲炎. 2004.氮、磷的农业非点源污染防治方法.水土保持学报, 18(1): 122-125.
    徐玉宏. 2007.我国秸秆焚烧污染与防治对策.环境与可持续发展, (3): 21-23.
    秦耀民,胥彦玲,李怀恩. 2009.基于SWAT模型的黑河流域不同土地利用情景的非点源污染研究. 环境科学学报, 29(2): 440-448.
    秦寿康. 2003.综合评价原理与应用.北京:电子工业出版社.
    秦寿康,傅荣林,陈湛本. 1998.评价方案择优方法一系统工程与可持续发展战略.北京:科学技术文献出版社.
    袁加军,曾五一. 2009.基于生活污染物的环境库兹涅茨曲线.山西财经大学学报, 31(10): 30-34.
    党国英. 2006.中国农业农村农民.北京:五洲传播出版社.
    涂安国,尹炜,陈德强,等. 2009.多水塘系统调控农业非点源污染研究综述.人民长江, 40(21): 71-73.
    崔力拓,李志伟. 2007.坡地退耕还林(草)对土壤磷素流失的影响.水土保持研究, 14(6): 272-274.
    曹利平. 2004.农业非点源污染控制管理的经济政策体系研究. [硕士学位论文].北京:首都师范大学.
    曹国良,张小曳,丹王,等. 2005.秸秆露天焚烧排放的TSP等污染物清单.农业环境科学学报, 24(4): 800-804.
    梁爽,姜楠,谷树忠. 2005.城市水源地农户环境保护支付意愿及其影响因素分析—以首都水源地密云为例.中国农村经济, (2): 55-60.
    梅立永,赵智杰,黄钱,等. 2007.小流域非点源污染模拟与仿真研究——以HSPF模型在西丽水库流域应用为例.农业环境科学学报, 26(1): 64-70.
    章力建,朱立志,蔡典雄,等. 2005.农业立体污染防治中循环经济的运作机制及模式.农业技术经济, (3): 2-5.
    章也微. 2004.从农村垃圾问题谈政府在农村基本公共事务中的职责.农村经济, (3): 89-91.
    章明奎,李建国,边卓平. 2005.农业非点源污染控制的最佳管理实践.浙江农业学报, 17(5): 244-250.
    程炯,林锡奎,吴志峰,等. 2006.非点源污染模型研究进展.生态环境, 15(3): 641-644.
    熊忙利,黄汉军,赵战峰. 2008.对咸阳市畜禽粪便污染环境问题的初探.家畜生态学报, 29(6): 144-146.
    甄杰,任浩. 2009.排污权交易市场构建中的问题与对策研究.科技进步与对策, 26(13): 42-44.
    霍斯特.西伯特著,蒋敏元译. 2002.环境经济学.北京:中国林业出版社.
    薛平拴. 2007.陕西历史人口地理.北京:人民出版社.
    仓恒瑾,许炼峰,李志安,等. 2005农业非点源污染控制中的最佳管理措施及其发展趋势.生态科学, 24(2): 173-I177.
    冯孝杰. 2005.三峡库区农业面源污染环境经济分析. [博士学位论文].重庆:西南大学.
    冯孝杰,张彭成,谯华,等. 2008.三峡库区农户经营规模与农业面源污染的关系研究.后勤工程学院学报, 24(2): 98-101.
    刘永德,何品晶,邵立明. 2008.太湖流域农村生活垃圾面源污染贡献值估算.农业环境科学学报, 27(4): 1442-1445.
    刘治国,刘宣会,李国平. 2008.意愿价值评估法在我国资源环境测度中的应用及其发展刘.经济经纬, (1): 67-69.
    刘传江,侯伟丽. 2006.环境经济学.武汉:武汉大学出版社.
    刘扬,陈劭锋,张云芳. 2009.中国农业EKC研究:以化肥为例.中国农学通报, 25(16): 263-267.
    刘铭环. 2005.竹竿河流域非点源污染研究. [硕士学位论文].北京:清华大学. 卫生部. 2008年2月18日卫生部例行新闻发布会实录. http://卫生部.cn/sofpro/cms/previewjspfile/wsb/cms_0000000000000000207_tpl.jsp?requestCode=27879&CategoryID=574 [2008-02-19]
    叶飞. 2005.江苏省水环境农业非点源污染综合评价与控制对策研究. [硕士学位论文].南京:南京农业大学.
