用户名: 密码: 验证码:
白菜型油菜种皮色泽基因的图位克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国重要的油料作物,菜籽油是人们生活用油的主要来源。随着国民经济的发展,生活水平的不断提高,对食用油品质的要求也在日益提高。因此,油菜品质育种逐渐成为现代油菜育种的重要组成部分。相同遗传背景下,黄籽油菜较黑籽油菜具有种皮薄、纤维素含量低、含油量高、饼粕蛋白质含量高等诸多优点。同时其榨取的菜籽油杂质少、清澈透明,易受消费者青睐,业已成为油菜品质育种中优良的种质资源。但大面积种植的甘蓝型油菜中并不存在天然的黄籽材料,使得这一优良性状在实际生产中的推广应用成为难题。目前很多科学家利用油菜的近缘种来创造甘蓝型油菜黄籽种质。白菜型油菜作为栽培油菜基本种,蕴含着丰富的黄籽资源,是创建甘蓝型油菜黄籽种质的重要物种之一。本研究通过白菜型黄籽油菜种皮色泽基因的克隆与功能分析,探讨了白菜型黄籽油菜形成的生物学基础。主要内容如下:
     1.初步定位显示,白菜型油菜种皮色泽基因位于A9连锁群SSR标记Lsr126与bsrl之间。在此基础上,利用http://brassicadb.org/brad/网站提供的白菜Scaffold序列信息,开发与目标基因共分离的SSR标记,最终锁定目标基因区段。该区段与拟南芥基因组同源线性比对分析显示,共包含at4g09820到at4g10620共计22个拟南芥同源基因。
     2.依据目标基因区段与拟南芥线性比对结果及白菜型油菜IP引物群体验证,选定BrTT8基因为候选基因。利用Tail技术和白菜基因组序列信息,设计特异引物TuLl/Rl,对白菜型油菜BrTT8基因进行全长扩增。
     3.等位基因序列分析显示,在近等基因系黄籽材料中BrTT8基因内存在大片段序列插入。插入序列分析表明,该序列具有新型转座子Helitron的结构特征:插入序列位于保守碱基AT之间,5’端起始于TC,3’末端结束于CTAG,在3’端上游6bp处有一段17bp长的回文序列。
     4. BrTT8基因在白菜型油菜近等基因系黑、黄籽材料中表达差异检测显示,黄籽材料开花后10天、20天、30天的种子中均未检测到BrTT8基因转录产物,而在黑籽材料中BrTT8基因正常转录。
     5.BrTT8基因全序列提交http://www.expasy.org/tools/protparam/网站进行蛋白结构预测,结果显示BrTT8蛋白包含520个氨基酸,分子量为59.5kD,其编码一个bHLH蛋白,蛋白羧基端附近有一个典型的bHLH结构域。
     6.利用农杆菌介导的转化方法,将BrTT8基因转入拟南芥tt8-1突变体,最终获得25个表型恢复的T1代拟南芥转化株。同时通过香草醛染色分析,转基因植株表型恢复源于原花色素在种皮的积累。由此说明,BrTT8基因有着与拟南芥TT8基因相似的功能,都参与了原花色素合成途径。
     7.白菜型油菜近等基因系黑、黄籽材料间,类黄酮途径结构基因Real-Time PCR分析显示,在黄籽材料中,晚期结构基因BrDFR、BrBAN表达量明显下降。但早期结构基因BrTT6和BrTT7的表达量在黑、黄籽材料间没有显著差异。以上说明在白菜型油菜中,BrTT8同样参与了类黄酮途径晚期结构基因的表达调控。
     8.对白菜型油菜近等基因系黑、黄籽材料,发育中的种子切片观察发现,在白菜型油菜黑籽材料中原花色素经过染色处理后,可以形成红色小颗粒沉积于内种皮细胞层中,而在黄籽材料种皮细胞中,则没有原花色素的沉积。而且,原花色素积累的细胞层在黄籽材料中已不复存在,取而代之的是细胞残片类似物,散落在内种皮细胞层间。但在拟南芥tt8-1突变体与野生型拟南芥的种皮结构显微观察发现,突变体tt8-1内种皮与野生型相比,只存在色素积累的差别,并没有细胞层结构的变化。推测白菜型油菜BrTT8基因与拟南芥TT8基因在功能上虽然相似,但并非完全相同。
     9.白菜型油菜黄籽沙逊是甘蓝型黄籽油菜No.2127-17重要亲本之一,但在以No.2127-17为亲本的近等基因系群体间BrTT8并未表现出多态性,说明甘蓝型油菜No.2127-17种皮色泽性状相关的N9连锁群上的主效QTL位点并非是BrTT8基因位点。
     综上所述,通过白菜型油菜种皮色泽相关基因BrTT8的克隆及功能分析,可初步将白菜型油菜黄籽沙逊与黑籽材料3H129所构建的近等基因系群体中,种皮色泽分离的分子机制概括如下:在该群体中,黄籽材料BrTT8基因由于转座子的大片段插入,引起了BrTT8基因序列的突变,从而导致这一重要转录因子功能的紊乱,使得类黄酮代谢途径中晚期结构基因不能正常转录,原花色素合成受阻,继而不能在黄籽材料内种皮中积累色素,最终种皮呈现无色透明,种子发育为黄籽。
With the sustainable development of national economy, more and more breeders pay attention to rapeseed quality. Yellow-seeded rapeseed is characterized with thinner seed coat and lower hull percentage, which in turn is correlated with higher oil and protein content compared to black-seeded rapeseed under the same genetic background. In addition, the rough oil color is shallow and clear of yellow-seeded rapeseed, which can reduce the manufacturing cost and easy to popular with consumers. So they have been the excellent germplasm resources for rapeseed quality breeding. But there were no natural yellow-seeded material in Brassica napus. This situation brings difficult problem in yellow seeded traits application. As the basic species of rapeseed, B.rapa has abuntant yellow-seeded germplasm, which used to create several artificial synthetic yellow-seeded varieties of B. napus. Through the method of cytology and molecular biology, the seed coat color gene has been cloned in B.rapa. The main points in this study as follow:
     1. The seed coat color gene was located on linkage group9corresponding with the two molecular markers Isr126and bsrl. In addition, we developed co-separation SSR molecular markers that linked to the seed coat color gene from the Scaffold sequence on A9from http://brassicadb.org/brao/.Blast analysis with the Arabidopsis genome showed that the sequence was similar to a region of chromosome4. There are22Arabidopsis genes in the region including at4g09820to at4g10620.
