用户名: 密码: 验证码:
小麦落粒性与产量性状相关基因功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦是世界上重要的粮食作物之一,为人类的生存和发展提供了重要的能量来源和物质基础。本文研究了小麦重要农艺性状相关的两个基因TaqSH1和TaDEP1。其中TaqSH1影响小麦的落粒性,而TaDEP1则与小麦产量的重要组成因素千粒重相关。
     籽粒脱落是作物驯化过程中的一个重要事件。在小麦中,已知Q基因突变导致易落粒的特性改变为脆轴,关于小麦落粒的其它分子机制尚不清楚。水稻qSH1基因是影响水稻谷粒脱落的一个主要QTL。我们利用同源克隆的方法获得了水稻qSH1在六倍体小麦中的直系同源基因TaqSH1的B基因组全长。TaqSH1编码一个BEL1类蛋白,BEL1-like同源异型框区域在单双子叶植物中都很保守。我们利用缺体四体将TaqSH1定位在3B染色体上,这是控制小麦籽粒脱落的一个新的遗传位点。TaqSH1基因编码区在易落粒小麦近缘种与不易落粒小麦及其近缘种间有8个SNP的差异,其中3个SNP使氨基酸发生了改变。在拟南芥中过表达TaqSH1使植株表现出明显比野生型植株矮化,角果间距缩短变紧密,角果角度平直,角果上假隔膜变窄,角果成熟后花仍然不脱落的特点。扫描电镜观察显示,转基因植株花瓣离区细胞发育与野生型相比出现延迟,从而导致了花瓣脱落时间延后。表达检测表明,转基因植株中IDA、HAESA、KNAT1、KNAT6、SHP1、SHP2等在拟南芥离区形成、花脱落等过程中发挥着重要作用的基因的表达量明显下降,而TaqSH1在拟南芥中的正源基因RPL的表达量没有变化。酵母双杂交结果表明,TaqSH1基因分别与KNAT1、KNAT6互作,这有可能是BEL1与KNOX结构域互作的结果。我们根据以上结果推测TaqSH1可能在小麦谷粒离区的发育中发挥作用,其工作原理在单双子叶间具有一定的保守性。
     本文研究的第二个基因与小麦的产量相关。水稻DEP1(DENSE AND ERECT PANICLE1)位点是控制产量性状的一个主效QTL。DEP1最后一个外显子的一个碱基发生突变,形成提前终止,被命名为dep1。dep1基因能够控制穗型、增强植株分生组织活力,缩短花序节间距离,增加穗粒数,进而提高水稻产量。我们在小麦中克隆到了TaDEP1基因并将其定位在第五同源群。我们在染色体5B上TaDEP1拷贝的第一个内含子上开发了一个InDel标记。这个标记(我们将其命名为dep1-5b)精细定位在5B染色体长臂GS34和S67两个标记间约10cM的区域内。对标记dep1-5b在262份小麦微核心种质中的检测结果进行关联分析发现dep1-5b与两年的小麦微核心种质中的千粒重相关。当把小麦微核心种质分成地方品种和栽培品种时,dep1-5b只和地方品种中的千粒重相关联,与栽培品种中的千粒重性状相关性不显著。水稻中具有长、短(提前终止)两个DEP1(dep1)等位基因,短的等位基因dep1表达量高时水稻产量增加。我们对其它草类的DEP1基因结构进行观察,发现除玉米外几乎所有的草类包括普通小麦的祖先(乌拉尔图、粗山羊草、拟斯卑尔脱山羊草)、短柄草、高粱都只有长度缩短的等位基因。玉米第2、第7染色体上分别有长、短两个DEP1(dep1)基因。此观察结果与关联分析结果一致,即经过驯化后能使产量增加的短的等位基因dep1被保留下来,长的DEP1逐渐丢失;同时TaDEP1基因在小麦全部微核心种质中与千粒重显著相关,而在经人工选择后的栽培品种中与千粒重相关性不显著,说明这个短的等位基因dep1是驯化的结果。
Wheat (Triticum aestivum L.) is one of the most important crops in the world and provides mostcalories consumed by human beings. We studied two important agronomic trait genes in wheat:TaqSH1and TaDEP1which are associated with seed shattering and thousand grain weight.