    吴波. 2009.滇池治理工程支付意愿实证研究—以盘龙江为例. [硕士学位论文].杭州:浙江大学. 国家统计局. 2008.中国统计年鉴2008.北京:中国统计出版社.
    孙莉宁. 2005.基于WARMF模型的流域非点源污染分析—以杭埠-丰乐河流域为例. [硕士学位论文]. 合肥:合肥工业大学.
    张大鹏,粟晓玲,马孝义,等. 2009.基于CVM的石羊河流域生态系统修复价值评估.中国水土保持, (8): 39-42.
    张宏艳. 2004.发达地区农村面源污染的经济学研究. [博士学位论文].上海:复旦大学.
    张志强,徐中民,程国栋,等. 2002.黑河流域张掖地区生态系统服务恢复的条件价值评估.生态学报, 22(6): 885-893.
    张美华. 2006.畜禽养殖污染的环境经济学分析—以密云县为例. [硕士学位论文].北京:首都师范大学.
    张琳. 2008.环境污染问题的经济学分析——基于市场失灵与政府失灵的考察.山东财政学院学报, (5): 24-27.
    张琳. 2008.面对中国农业,要常怀忧患之心——访中央财经领导小组办公室副主任、中央农村工作领导小组办公室主任陈锡文.理论视野, (2): 5-8.
    张德英,何朝林,汤祺,等. 2000.陕西关中地区畜禽粪尿处理与利用的调查研究.畜牧与兽医, 32(增刊): 138-140.
    张晖,胡浩. 2009.农业面源污染的环境库兹涅茨曲线验证——基于江苏省时序数据的分析.中国农村经济, (4): 48-53,71.
    张继澍. 2006.高等教育出版社北京:高等教育出版社.
    张维理,武淑霞,冀宏杰. 2004.中国农业面源污染形势估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形势估计.中国农业科学, 37(7): 1008-1017.
    张维理,冀宏杰, H. K,等. 2004.中国农业面源污染形势估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制.中国农业科学, 37(7): 1018-1025.
    张锦文. 2007.宁夏环境质量与经济增长的库兹涅茨关系验证及成因分析.干旱区资源与环境, 21(10): 39-42.
    杨凯,赵军. 2005.城市河流生态系统服务的CVM估值及其偏差分析.生态学报, 25(6): 1392-1396.
    杨静. 2006.保定市土地利用效益评价研究. [硕士学位论文].保定:河北农业大学. 湿地国际.陕西省湿地资源概况. http://www.wetwonder.org/newspic_show.asp?id=946 [2009-10-1] 经济合作与发展组织. 1996.环境管理中的经济手段.北京:中国环境科学出版社.
    苍靖. 2003.我国农业化肥污染控制与管理政策探讨.工业技术经济, (2): 52-53.
    蒋鸿昆,高海鹰,张奇. 2006.农业面源污染最佳管理措施(BMPs)在我国的应用.环境管理, (4): 64-67.
    谢冬明,王科,王绍先,等. 2009.我国农村生活垃圾问题探析.安徽农业科学, 37(2): 786-788.
    贺峰,雷海章. 2005.论生态农业与中国农业现代化.中国人口、资源与环境, (2): 23-26.
    贾蕊,陆迁,何学松. 2006.我国农业污染现状、原因及对策研究.中国农业科技导报, 8(1): 59-63.
    赵立梅. 2005.湿润地区水资源可持续利用研究. [硕士学位论文].南京:河海大学.
    赵串串,董旭,辛文荣,等. 2009.青海湟水河流域不同退耕还林模式水土保持效应.水土保持学报, 23(5): 26-29.
    赵军海. 2007.基于AnnAGNPS模型的双阳水库汇水流域农业非点源污染研究. [硕士学位论文].长春:吉林大学.
    邹桂红,崔建勇. 2007.基于AnnAGNPS模型的农业非点源污染模拟.农业工程学报, 23(12): 11-17.
    陆际恩,谭宇胜,波彭,等. 2008.基于SWOT理论的AHP法在工程风险管理中的应用.施工技术, 38(增刊): 419-421.
    陈永宝,黄传伟,陈志伟,等. 2003. USLE在我国的应用和发展.中国水土保持, (10): 11-13.
    陈石清,蔡珞珈. 2007.环境库兹涅茨曲线假说及其在中国的检验.生态经济, (9): 68-71,86.