     2. BrTT8gene was seleced as candidate gene, we used tail-PCR technology and B.rapa genome sequences as reference for designing specific primer pair Tu1L and Tu1R to clone the full-length TT8ortholog gene by PCR amplification.
     3. Sequence analysis of two alleles revealed a large insertion of a new class of transposable elements, Helitron in yellow sarson. The sequence analysis showed that the inserted fragment contained the structural characteristics of a recently discovered class of transposable elements in eukaryotes, termed Helitron. The insertion was4320bp, starting with5'TC, ending with3'CTAG, and containing two short palindromic sequences that were possibly formed by the17-bp hairpin that was located near its3'terminus.
     4. We determined the level of mRNA expression in the seeds of the yellow-seeded line in comparison with that of the black-seeded line, to detect the expression changes of the Brassica TT8orthologue gene due to the insertion. There was no mRNA expression detected in the immature seeds of yellow-seeded line.
     5. The BrTT8gene encodes a putative bHLH protein consisting of520amino acids with a predicted molecular weight of59.5kD, and a pI of5.45(http://www.expasy.org/tools/protparam/). The BrTT8protein sequence contains a typical bHLH signature near the C terminus that corresponds with a putative binding domain (http://www.expasy.ch/tools/scanprosite/).
     6. Through the method of agrobacterium-mediated transformation, BrTT8gene was transported into Arabidopsis mutant tt8-1for function complementary experiments.The T2seed progeny originating from25independent T1kanamycin-resistant transformants exhibited phenotypic reversions in seed color compared with the wild type. Furthermore, analysis of PAs deposition during seed development was performed by staining PAs with vanillin in the wild type and T2. These data indicated BrTT8was also involved in the PA synthetize pathway.
     7. The expression level of five flavonoid genes, from two group EBGs and LBGs, were analyzed during the development of seeds in yellow-seed line and black-seed line, respectively. Quantitative Real-time PCR (QRT-PCR) analysis revealed that BrTT8was necessary for the expression of flavonoid LBGs, such as LDOX and BAN in the developing seeds, similar to TT8in Arabidopsis.
     8. Histological analysis showed that the black color of seeds was also due to the PAs accumulation in the plant endothelium layers of immature seeds. However, there was no pigment present in the seed coats of the yellow-seeded plants. Compared with the black-seeded plants, there was no accumulation of red granules in the endothelium layers of yellow seed coat after Safranine O and Fast Green treatments. But compare the seed coat structure of mutants tt8-1with wild-type in Arabidopsis, we found that only the pigment accumulation was different from the wild type, and no change was detected in structure of the seed coat cell Iyer in the tt8-1mutant. Which means BrTT8gene is similar, not completely the same, on the function with TT8gene that participate in the flavonoids synthesis. The BrTT8gene seems to have effect on the structure of seed coat.
     9. Yellow sarson is a major yellow-seeded germplasm, and used to create artificial synthetic yellow-seeded varieties of B. napus No.2127-17. BrTT8gene doesn't show polymorphism in the nearly isogenic line population of No.2127-17. These data showed that the seed coat color main QTL locus of B. napus on N9linkage group is not derived from the BrTT8gene.
     In conclusion, we reported the isolation and functional characterization of the BrTT8in this study. The molecular mechanism of seed coat colore formation between the black and yellow seeded line in nearly isogenic line population as forllow:the alleles in the yellow seeded line showed that a transposable element could disturbed the BrTT8expression in B.rapa. BrTT8encodes bHLH proteins, which is important transcription factor in plant. Additional experiments also demonstrated that BrTT8modulated the expression of flavonoid "LBGs", and the BrBAN could not be normal transcripted, and the proanthocyanidin synthesis biological was blocked. So there was no pigment present in the seed coats of the yellow-seeded plants, and the seed coat showed the colorless, transparent. Therefore, the seed colore also became the yellow.
引文
1.曹睿,黎瑞源,龙艳,孟金陵.甘蓝型油菜及其亲本种BAC末端重复序列分析[J].湖北农业科学,2011,50(19):4073-4076.
    2. 陈丽.人工合成甘蓝型黄籽油菜No.2127-17粒色基因差异表达研究[硕士学位论文].武汉:华中农业大学,2010.
    3.陈建军,王瑛.植物基因组大小进化的研究进展[J].遗传,2009,31(5):464-470.
    4.陈玉萍,刘后利. 甘蓝型油菜种子发育过程中种皮颜色变化[J].中国油料,1995,17(2):1-3.
    5.陈志伟,吴为人.植物中的反转录转座子及其应用[J].遗传,2004,26(1):122-126.