     Seed shattering is one of the major domestication traits of crops. In wheat, except for the Q genewhose mutation renders free threshing and changing of rachis fragility, not much is known about themolecular mechanism for this process. We report here the cloning and characterization of TaqSH1, theortholog of the rice seed shattering gene qSH1. TaqSH1encodes a BEL1-like protein that is conservedamong monocots and eudicots. TaqSH1is located on the homoeologous group3, a potential new geneticlocus for seed threshability in wheat. Over expression of TaqSH1in Arabidopsis resulted in dwarfedplants. The inflorescences of transgenic plants were more compact with larger pedicel angles. ScanningElectron Microscopy showed that the transgenic siliques had narrower replums with altered dehiscencezones. In addition, petal abscission was significantly delayed due to the slow down of abscission zonecell development. Real-time PCR assays showed that over expression of TaqSH1down regulatedseveral known Arabidopsis abscission related genes, such as IDA, HAESA, KNAT1and KNAT6in thetransgenic plants. Taken together, our data suggest that TaqSH1may represent another example ofconserved mechanisms across monocots and eudicots for fruit/grain abscission and should havepotential application in genetic manipulation of wheat seed shattering.
     The second gene was related to rice DEP1(DENSE AND ERECT PANICLE1) gene. DEP1was amajor quantitative trait loci (QTLs) that controlled grain yield. There are truncated deletions in theC-terminal of the mutant DEP1allele (dep1). Dep1is an important regulator that can enhance meristemactivity, reduce inter-node distance, increase per spike grain number, and eventually increase the riceyield. We report here further characterization of the DEP1gene (TaDEP1) in wheat. Chromosomalmapping showed that TaDEP1was located on chromosomes of homoeologous group5. An InDelmarker was developed from its first intron and was mapped to chromosome5B. This marker (tentativelynamed dep1-5b) was used to fine map TaDEP1into a~10cM region between genetic markers GS34and S67on the5B long arm. We then genotyped262wheat accessions from the wheat core germplasmcollection (CWGC) using dep1-5b. Association analysis revealed that dep1-5b was significantlyassociated with higher one-thousand grain weight (TGW) in the two year dataset among CWGC. Whenwe divided the CWGC accessions into subpopulations of landraces and cultivars, we found that dep1-5bwas significantly associated with grain yield only in the landraces but not in the cultivars. Two kinds ofalleles are found in rice with the dep1alleles contributing to grain yield increase. We observed the genestructures in other grasses, and found that shorter/truncated alleles were present in nearly all grassspecies surveyed, including the progenitors of bread wheat (T. uratu, Ae. tauschii, and T. turgidum),Brachypodium and sorghum contrasting to the existence of both long and short alleles in rice.Interestingly, we found two alleles (long and short) respectively located in chromosome2and7ofmaize. The observation was consistent with association analysis result. Shorter allele in most of the grass species was reserved by domestication and longer allele lost; TaDEP1was significantly associatedwith TGW in the CWGC but not in the cultivars of artificial selection. It indicated that theshorter/truncated allele was possibly a domesticated gene.