    陈百明,周小萍. 2005.中国粮食自给率与耕地资源安全底线的探讨.经济地理, 25(2): 145-148.
    陈利顶,傅伯杰. 2000.农田生态系统管理与非点源污染控制.环境科学学报, 21(2): 98-100.
    陈洪波. 2006.三峡库区水环境农业非点源污染综合评价与控制对策研究. [硕士学位论文].北京:中国环境科学研究院.
    陈洪波,王业耀. 2006.国外最佳管理措施在农业非点源污染防治中的应用.环境污染与防治, 28(4): 279-282.
    陈能汪,张珞平,洪华生,等. 2004.九龙江流域农村生活污水污染定量研究.厦门大学学报(自然科学版), 43(增刊): 249-253.
    陈新锋. 2001.对我国农村焚烧秸秆污染及其治理的经济学分析.中国农村经济, (2): 47-52.
    陈东景,徐中民. 2002.西北内陆河流域生态安全研究一以黑河流域中游张掖地区为例.干旱区地理, 25(3): 219-224.
    马中. 1999.环境与资源经济学概论.北京:高等教育出版社.
    黄丰. 2007.三峡库区农业非点源污染规律调查研究. [硕士学位论文].武汉:华中农业大学.
    黄东风,王果,陈超. 2006.农业面源污染研究概况及发展趋势.中国农村小康科技, (11): 39-45,52.
    Arun S M, Bruce a L, Marc R. 1994. Economic incentives for agricultural nonpoint source pollution control. Journal of the American Water Resources Association, 30(3): 471-480.
    Boyce J. Inequality as a cause of environmental degradation [R]. Political Economy Research Institute, University of Massachusetts at Amherst, 1994.
    Cooper a B, Smith C M, Bottcher a B. 1992. Predicting runoff of water, sediment, and nutrients from a New Zealand grazed pasture using CREAMS. Transactions of the ASAE, 35(1): 105-112.
    Daniels R B, Gilliam J W. 1996. Sediment and Chemical Load Reduction by Grass and Riparian Filters. Soil Sci Soc Am J, 60(1): 246-251.
    Davis. 1963. The value of outdoor recreation: an economic study of the marine woods. . Harvard: Harvard University.
    Dillaha T A, Renear R B, Mostaghimi S, et al. 1989. Vegetative filter strips for agricultural nonpoint source pollution control Transactions of the American Society of Agricultural Engineers, 32(2): 513-519.
    Dowd B M, Press D, Huertos M L. 2008. Agricultural nonpoint source water pollution policy: The case of California's Central Coast. Agriculture, Ecosystems & Environment, 128(3): 151-161.
    Ece. 1992. Protection of inland waters against eutrophication. Geneva: United Nations Economic Commission for Europe.
    Faere R, Grosskopf S, Weber W L. 2006. Shadow prices and pollution costs in U.S. agriculture. Ecological Economics, 56(1): 89-103.
    Freeman Iii a M. Economics I, and Environmental Policy [C]//Vig N J, Kraft M E. Environmental Policy: New Directions for the Twenty First Century. Washington, D.C.: Congressional Quarterly Press, 2005:193-214.
    Heaney J P, Nix S J. Storm Water Management Model: Level I--comparative evaluation of storage-treatment and other management practices [R]. U.S. Environmental Protection Agency, Washington D.C., 1977.
    Henning S, Pierre G, Wassenaar T D, et al. 2006. Livestock's long shadow: environmental issues and options. Rome: Food and Agriculture Organization of the United Nations.
    Izaurralde R C, Williams J R, Mcgill W B, et al. 2006. Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecological Modelling, 192(3-4): 362-384.
    Kahn M E. 1998. A household level environmental Kuznets curve. Economics Letters, 59(2): 269-273.
    Kinnell P I A. 2000. AGNPS-UM: applying the USLE-M within the agricultural non point source pollution model. Environmental Modelling and Software, 15(3): 331-341.
    Knisel W G, Turtola E. 2000. Gleams model application on a heavy clay soil in Finland. Agricultural Water Management, 43(3): 285-309.
    Lal R, Bruce J P. 1999. The potential of world cropland soils to sequester C and mitigate the greenhouse effect. Environmental Science & Policy, 2(2): 177-185.
    Logan T J. 1990. Agricultural best management practices and groundwater protection. Journal of Soil and Water Conservation 45(2): 201-206
    Maas R P, Dressing S A, Spooner J, et al. Best management practices for agriculture nonpoint source control-IV-Pesticide [R]. United States Environmental Protection Agency, 1984.