    6.程旭东,凌宏清.植物基因组中的非LTR反转录转座子SINEs和LINEs [J].遗传,2006,28(6):731-736.
    7.丁勇.甘蓝型油菜caleosin基因克隆与表达. [硕士学位论文].武汉:华中农业大学,2006.
    8.董艳珍,李宇,胥婷,李关荣,李加纳.甘蓝型油菜黄籽基因RAPD标记的初步研究[J].西南农业大学学报(自然科学版),2004,26(5):529-531.
    9.方唯意,姚开泰. 高通量SNP基因分型技术研究进展[J]. 国外医学分子生物分册,2003,25(6):333-336.
    10.傅廷栋主编.刘后利科学论文集.北京:北京农业大学出版社,1994.
    11.付杰.SSR标记的开发及甘蓝型油菜遗传连锁图谱的构建.[硕士学位论文].武汉:华中农业大学图书馆,2008.
    12.高永同.甘蓝型黄籽油菜种子发育的研究[J].作物学报,1987,13(3):201-206.
    13.龚慧慧.种间杂交来源的甘蓝型油菜THRIL群体遗传图谱中反转录转座子分子标记的定位与分布分析. [硕士学位论文].武汉:华中农业大学,2009.
    14.何承忠,陈宝昆,江涛,张志毅,李善文. 植物转座子的研究与应用[J].西南农业学报,2004,17(3):399-403.
    15.华玮,王汉中.SNP芯片在油菜分子育种的应用[J]. 中国农业科技导报,2011,13(5):9-12.
    16.瞿绍洪,张文俊,景建康,李银心,朱至清,胡含.玉米转座因子Ac在单倍体烟草中转座的研究[J].遗传学报,1998,25(2):150-154.
    17.李殿荣,田建华.甘蓝型油菜显性黄籽的发现和黄籽杂交种的选育.中国作物学会油料作物专业委员会第四次全国会员大会学术论文,2000,30-31.
    18.李加纳,张学昆,谌利.不同遗传背景的甘蓝型黄籽油菜粒色遗传初步研究[J].中国油料作物学报,1998,20(4):16-19.
    19.李霞.人工合成甘蓝型黄籽油菜粒色基因的精细定位. [硕士学位论文].武汉:华中农业大学,2009.
    20.李云昌.不同类型油菜种皮色泽的遗传以及种皮色泽与含油量的相关研究.[硕士学位论文].武汉:华中农业大学,1984.
    21.李运涛,李加纳,柴友荣,杨成军,雷波.白菜型油菜DFR基因的克隆与序列分析[J].分子植物育种,2005,3(4):485-492.
    22.梁颖,李加纳.甘蓝型油菜种皮色泽形成与相关酶及蛋白质含量的关系[J].中国农业科学,2004,37(4):522-527.
    23.刘峰, 冯雪梅, 钟文, 刘玉栋, 阴祖军,韩秀兰,徐子初, 沈法富.适合棉花品种鉴定的SSR核心引物的筛选[J].分子植物育种,2009,7(6):1160-1168.
    24.刘后利,傅廷栋,陈怀庆.甘蓝型黄籽油菜的发现及其遗传行为的初步研究[J].遗传学报,1979,6(1):54.
    25.刘后利,王纫秋,高永同.甘蓝型黄籽油菜高含油量育种初报[J].华中农学院学报,1981,1(1):13-20.
    26.刘后利.农作物品质育种.武汉:湖北科学技术出版社.2001,483-544.
    27.刘后利.油菜遗传育种学. 北京:中国农业大学印制,2000.
    28.刘列钊,粟茂腾,王灏,林呐,谌利,孟金陵,李加纳.利用mRNA差异显示技术寻找甘蓝型油菜黄籽基因[J].中国农业科学,2004,37(11):1772-1776.
    29.刘淑艳,刘忠松,官春云.芥菜型油菜种质资源研究进展[J].植物遗传资源学报,2007,8(3):351-358.
    30.刘栓桃,赵智中,何启伟.大白菜转基因育种及分子标记研究进展[J].山东农业科学,2004(3):70-72.
    31.刘雪平.人工合成甘蓝型油菜种皮色泽、芥酸含量和花色的遗传研究.[博士学位论文].武汉:华中农业大学图书馆,2005.
    32.刘志文.人工合成甘蓝型黄籽油菜的分子标记和利用研究.[博士学位论文].武汉:华中农业大学图书馆,2005.
    33.卢艳丽.不同类型玉米种质分子特征分析及耐旱相关性状的连锁-连锁不平衡联合作图.[博士学位论文].四川雅安:四川农业大学,2011.
    34.卢泳全,汪旭升,黄伟素,肖天霞,郑燕,吴为人.基于水稻内含子长度多态性开发禾本科扩增共有序列遗传标记[J].中国农业科学,2006,39(3):433-439.
    35.路小春.甘蓝型油菜编码WIP-锌指蛋白的TTl基因家族的克隆及在黄、黑籽之间的差异表达.[硕士学位论文].武汉:华中农业大学图书馆,2006.
    36.罗玉秀,付忠,杜德志.黄籽油菜粒色特点及遗传特性[J].青海大学学报(自然科学版),2006,24(3):157-160.
    37.沈革志,王新其,朱玉英,杨红娟,陆桂华,王江,宛新衫,张景六.TA29-barnase基因转化甘蓝产生雄性不育植株[J]. 植物生理学报,2001,27(1):43-48.