引文
[1]张海萍,张秀英,闫长生,肖世和(2009)小麦PEBP-like基因等位变异与籽粒大小,粒重关系研究.分子植物育种7(1):23-27
    [2]庄巧生(2003)中国小麦品种改良及系谱分析.北京:中国农业出版社502-502
    [3] Adamczyk BJ, Lehti‐Shiu MD, Fernandez DE (2007) The MADS domain factors AGL15andAGL18act redundantly as repressors of the floral transition in Arabidopsis. Plant J50(6):1007-1019
    [4] Addicott F, Lynch R, Carns H (1955) Auxin gradient theory of abscission regulation. Science121(3148):644
    [5] Arnaud N, Lawrenson T, stergaard L, Sablowski R (2011) The same regulatory point mutationchanged seed-dispersal structures in evolution and domestication. Curr Biol21(14):1215-1219
    [6] Bar-Dror T, Dermastia M, Kladnik A, nidari MT, Novak MP, Meir S, Burd S, Philosoph-Hadas S,Ori N, Sonego L (2011) Programmed cell death occurs asymmetrically during abscission intomato. Plant Cell23(11):4146-4163
    [7] Bender W (1985) Homeotic gene products as growth factors. Cell43:559-560Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol16(1):1-18
    [8] Botwright T, Condon A, Rebetzke G, Richards R (2002) Field evaluation of early vigour for geneticimprovement of grain yield in wheat. Crop Pasture Sci53(10):1137-1145
    [9] Bowman JL, Baum SF, Eshed Y, Putterill J, Alvarez J (1999) Molecular genetics of gynoeciumdevelopment in Arabidopsis. Curr Top in Dev Biol45:155-205
    [10] Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat(Triticum aestivum L.) cultivars. Genetics172(2):1165-1177
    [11] Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheatmapping populations. Field Crop Res101(2):172-179
    [12] Brill EM, Watson JM (2004) Ectopic expression of a Eucalyptus grandis SVP orthologue alters theflowering time ofArabidopsis thaliana. Funct Plant Biol31(3):217-224
    [13] Brown TA, Jones MK, Powell W, Allaby RG (2009) The complex origins of domesticated crops inthe Fertile Crescent. Trends Ecol Evol24(2):103-109
    [14] Brummell DA, Hall BD, Bennett AB (1999) Antisense suppression of tomato endo-1,4-β-glucanase Cel2mRNA accumulation increases the force required to break fruit abscissionzones but does not affect fruit softening. Plant Mol Biol40(4):615-622
    [15] Budiman M, Chang S, Lee S, Yang T, Zhang H, Jong Hd, Wing R (2004) Localization ofjointless-2gene in the centromeric region of tomato chromosome12based on high resolutiongenetic and physical mapping. Theor Appl Genet108(2):190-196
    [16] Burr CA, Leslie ME, Orlowski SK, Chen I, Wright CE, Daniels MJ, Liljegren SJ (2011) CASTAWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis.Plant Physiol156(4):1837-1850
    [17] Byrne ME, Simorowski J, Martienssen RA (2002) ASYMMETRIC LEAVES1reveals knox generedundancy in Arabidopsis. Development129(8):1957-1965
    [18] Cai S, Lashbrook CC (2008) Stamen abscission zone transcriptome profiling reveals newcandidates for abscission control: enhanced retention of floral organs in transgenic plantsoverexpressingArabidopsis ZINC FINGER PROTEIN2. Plant Physiol146(3):1305-1321
    [19] Campbell KG, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Hareland G, Fulcher RG,Sorrells ME, Finney PL (1999) Quantitative trait loci associated with kernel traits in a soft×hard wheat cross. Crop Sci39(4):1184-1195
    [20] Chalupska D, Lee H, Faris J, Evrard A, Chalhoub B, Haselkorn R, Gornicki P (2008) Acchomoeoloci and the evolution of wheat genomes. Proc NatlAcad Sci USA105(28):9691-9696
    [21] Chang S (1943) Morphological causes for varietal differences in shattering of wheat. Agron J35(5):435-441
    [22] Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HI, Yang CH (2011) The MADS box gene,FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence andabscission inArabidopsis. Plant J68(1):168-185
    [23] Child R, Summers J, Babij J, Farrent J, Bruce D (2003) Increased resistance to pod shatter isassociated with changes in the vascular structure in pods of a resynthesized Brassica napus line.J Exp Bot (389):1919-1930