    Malone R W, Shipitalo M J, Ma L, et al. 2001. Macropore component assessment of the root zone water quality model (RZWQM) using no-till soil blocks. Transactions of the ASAE, 44 (4): 843-852.
    Marc Allen E. 2004. Corporate environmentalism, regulatory reform, and industry self-regulation: toward genuine regulatory reinvention in the United States. Governance, 17(2): 145-167.
    Novotny V. 1999. Diffuse pollution from agriculture--A worldwide outlook. Water Science and Technology, 39(3): 1-13.
    Novotny V, Chesters G. 1981. Handbook of non-point pollution: sources and management. New York: Van Nostrand-Reinhold.
    Ongley E D. 1996. Control of water pollution from agriculture - FAO irrigation and drainage paper 55. Rome: Food and Agriculture Organization of the United Nations.
    Parker D. 2000. Controlling agricultural nonpoint water pollution: costs of implementing the Maryland Water Quality Improvement Act of 1998. Agricultural Economics, 24(1): 23-31.
    Polyakov V, Fares A, Kubo D, et al. 2007. Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed. Environmental Modelling & Software, 22(11): 1617-1627.
    Ramos C, Carbonell E A. 1991. Nitrate leaching and soil moisture prediction with the LEACHM model. Nutrient Cycling in Agroecosystems, 27(2): 171-180.
    Ronald C G, Daniel W B. 1982. Agricultural runoff as a nonpoint externality: A theoretical development. American Journal of Agricultural Economics, 64(3): 547-552
    Savabi M R, Savabi M R, Flanagan D C, et al. 1995. Application of WEPP and GIS-GRASS to a small watershed in Indiana. Journal of Soil and Water Conservation, 50(5): 477-483.
    Schwer C B, Clausen J C. 1989. Vegetative filter treatment of dairy milkhouse qastewater. J Environ Qual, 18(4): 446-451.
    Selden T M, Song D. 1994. Environmental quality and development: is there a Kuznets curve for air pollution emissions? Journal of Environmental Economics and Management, 27(2): 147-162.
    Shafik N, Bandyopadhyay S. Economic growth and environmental quality:time seriesand cross-country evidenc [R]. Background paper for the World Development Report the World Bank, Washington DC, 1992.
    Sharpley A. 1995. Identifying sites vulnerable to phosphorus loss in agricultural runoff. J Environ Qual, 24(5): 947-951.
    Simon K. 1955. Economic growth and income inequality. The American Economic Review, 45(1): 1-28.
    Smil V. 2002. Nitrogen and food production: proteins for human diets. AMBIO: A Journal of the Human Environment, 31(2): 126-131.
    Spruill C A, Workman S R, Taraba J L. 2000. Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Journal of Electronic Packaging, 43(6): 1431-1439.
    Tenkorang F, Lowenberg-Deboer J. 2009. Forecasting long-term global fertilizer demand. Nutrient Cycling in Agroecosystems, 83(3): 233-247.
    Trauth R, Xanthopoulos C. 1997. Non-point pollution of groundwater in urban areas. Water Research, 31(11): 2711-2718.
    Tyagi J V, Mishra S K, Singh R, et al. 2008. SCS-CN based time-distributed sediment yield model. Journal of Hydrology, 352(3-4): 388-403.
    Us-Epa. 1994. Office of Water. Polluted [Brochure](EPA-841-F-94-005). Washington: U.S. Environmental Protection Agency
    Us-Epa. National management measures for the control of nonpoint pollution from agriculture [R]. U.S. Environmental Protection Agency, Office of Water., 2003.
    Venkatachalam L. 2004. The contingent valuation method: a review. Environmental Impact Assessment Review, 24(1): 89-124.
    Webb J, Henderson D, Anthony S G. 2001. Optimizing livestock manure applications to reduce nitrate andammonia pollution: scenario analysis using the MANNER model. Soil Use and Management, 17(3): 188-194.
    Whittemore R C. 1998. The BASINS model. Water Environment & Technology, 10(12): 57-61.
    Xiang P-A, Zhou Y, Huang H, et al. 2007. Discussion on the green tax stimulation measure of nitrogen fertilizer non-point source pollution control - taking the Dongting lake area in China as a case. Agricultural Sciences in China, 6(6): 732-741.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700