    38.王汉中,刘后利.甘蓝型油菜黄籽和黑籽皮壳中花色素、多酚、苯丙烯酸含量和PAL酶活性的变异[J].华中农业大学学报,1996,15(6):509-513.
    39.王汉中,刘后利.甘蓝型油菜粒色与种子有关性状问的关系研究[J].中国油料,1989,2:32-36.
    40.吴江生,石淑稳,刘后利.甘蓝型油菜黄籽突变体的遗传研究[J].中国油料作物学报,1998,20(3):5-9.
    41.肖达人.甘蓝型油菜种皮颜色与种子含油量的相关分析[J].作物学报,1982,8(4):24-27.
    42.谢彦周.甘蓝型油菜隐性细胞核雄性不育上位抑制基因的精细定位. [博士学位论文].武汉:华中农业大学图书馆,2010.
    43.徐爱遐.芥菜型油菜(Brassica juncea)遗传多样性及其黄籽与芥酸性状的分子标记. [博士学位论文].杨凌:西北农林科技大学,2008.
    44.徐娟.农杆菌介导的Ac_Ds转座系统转化甘蓝型油菜的研究.[硕士学位论文].郑州:郑州大学,2010.
    45.徐宁,程须珍,王丽侠,王素华,刘长友,孙蕾,梅丽. 用于中国小豆种质资源遗传多样性分析SSR分子标记筛选及应用[J].作物学报,2009,35(2):219-227.
    46.严明理,刘忠松,官春云.芥菜型油菜种皮颜色和叶片颜色的遗传[J].作物研究,2008,22(3):157-160.
    47.杨琳,王金发植物基因工程中的转座子标签[J]. 生物技术,2000,10(1):22-27.
    48.姚金宝,许才康.甘蓝型黄籽油菜种子发育过程中若干特性研究[J].中国油料,1995,17(3):3-6.
    49.尹越,张耀伟,高国栋.根癌农杆菌介导的白菜类作物转化体系研究进展[J].中国瓜菜,2009,2:28-32.
    50.张兴伟,王志德,刘艳华,牟建民. 内含子多态性标记及其在烟草分子育种上的应用[J].安徽农业科学,2008,36(8):3147-3148,3159.
    51.张艳.人工合成甘蓝型黄籽油菜No.2127-17种皮颜色遗传基础研究.[博士学位论文].武汉:华中农业大学图书馆,2009.
    52.张子龙,李加纳.甘蓝型黄籽油菜粒色遗传及其育种进展[J].作物学杂志,2001,(6):37-40.
    53.郑丽珊,袁有禄,王静毅,冀小蕊,黄秉智,武耀廷.棉花SSR分子标记在香蕉中通用性的研究[J].分子植物育种,2007,5(5):667-672.
    54.郑用琏.基础分子生物学.北京:高等教育出版社,2007.
    55. Aastrup S, Outtrup H, Erdal K. Location of the proanthocyanidins in the barley grain. Carlsberg Research Communication,1984,49:105-109.
    56. Abrahams S, Lee E, Walker AR, Tanner GJ, Larkin PJ, Ashton AR. The Arabidopsis TDS4 gene encodes leucoanthocyanidin dioxygenase (LDOX) and is essential for proanthocyanidin synthesis and vacuole development. The Plant Journal,2003, 35:624-636.
    57. Ahmed SU, Zuberi MI. Inheritance of seed coat color in Brassica campestris L.variety Toria. Corp Science,1971,11:309-310.
    58. Albert NW, Lewis DH, Zhang H, Irving LJ, Jameson PE, Davies KM. Light-induced vegetative anthocyanin pigmentation in Petunia. Journal of Experimental Botany, 2009,60:2191-2202.
    59. Auger B, Baron C, Lucas MO, Vautrin S, Berge's H, Chalhoub B, Fautrel A, Renard M, Nesi N. Brassica orthologs from BANYULS belong to a small multigene family, which is involved in procyanidin accumulation in the seed. Planta,2009,230: 1167-1183.
    60. Ayele M, Haas BJ, Kumar N, Wu H, Xiao YL, Van Aken S, Utterback TR, Wortman JR, White OR, Town CD. Whole genome shotgun sequencing of Brassica oleracea and its application to gene discovery and annotation in Arabidopsis. Genome Research,2005,15:487-495.
    61. Badnai A, Rod S, Roland B, Luhs W, Hom R, Friedt W. QTL mapping for yellow seed colour in oil seed rape (Bassica napus).Abstaret,11th international rape seed congress. Plant breeding-molecular markers,2003,85-87.
    62. Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA, Jakoby M, Werber M, Weisshaar B. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. The Plant Cell,2003,15:2497-2501.
    63. Baudry A, Caboche M, Lepiniec L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. The Plant Journal,2006,46:768-779.
    64. Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. The Plant Journal,2004,39:366-38.
    65. Beeckman T, De Rycke R, Viane R, Inze D. Histological study of seed coat development in Arabidopsis thaliana. Plant Research,2000,113:139-148.
    66. Bennetzen JL. Transposable element contributions to plant gene and genome evolution. Plant Molecular Biology,2000,42(1):251-269.
    67. Bennetzen JL. Transposable elements, gene creation and genome rearrangement in flowering plants. Current Opinion in Genetics & Development,2005,15(6): 621-627.
    68. Brad S, Coates, Richard L, Hellmich, David MG, Craig AA. Mobilizing the Genome of Lepidoptera through Novel Sequence Gains and End Creation by Non-autonomous Lep1 Helitrons. DNA Research,2012,19(1):11-21.