    [24] Cho SK, Larue CT, Chevalier D, Wang H, Jinn T-L, Zhang S, Walker JC (2008) Regulation offloral organ abscission in Arabidopsis thaliana. Proc NatlAcad Sci USA105(40):15629-15634
    [25] Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP,Trethowan R, Warburton M, Franco J (2007) Association analysis of historical bread wheatgermplasm using additive genetic covariance of relatives and population structure. Genetics177(3):1889-1913
    [26] Dholakia B, Ammiraju J, Singh H, Lagu M, R der M, Rao V, Dhaliwal H, Ranjekar P, Gupta V,Weber W (2003) Molecular marker analysis of kernel size and shape in bread wheat. PlantBreeding122(5):392-395
    [27] Dinneny JR, Weigel D, Yanofsky MF (2005) A genetic framework for fruit patterning inArabidopsis thaliana. Development132(21):4687-4696
    [28] Dinneny JR, Yadegari R, Fischer RL, Yanofsky MF, Weigel D (2004) The role of JAGGED inshaping lateral organs. Development131(5):1101-1110
    [29] Disch S, Anastasiou E, Sharma VK, Laux T, Fletcher JC, Lenhard M (2006) The E3ubiquitinligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. CurrBiol16(3):272-279
    [30] Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheatunder domestication. Science316(5833):1862-1866
    [31] Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW (2005) AUXIN RESPONSEFACTOR1and AUXIN RESPONSE FACTOR2regulate senescence and floral organabscission in Arabidopsis thaliana. Development132(20):4563-4574
    [32] Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grainlength and weight and minor QTL for grain width and thickness in rice, encodes a putativetransmembrane protein. Theor Appl Genet112(6):1164-1171
    [33] Fan C, Yu S, Wang C, Xing Y (2009) A causal C–A mutation in the second exon of GS3highlyassociated with rice grain length and validated as a functional marker. Theor Appl Genet118(3):465-472
    [34] Fernandez DE, Heck GR, Perry SE, Patterson SE, Bleecker AB, Fang S-C (2000) The embryoMADS domain factor AGL15acts postembryonically: Inhibition of perianth senescence andabscission via constitutive expression. Plant Cell12(2):183-197
    [35] Ferrandiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genesby FRUITFULL during Arabidopsis fruit development. Science289(5478):436-438
    [36] Flint-Garcia SA, Thornsberry JM, IV B (2003) Structure of linkage disequilibrium in plants. AnnuRev Plant Biol54(1):357-374
    [37] Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R,Alpert KB (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size.Science289(5476):85-88
    [38] Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recentarchaeobotanical insights from the old world. Ann Bot100(5):903-924
    [39] Funatsuki H, Hajika M, Hagihara S, Yamada T, Tanaka Y, Tsuji H, Ishimoto M, Fujino K (2008)Confirmation of the location and the effects of a major QTL controlling pod dehiscence,qPDH1, in soybean. Breeding Sci58(1):63-69
    [40] Funatsuki H, Ishimoto M, Tsuji H, Kawaguchi K, Hajika M, Fujino K (2006) Simple sequencerepeat markers linked to a major QTL controlling pod shattering in soybean. Plant Breeding125(2):195-197
    [41] Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW(2010) A genetic framework for grain size and shape variation in wheat. Plant Cell22(4):1046-1056
    [42] González-Carranza ZH, Rompa U, Peters JL, Bhatt AM, Wagstaff C, Stead AD, Roberts JA (2007)HAWAIIAN SKIRT: an F-box gene that regulates organ fusion and growth in Arabidopsis. PlantPhysiol144(3):1370-1382
    [43] Greenwald I (1985) lin-12, a nematode homeotic gene, is homologous to a set of mammalianproteins that includes epidermal growth factor. Cell43(3):583-590
    [44] Henry EW, Valdovinos JG, Jensen TE (1974) Peroxidases in tobacco abscission zone tissue II. Timecourse studies of peroxidase activity during ethylene-induced abscission. Plant Physiol54(2):192-196
    [45] Huang X, C ster H, Ganal M, R der M (2003) Advanced backcross QTL analysis for theidentification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivumL.). Theor Appl Genet106(8):1379-1389
    [46] Huang X, Cloutier S, Lycar L, Radovanovic N, Humphreys D, Noll J, Somers D, Brown P (2006)Molecular detection of QTLs for agronomic and quality traits in a doubled haploid populationderived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet (4):753-766
    [47] Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation atthe DEP1locus enhances grain yield in rice. Nat Genet41(4):494-497
    [48] Ji H, Kim SR, Kim YH, Kim H, Eun MY, Jin ID, Cha YS, Yun DW, Ahn BO, Lee MC (2009)Inactivation of the CTD phosphatase-like gene OsCPL1enhances the development of theabscission layer and seed shattering in rice. Plant J61(1):96-106
    [49] Jinn TL, Stone JM, Walker JC (2000) HAESA, an Arabidopsis leucine-rich repeat receptor kinase,controls floral organ abscission. Gene Dev14(1):108-117
    [50] Kadkol G, Beilharz V, Halloran G, Macmillan R (1986) Anatomical basis of shatter-resistance in theoilseed Brassicas. Aust J Bot34(5):595-601
    [51] Kadkol GP, Halloran GM, MacMillan RH, Caviness C (1989) Shatter resistance in crop plants.Plant Sci8(3):169-188
    [52] Kandasamy MK, Deal RB, McKinney EC, Meagher RB (2005) Silencing the nuclear actin-relatedprotein AtARP4in Arabidopsis has multiple effects on plant development, including earlyflowering and delayed floral senescence. Plant J41(6):845-858
    [53] Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations inthe maize homeobox gene, knotted1, are defective in shoot meristem maintenance.Development124(16):3045-3054
    [54] Kim J, Patterson SE (2006) Expression divergence and functional redundancy ofpolygalacturonases in floral organ abscission. Plant Signal Behav (6):281
    [55] Klee HJ (2004) Ethylene signal transduction: moving beyond Arabidopsis. Plant Physiol135(2):660-667
    [56] Kong FN, Wang JY, Zou JC, Shi LX, De Jin M, Xu ZJ, Wang B (2007) Molecular tagging andmapping of the erect panicle gene in rice. Mol Breeding19(4):297-304
    [57] Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss ofseed shattering during rice domestication. Science312(5778):1392-1396
    [58] Kumar N, Kulwal PL, Gaur A, Tyagi AK, Khurana JP, Khurana P, Balyan HS, Gupta PK (2006)QTLanalysis for grain weight in common wheat. Euphytica151(2):135-144
    [59] Lashbrook CC, Tieman DM, Klee HJ (1998) Differential regulation of the tomato ETR gene familythroughout plant development. Plant J15(2):243-252
    [60] Leslie ME, Lewis MW, Youn J-Y, Daniels MJ, Liljegren SJ (2010) The EVERSHED receptor-likekinase modulates floral organ shedding in Arabidopsis. Development137(3):467-476
    [61] Lewis MW, Leslie ME, Fulcher EH, Darnielle L, Healy PN, Youn JY, Liljegren SJ (2010) TheSERK1receptor-like kinase regulates organ separation in Arabidopsis flowers. Plant J62(5):817-828
    [62] Lewis MW, Leslie ME, Liljegren SJ (2006) Plant separation:50ways to leave your mother. CurrOpin Plant Biol9(1):59-65
    [63] Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science311(5769):1936-1939
    [64] Li W, Gill BS (2006) Multiple genetic pathways for seed shattering in the grasses. Funct IntegrGenomic6(4):300-309
    [65] Li Y, Zheng L, Corke F, Smith C, Bevan MW (2008) Control of final seed and organ size by theDA1gene family in Arabidopsis thaliana. Gene Dev22(10):1331-1336
    [66] Liljegren SJ (2012) Organ abscission: exit strategies require signals and moving traffic. Curr OpinPlant Biol15(5):670-676