    69. Buer CS, Muday GK. The transparent testa4 Mutation Prevents Flavonoid Synthesis and Alters Auxin Transport and the Response of Arabidopsis Roots to Gravity and Light. The Plant Cell,2004,16(5):1191-1205.
    70. Chai YR, Lei B, Huang HL, Li JN, Yin JM, Tang ZL, Wang R, Chen L. TRANSPARENT TESTA 12 genes from Brassica napus and parental species:cloning, evolution, and differential involvement in yellow seed trait. Molecular Genetic Genomics,2008,281(1):109-123.
    71. Charles C, Carey, Josie T, Strahle, David A, Selinger, Vicki L. Chandler Mutations in the pale aleurone color1 Regulatory Gene of the Zeamays Anthocyanin Pathway Have Distinct Phenotypes Relative to the Functionally Similar TRANSPARENT TESTA GLABRA1 Gene in Arabidopsis thaliana. The Plant Cell,2004,16:450-464.
    72. Chen BY, Heneen WK, Jonsson R. Resynthesis of Brassica napus L. through interspecific hybridization between B. alboglabra bailey and B. campestris L. with special emphasis on seed color. Plant Breeding,1988,101:52-59.
    73. Cheng XM, Xu JS, Xia S, Gu JX, Yang Y, Fu J, Qian XJ, Zhang SC, Wu JS, Liu K. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theoretical and Applied Genetics,2009,118: 1121-1131.
    74. Choi J, Hoshino A, Park K, Park I, Iida S. Spontaneous mutations caused by a Helitron transposon, Hel-It1, in morning glory, Ipomoea tricolor. The Plant Journal, 2007,49:924-934.
    75. Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ, Barker GC, Hand P, Lydiate DJ, Batley J, Edwards D, Koo DH, Bang JW, Park BS, Lim YP. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theoretical and Applied Genetics,2007, 115:777-792.
    76. Choudhary BR, Solanki ZS. Inheritance of siliqua locule number and seed coat color in Brassica juncea. Plant Breed,2007,126:104-106.
    77. Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA, Chen HM, Frazer KA, Huson DH, Scholkopf B, Nordborg M, Ratsch G, Ecker JR, Weigel D. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science,2007,317:338-342.
    78. Clough SJ, Bent AE. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal,1998,16:735-743.
    79. Couture JF, Collazo E, Trievel RC. Molecular recognition of histone H3 by the WD40 protein WDR5. Nature Structural and Molecular Biology,2006,13:698-703.
    80. Debeaujon I, Nesi N, Perez P, Devic M, Grandjean O, Caboche M, Lepiniec L Proanthocyanidin-accumulating cells in Arabidopsis testa:Regulation of differentiation and role in seed development. The Plant Cell,2003,15:2514-2531.
    81. Debeaujon I, Peeters AJ, Le'on-Kloosterziel KM, Koornneef M. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. The Plant Cell,2001,13:853-871.
    82. Devic M, Guilleminot J, Debeaujon I, Bechtold N, Bensaude E, Koornneef M, Pelletier G, Delseny M. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. The Plant Journal,1999,19(4):387-398.
    83. Dun XL, Zhou ZF, Xia SQ, Wen J, Yi B, Shen JX, Ma CZ, Tu JX, Fu TD. BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. The Plant Journal,2011,68:532-545.
    84. Eickbush T, Malik H. Origins and evolution of retrotransposons. In:Craig NL, Craigie R, Gellert M, Lambowitz AM, eds. Mobile DNAⅡ. Washington, DC:ASM Press,2002,1111-1144.
    85. Elaine C, Howell, Michael J, Kearsey, Gareth HJ, Graham J, King, Susan JA. A and C Genome Distinction and Chromosome Identification in Brassica napus by Sequential Fluorescence in Situ Hybridization and Genomic in Situ Hybridization. Genetics,2008,180:1849-1857.
    86. Feller A, Machemer K, Braun EL, Grotewold E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal,2011, 66,94-116.
    87. Finnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genet,1989,5(4):103-107.
    88. Fu FY, Liu LZ, Chai YR, Chen L, Yang T, Jin MY, Ma AF, Yan XY, Zhang ZS, Li JN. Localization of QTLs for seed color using recombinant inbred lines of Brassica napus in different environments. Genome,2007,50(9):840-854.
    89. Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamurel, Kadowaki K. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. The Plant Journal,2007,49:91-102.
    90. Gregory TR. Synergy between sequence and size in largescale genomics. Nature Reviews Genetics,2005,6(9):699-708.
    91. Gupta PK, Varshney RK. The development and use of mierosatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica,2000, 113:163-185.
    92. Hajdukiewicz P, Svab Z, Maliga P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Molecular Biology, 1994,25:989-994.
    93. Haughn G, Chaudhury A. Genetic analysis of seed coat development in Arabidopsis. Trends in Plant Science,2005,10(10):472-477.
    94. Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC. The basic helix-loop-helix transcription factor family in plants:a genome-wide study of protein structure and functional diversity. Molecular Biology and Evolution,2003, 20:735-747.
    95. Henderson CAP, Pauls KP. The use of haploid to develop plant that expresses several recessive traits using light-seeded canola (Brassica napus) as an example, Theoretical and Applied Genetics,1992,83(4):476-479.
    96. Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany,2011,62(8):2465-2483.
    97. Hirochika H. Retrotransposon of rice:their regulation and use for genome analysis. Plant Molecular Biology,1997,35:231-240.
    98. Hong CP, Kwon SJ, Kim JS, Yang TJ, Park BS, Lim YP. Progress in Understanding and Sequencing the Genome of Brassica rapa. Int J Plant Genomics,2008,58: 28-37.
    99. Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T, Tabata S, Okada K, Wada T. Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. The Plant Cell,2007,19(8): 2531-2543.
    100. Jin H, Martin C. Multifunctionality and diversity within the plant MYB-gene family. Plant Molecular Biology,1999,41:577-585.
    101.ohnson CS, Kolevski B, Smyth DR. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. The Plant Cell,2002,14(6):1359-1375.
    102.Jun SI, Kwon SY, Pack KY, Paek KH. Agrobacterium mediated transformation and regeneration of fertile transgenic plants of Chinese cabbage(Brassica carapestris var. pekinensis). Plant Cell Reports,1995,14(10):620-625.
    103.Kanrar S, Venkateswari J, Kirti PB, Chopra VL. Transgenic Indian mustard(Brassica juncea) with resistance to the mustard aphid (Lipaphis erysimi Kalt.). Plant Cell Reports,2002,20(10):976-981.
    104.Kitamura S, Shikazono N, Tanaka A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. The Plant Journal,2004,37:104-114.
    105.Kowalski S, Lan T, Feldmann K, Paterson A. Comparative mapping of Arabidopsis thaliana and Brassica oleracea reveal islands of conserved organization. Genetics, 1994,138:499-510.
    106.Kuittinen H, Aguade M. Nucleotide variation at the CHALCONEISOMERASE locus in Arabidopsis thaliana. Genetics,2000,155(2):863-872.
    107.Kurauchia T, Kasaia A, Tougoub M, Sendaa M. Endogenous RNA interference of chalcone synthase genes in soybean:Formation of double-stranded RNA of GmIRCHS transcripts and structure of the 5'and 3'ends of short interfering RNAs. Journal of Plant Physiology,2011,168:1264-1270.
    108.V Kuvshinov, K Koivu, A Kanerva, E Pehu. Agrobacterium tumefaciens-mediated transformation of greenhouse-grown Brassica rapa ssp. Oleifera. Plant Cell Reports, 1999,18(9):773-777.
    109.Lagercrantz U. Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics,1998,150:1217-1228.
    110.Lal SK, Giroux MJ, Brendel V, Vallejos CE, Hannah LC. The maize genome contains a Helitron insertion. The Plant Cell,2003,15:381-391.
    111.Lan TH, Delmonte TA, Reischmann KP, Hyman J, Owalski SP, Mcferson J, Kresovich S, Paterson AH. An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Research,2000,10:776-788.
    112.Lei SL, Yao XQ, Yi B, Chen W, Ma CZ, Tu JX, Fu TD. Towards map-based cloning: fine mapping of a recessive genic male-sterile gene (BnMs2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theoretical and Applied Genetics,2007,115:643-651.
    113.Lepiniec L, Debeaujon I, Routaboul J-M, Baudry A, Pourcel L, Nesi N, Caboche M. Genetics and biochemistry of seed flavonoids. Annual Review of Plant Biology,2006, 57:405-430.
    114.Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J, Ma H, Wang J, Zhang D. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiology,2006,141:1167-1184.
    115.Liu RH, Meng JL. Mapdraw, a Microsoft Excel macro for draw genetic linkage maps based on given genetic linkage data. Hereditas (Beijing),2003,25:317-321.
    116.Liu ZW, Fu TD, Tu JX, Chen BY. Inheritance of seed colour and identification of RAPD and AFLP markers linked to the seed colour gene in rapeseed(Brassica napus L.). Theoretical and Applied Genetics,2005,110:303-310.
    117.Liu ZW, Wang Y, Liu XP, Fu TD, Xue YC, Tu JX, Ma CZ. The effects analysis of molecular marter-assisted selection in yellow-seeded Brassica napus, Huabei Nongxuebao (Acta Agriculturae Boreali-Sinica),2006,21(2):57-61.
    118.Lucas H, Feuerbach F, Kunert K, Grandbastien MA, Caboche M. RNA mediated transposition of the tobacco retrotransposon Tnt I in Arabidopsis thaliana. The EMBO Journal,1995,14:2364-2373.
    119.Maes L, Inze D, Goossens A. Functional specialization of the TRANSPARENT TESTA GLABRA1 network allows differential hormonal control of laminal and marginal trichome initiation in Arabidopsis rosette leaves. Plant Physiol,2008,148(3): 1453-1464.
    120.Mahmood T, Rahman MH, Stringam GR, Raney JP, Good AG. Molecular markers for seed colour in Brassica juncea, Genome,2005,48:755-760.
    121.Massaari ME, Murre C. Helix-loop-helix proteins:regulators of transcription in eucaryotic organisms. Molecular and Cellular Biology,2000,20:429-440.
    122.Mohammad A, Irka SM, Aziz MA. Inheritance of seed color in some oleifeous Brassica. Indian J Genet Breed,1942,2:112-127.
    123.Morgante M, Brunner S, Pea G, Fengler K, Zuccolo A, Rafalski A. Gene duplication and exon shuffling by Helitron-like transposons generate intraspecies diversity in maize. Nature Genetics,2005,37:997-1002.
    124.Mukhopadhyay A, Arumugam N, Nandakumar PB. A Agrobacterium-mediated genetic transformation of oilseed Brassica campestris:Transformation frequency is strongly influenced by the mode of shoot regeneration. Plant Cell Reports,1992, 11(10):506-513.
    125.Nesi N, Debeaujon I, Jond C, Pelletier Q Caboche M, Lepiniec L. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell,2000,12(10):1863-4878.