    [67] Liljegren SJ, Leslie ME, Darnielle L, Lewis MW, Taylor SM, Luo R, Geldner N, Chory J,Randazzo PA, Yanofsky MF (2009) Regulation of membrane trafficking and organ separationby the NEVERSHED ARF-GAP protein. Development136(11):1909-1918
    [68] Lin Z, Griffith ME, Li X, Zhu Z, Tan L, Fu Y, Zhang W, Wang X, Xie D, Sun C (2007) Origin ofseed shattering in rice (Oryza sativa L.). Planta226(1):11-20
    [69] Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-timequantitative PCR and the2ΔΔCT method. Methods25(4):402-408
    [70] Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class ofhomeodomain proteins encoded by the STM gene of Arabidopsis. Nature379(6560):66-69
    [71] Luo J, Hao W, Jin J, Gao J, Lin H (2008) Fine mapping of Spr3, a locus for spreading panicle fromAfrican cultivated rice (Oryza glaberrima Steud.). Mol Plant1(5):830-838
    [72] Ma D, Yan J, He Z, Wu L, Xia X (2012) Characterization of a cell wall invertase gene TaCwi-A1oncommon wheat chromosome2A and development of functional markers. Molecular Breeding29(1):43-52
    [73] Mao L, Begum D, Chuang H, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000)JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development.Nature406(6798):910-913
    [74] McKim SM, Stenvik G-E, Butenko MA, Kristiansen W, Cho SK, Hepworth SR, Aalen RB, HaughnGW (2008) The BLADE-ON-PETIOLE genes are essential for abscission zone formation inArabidopsis. Development135(8):1537-1546
    [75] McManus MT (2008) Further examination of abscission zone cells as ethylene target cells in higherplants. Ann Bot101(2):285-292
    [76] Meagher RB, Kandasamy MK, Deal RB, McKinney EC (2007) Actin-related proteins inchromatin-level control of the cell cycle and developmental transitions. Trends Cell Biol17(7):325-332
    [77] Meir S, Philosoph-Hadas S, Sundaresan S, Selvaraj KV, Burd S, Ophir R, Kochanek B, Reid MS,Jiang C-Z, Lers A (2010) Microarray analysis of the abscission-related transcriptome in thetomato flower abscission zone in response to auxin depletion. Plant Physiol154(4):1929-1956
    [78] Ogawa M, Kay P, Wilson S, Swain SM (2009) ARABIDOPSIS DEHISCENCE ZONEPOLYGALACTURONASE1(ADPG1), ADPG2, and QUARTET2are polygalacturonasesrequired for cell separation during reproductive development in Arabidopsis. Plant Cell21(1):216-233
    [79] Ohno CK, Reddy GV, Heisler MG, Meyerowitz EM (2004) The Arabidopsis JAGGED geneencodes a zinc finger protein that promotes leaf tissue development. Development131(5):1111-1122
    [80] Okushima Y, Mitina I, Quach HL, Theologis A (2005) AUXIN RESPONSE FACTOR2(ARF2): apleiotropic developmental regulator. Plant J43(1):29-46
    [81] Patterson SE, Bleecker AB (2004) Ethylene-dependent and-independent processes associated withfloral organ abscission in Arabidopsis. Plant Physiol134(1):194-203
    [82] Petersen M, Sander L, Child R, Onckelen H, Ulvskov P, Borkhardt B (1996) Isolation andcharacterisation of a pod dehiscence zone-specific polygalacturonase from Brassica napus.Plant Mol Biol31(3):517-527
    [83] Porter KB (1959) The inheritance of shattering in wheat. Agronomy Journal51(3):173-177
    [84] Qiao Y, Piao R, Shi J, Lee S-I, Jiang W, Kim B-K, Lee J, Han L, Ma W, Koh H-J (2011) Finemapping and candidate gene analysis of dense and erect panicle3, DEP3, which confers highgrain yield in rice (Oryza sativa L.). Theor Appl Genet122(7):1439-1449
    [85] Qin Y, Kim SM, Zhao X, Jia B, Lee HS, Kim KM, Eun MY, Jin ID, Sohn JK (2010) Identificationfor quantitative trait loci controlling grain shattering in rice. Genes Genom32(2):173-180
    [86] Quarrie S, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusi D,Waterman E, Weyen J (2005) A high-density genetic map of hexaploid wheat (Triticumaestivum L.) from the cross Chinese Spring×SQ1and its use to compare QTLs for grain yieldacross a range of environments. Theor Appl Genet110(5):865-880