    126.Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M,Lepiniec L. The TRANSPARENT TESTA 16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. The Plant Cell,2002,14(10):2463-2479.
    127.Nesi N, Jond C, Debeaujon I, Caboche M, Lepiniec L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. The Plant Cell,2001,13(9): 2099-2114.
    128.Nesi N, Lucas MO, Auger B, Lecureuil A, Guerche P, Kronenberger J, Lepiniec L, Debeaujon I, Renard M. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat. Plant Cell Reports,2009,28:601-617.
    129.Ohnishi S, Funatsuki H, Kasai A, Kurauchi T, Yamaguchi N, Takeuchi T, Yamazaki H, Kurosaki H, Shirai S, Miyoshi T, Horita H, Senda M. Variation of GmIRCHS (Glycine max inverted-repeat CHS pseudogene) is related to tolerance of low temperature-induced seed coat discoloration in yellow soybean. Theoretical and Applied Genetics.2011,122(3):633-642.
    130.Ohno S, Hosokawa M, Hoshino A, Kitamura Y, Morita Y, Park K, Nakashima A, Deguchi A, Tatsuzawa F, Doi M, Iida S, Yazawa S. bHLH transcription factor, DvIVS, is involved in regulation of anthocyanin synthesis in dahlia (Dahlia variabilis). Journal of Experimental Botany,2011,62(14):5105-5116.
    131.Ohsh.ima K, Hamada M, Terai Y, Okada N. The 3'ends of tRNA-derived short interspersed repetitive elements are derived from the 3'ends of long interspersed repetitive elements. Molecular Cell Biology,1996,16(7):3756-3764.
    132.Owens, Daniel K, Crosby, Kevin C, Runac, Justin, Howard, Brad A, Winkel, Brenda SJ. Biochemical and genetic characterization of Arabidopsis flavanone 3beta-hydroxylase. Plant Physiology and Biochemistry,2008,46(10):833-843.
    133.Padmaja KL, Arumugam N, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK. Mapping and tagging of seed coat color and the identification of microsatellite markers for marker-assisted manipulation of the trait in Brassica juncea. Theoretical and Applied Genetics,2005,111:8-14.
    134.Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D. Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers:homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics,2008,9:113.
    135.Pardue ML, Rashkova S, Casacuberta E, DeBaryshe PG, George JA, Traverse KL. Two retrotransposons maintain telomeres in Drosophila. Chromosome Research, 2005,13(5):443-453.
    136.Parkin I, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ. Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics,2005,171:765-781.
    137.Payne CT, Zhang F, Lloyd AM. GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics,2000, 156:1349-1362.
    138.Pejic P, Ajmone-Marsan M, Morgante V, Kozumplick P, Castiglioni G, Taramino, M. Motto. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theoretical and Applied Genetics,1998,97: 1248-1255.
    139.Pierre Broun. Transcriptional control of flavonoid biosynthesis:a complex network of conserved regulators involved in multiple aspects of differentiation in Arabidopsis. Current Opinion in Plant Biology,2005,8:272-279.
    140.Pires N, Dolan L. Origin and diversification of basic-helix-loop-helix proteins in plants. Molecular Biology and Evolution,2010,27:862-874.
    141.Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I. TRANSPARENT TESTA 10 encodes a Laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. The Plant Cell,2005,17: 2966-2980.
    142.Rahman M, McVetty PBE, Li G. Development of SRAP, SNP and multiplexed SCAR molecular markers for the major seed coat color gene in Brassica rapa L., Theoretical and Applied Genetics,2007,115(8):1101-1107.
    143.Rahman MH. Inheritance of petal colour and its independent segregation from seed color in Brassica rapa. Plant breeding,2001a,120:197-200.
    144.Rahman MH. Production of yellow-seeded through interspecific crosses. Plant Breeding,2001b,120:463-472.
    145.Rashid A, Rakow G, Downey RK. Development of yellow seeded Brassica napus through interspecific crosses. Plant Breeding,1994,112:127-134.
    146.Romero I, Fuertes A, Benito MJ, Malpica JM, Leyva A, Paz-Ares J. More than 80 R2R3-MYB regulatory genes in the genome of Arabidopsis thaliana. The Plant Journal,1998,14:273-284.
    147.Sagasser M, Lu GH, Hahlbrock K, Weisshaar B. A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Devolpment,2002,16(1):138-149.
    148.Schoenbohm C, Martens S, Eder C, Forkmann G, Weisshaar B. Identification of the Arabidopsis thaliana flavonoid 3'-hydroxylase gene and functional expression of the encoded P450 enzyme. Biological Chemistry,2000,381(8):749-753.
    149.Schwetka A. Inheritance of seed coat color in turnip rape(Brassica campestris) Theoretical and Applied Genetics,1982,62:161-169.
    150.Shirley BW, Hanley S, Goodman HM. Effects of ionizing radiation on a plant genome:analysis of two Arabidopsis transparent testa mutations. The Plant Cell, 1992,4(3):333-347.
    151.Shirzadegan M. Inheritance of seed color in Brassica napus L. Z. Pflanzenzuecht, 1986,96(2):140-146.
    152.Smith TF, Gaitatzes C, Saxena K, Neer EJ. The WD repeat:a common architecture for diverse functions. Trends in Biochemical Sciences,1999,24:181-185.
    153.Sompornpailin K, Makita Y, Yamazaki M, Saito K. A WD repeat-containing putative regulatory protein in anthocyanin biosynthesis in. Perilla frutescens. Plant Molecular Biology,2002,50:485-495.