    [87] Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal H, Chhuneja P, Lagu M, Gupt V(2010) QTL mapping of1000-kernel weight, kernel length, and kernel width in bread wheat(Triticum aestivum L.). Journal ofApplied Genetics51(4):421-429
    [88] Roberts JA, Elliott KA, Gonzalez-Carranza ZH (2002) Abscission, dehiscence, and other cellseparation processes. Annu Rev Plant Biol53(1):131-158
    [89] Roeder AHK, Ferrándiz C, Yanofsky MF (2003) The Role of the REPLUMLESS HomeodomainProtein in Patterning the Arabidopsis Fruit. Curr Biol13(18):1630-1635
    [90] Rogers HJ (2012) From models to ornamentals: how is flower senescence regulated? Plant MolBiol:1-12
    [91] Rutjens B, Bao D, Eck-Stouten V, Brand M, Smeekens S, Proveniers M (2009) Shoot apicalmeristem function in Arabidopsis requires the combined activities of three BEL1-likehomeodomain proteins. Plant J58(4):641-654
    [92] Sanguinetti C, Dias NE, Simpson A (1994) Rapid silver staining and recovery of PCR productsseparated on polyacrylamide gels. Biotechniques17(5):914
    [93] Sato Y, Hong S-K, Tagiri A, Kitano H, Yamamoto N, Nagato Y, Matsuoka M (1996) A ricehomeobox gene, OSH1, is expressed before organ differentiation in a specific region duringearly embryogenesis. Proc Natl Acad Sci USA93(15):8117-8122
    [94] Schmitt S (2003) Homeosis and atavistic regeneration: the 'biogenetic law' inEntwicklungsmechanik. Hist Philos Life Sci25(2):193
    [95] Schneuwly S, Kuroiwa A, Baumgartner P, Gehring W (1986) Structural organization and sequenceof the homeotic geneAntennapedia of Drosophila melanogaster. EMBO J5(4):733
    [96] Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K (1999) The Lateral suppressor (Ls)gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA96(1):290-295
    [97] Shi CL, Stenvik GE, Vie AK, Bones AM, Pautot V, Proveniers M, Aalen RB, Butenko MA (2011)Arabidopsis class I KNOTTED-like homeobox proteins act downstream in theIDA-HAE/HSL2floral abscission signaling pathway. Plant Cell23(7):2553-2567
    [98] Shi W, Yang Y, Chen S, Xu M (2008) Discovery of a new fragrance allele and the development offunctional markers for the breeding of fragrant rice varieties. Mol Breeding22(2):185-192
    [99] Sinha N, Williams R, Hake S (1993) Overexpression of the maize homeo box gene, KNOTTED-1,causes a switch from determinate to indeterminate cell fates. Genes Dev7(5):787-795
    [100] Smith LG, Greene B, Veit B, Hake S (1992) A dominant mutation in the maize homeobox gene,Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development116(1):21-30
    [101] Song X-J, Huang W, Shi M, Zhu M-Z, Lin H-X (2007) A QTL for rice grain width and weightencodes a previously unknown RING-type E3ubiquitin ligase. Nat Genet39(5):623-630
    [102] Sood S, Kuraparthy V, Bai G, Gill BS (2009) The major threshability genes soft glume (sog) andtenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independentmutations at non-orthologous loci. Theor Appl Genet119(2):341-351
    [103] Spang A, Shiba Y, Randazzo PA (2010) Arf GAPs: gatekeepers of vesicle generation. FEBS lett584(12):2646-2651
    [104] Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W, Holmgren A, Clark SE, Aalen RB,Butenko MA(2008) The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION issufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA andHAESA-LIKE2. Plant Cell20(7):1805-1817
    [105] Su JY, Tong YP, Liu QY, Li B, Jing RL, Li JY, Li ZS (2006) Mapping quantitative trait loci forpost-anthesis dry matter accumulation in wheat. J Integr Plant Biol48(8):938-944
    [106] Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functionalmarker of TaGW2associated with grain weight in bread wheat (Triticum aestivum L.). TheorAppl Genet122(1):211-223