    154.Stringam GR. Inheritance of seed color in turnip rape. Canadian Journal of Plant Science,1980,60:331-335.
    155.Stringam GR, Megregor DI, Pawlowski SH. Chemieal and morphological characteristics associated with seed coat colour in rapeseed.In:6 Proc 4th Intl Rapeseed Conf., Giessen, WestGermany,1974, PP99-108.
    156.Suganuma T, Pattenden SG, Workman JL. Diverse functions of WD40 repeat proteins in histone recognition. Genes and Development,2008,22:1265-1268.
    157.Sun Y, Li H, Huang JR. Arabidopsis TT19 Functions as a Carrier to Transport Anthocyanin from the Cytosol to Tonoplasts. Molecular Plant,2012,5(2):387-400.
    158.Taramino G, Tingey S. Simple sequence repeats for germplasm analysis and mapping in maize.Genome,1996,39(2):277-287.
    159.Tautz D. Hypcrvariability of simple sequence as a general source of polymorphic DNA markers. Nucleic Acids Research,1989,17:6463-6471.
    160.Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell,2003,15:1749-1770.
    161.Udall JA, Quijada PA, Osborn TC. Detection of chromosomal rearrangements derived from homeologous recombination in four mapping populations of Brassica napus L. Genetics,2005,169:967-979.
    162.Van Nocker S, Ludwig P. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics,2003,4:50.
    163.Vandeynze AE, Beversdorf WD, Pauls KP. Tem perature effects on seed color in black-and yellow-seeded rapeseed. Plant Science,1993,73(3):383-387.
    164.Vera CL, Woods DL. Isolation of independent gene pairs at two loci for seed coat color in Brassica juncea. Canadian Journal of Plant Science,1982,62:47-50.
    165.Wang XS, Zhao XQ, Wu WR. Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in rice (Oryza sativa L.).DNA Research,2005,12(6):417-427.
    166.Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SY, Bai YQ, Mun JH, Bancroft I, Cheng F, Huang SW, Li XX, Hua W, Wang JY, Wang XY, Freeling M, Piresl JC, Paterson AH, Chalhoub B, Wang B et al. The genome of the mesopolyploid crop species Brassica rapa. Nature Genetics,2011,43:1035-1039.
    167.Wei YL, Li JN, Lu J, Tang ZL, Pu DC, Chai YR. Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Molecular Biology Reports,2006, 34(2):105-120.
    168.Winkel-Shirley B. A mutational approach to dissection of flavonoid biosynthesis in Arabidopsis. Recent Advances in Phytochemistry,2002,36:95-110.
    169.Winkel-Shirley B. Flavonoid biosynthesis:A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol,2001,126:485-493.
    170.Xia SQ, Cheng L, Zu F, Dun XL, Zhou Z F, Yi B, Wen J, Ma CZ, Shen JX, Tu JX, Fu TD. Mapping of BnMs4 and BnRf to a common microsyntenic region of Arabidopsis thaliana chromosome 3 using intron polymorphism markers. Theoretical and Applied Genetics,2012,124(7):1193-120.
    171.Xiang Y, Wong WKR, Ma MC. Agrobacterium mediated transformation of Brassica campestris ssp parachinensis witll synthetic Bacillus thuringiensis crylAb and crylAc genes. Plant Cell Reports,2000,19:251-256.
    172.Yan J, Yang X, Shah T, Sanchez-Villeda H, Li JS, Warburton M, Zhou Y, Crouch JH, Xu YB. High-throughput SNP genotyping with the GoldenGate assay in maize. Molecular Breeding,2009,25(3):441-451.
    173.Yang L, Bennetzen JL. Distribution, diversity, evolution, and survival of Helitrons in the maize genome. Proceedings of the National Academy of Sciences, USA,2009a, 106:19922-19927.
    174. Yang L, Bennetzen JL. Structure-based discovery and description of plant and animal Helitrons. Proceedings of the National Academy of Sciences, USA,2009b,106(31): 12832-12837.
    175.Yang TJ, Kim JS, Lim KB, Kwon SJ, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Kim SH, Lim YP, Park BS. The Korea Brassica Genome Project:A glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comparative and Functional Genomics,2005,6:138-146.
    176.Yi B, Zeng FQ, Lei SL, Chen YN, Yao XQ, Zhu Y, Wen J, JX Shen, Ma CZ, Tu JX, Fu TD. Two duplicate CYP704B1 homologous genes BnMsl and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. The Plant Journal,2010,63:925-938.
    177.Zhang F, Gonzalez A, Zhao M, Payne T, Llyod A. A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development, 2003,130:4859-4869.
    178.Zhang FL, Takahata Y, Xu JB. Medium and genotype factors influencing shoot regeneration from cotyledonary explants of Chinese cabbage(Brassica campestris L. ssp.pekinensis). Plant Cell Reports,1998, (17):780-786.
    179.Zhang JF, Ying L, Yuan YX, Zhang XW, Geng JF, Chen Y, Cloutier S, McVetty PBE, Li GY Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Molecular Biology,2009,69(5):53-63.
    180.Zhu J, Jeong JC, Zhu Y, Sokolchik I, Miyazaki S, Zhu JK, Hasegawa PM, Bohnert H, Shi H, Yun D, Bressan RA. Involvement of Arabidopsis HOS15 in histone deacetylation and cold tolerance. Proceedings of the National Academy of Sciences, 2008,105:4945-4950.
    181.Zhu ZF, Sun CQ, Li ZC, W XK. Study on the classification of rice varieties with SSR molecular markers. Journal of Agricultural Biotechnology,2001,9(1):58-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700