    [107] Summers J, Bruce D, Vancanneyt G, Redig P, Werner C, Morgan C, Child R (2003) Pod shatterresistance in the resynthesized Brassica napus line DK142. J Agr Sci140(01):43-52
    [108] Sun X-Y, Wu K, Zhao Y, Kong F-M, Han G-Z, Jiang H-M, Huang X-J, Li R-J, Wang H-G, Li S-S(2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat.Euphytica165(3):615-624
    [109] Suzuki M, Fujino K, Funatsuki H (2009) A major soybean QTL, qPDH1, controls pod dehiscencewithout marked morphological change. Plant Prod Sci12(2):217-223
    [110] Suzuki M, Fujino K, Nakamoto Y, Ishimoto M, Funatsuki H (2010) Fine mapping anddevelopment of DNA markers for the qPDH1locus associated with pod dehiscence in soybean.Mol Breeding25(3):407-418
    [111] Szymkowiak EJ, Irish EE (1999) Interactions between jointless and wild-type tomato tissuesduring development of the pedicel abscission zone and the inflorescence meristem. Plant Cell11(2):159-175
    [112] Tabuchi T, Arai N (1999) Changes in esterase activity in the abscission zone of jointless tomatofruits. J Jpn Soc for Hortic Sci68(6):1
    [113] Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecularevolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximumparsimony methods. Mol Biol Evol28(10):2731-2739
    [114] Taylor JE, Whitelaw CA(2001) Signals in abscission. New Phytol151(2):323-340
    [115] Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8polymorphisms associate with variation in flowering time. Nat Genet28(3):286-289
    [116] Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping ofStagonospora nodorum blotch resistance in modern European winter wheat varieties. TheorAppl Genet115(5):697-708
    [117] Uheda E, Nakamura S (2000) Abscission of Azolla branches induced by ethylene and sodiumazide. Plant Cell Physiol41(12):1365-1372
    [118] Venglat S, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, Keller W, Martienssen R,Selvaraj G, Datla R (2002) The homeobox gene BREVIPEDICELLUS is a key regulator ofinflorescence architecture in Arabidopsis. Proc NatlAcad Sci USA99(7):4730-4735
    [119] Vollbrecht E, Reiser L, Hake S (2000) Shoot meristem size is dependent on inbred backgroundand presence of the maize homeobox gene, knotted1. Development127(14):3161-3172
    [120] Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1is a member of amaize homeobox gene family. Nature350:241-243
    [121] Vrebalov J, Pan IL, Arroyo AJM, McQuinn R, Chung M, Poole M, Rose J, Seymour G, GrandilloS, Giovannoni J (2009) Fleshy fruit expansion and ripening are regulated by the tomatoSHATTERPROOF gene TAGL1. Plant Cell21(10):3041-3062
    [122] Wagstaff C, Chanasut U, Harren FJ, Laarhoven L-J, Thomas B, Rogers HJ, Stead AD (2005)Ethylene and flower longevity in Alstroemeria: relationship between tepal senescence,abscission and ethylene biosynthesis. J Exp Bot56(413):1007-1016
    [123] Wang C, Chen S, Yu S (2011) Functional markers developed from multiple loci in GS3for finemarker-assisted selection of grain length in rice. Theor Appl Genet122(5):905-913
    [124] Wang XQ, XU WH, Ma LG, Fu ZM, Deng XW, Li JY, Wang YH (2006) Requirement ofKNAT1/BP for the development of abscission zones in Arabidopsis thaliana. J Integr Plant Biol48(1):15-26
    [125] Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X (2008) Isolationand initial characterization of GW5, a major QTL associated with rice grain width and weight.Cell Res18(12):1199-1209
    [126] Winslow GM, Hayashi S, Krasnow M, Hogness DS, Scott MP (1989) Transcriptional activationby the Antennapedia and fushi tarazu proteins in cultured Drosophila cells. Cell57(6):1017-1030
    [127] Wittenbach VA, Bukovac MJ (1974) Cherry fruit abscission evidence for time of initiation and theinvolvement of ethylene. Plant Physiol54(4):494-498
    [128] Yamada T, Funatsuki H, Hagihara S, Fujita S, Tanaka Y, Tsuji H, Ishimoto M, Fujino K, Hajika M(2009) A major QTL, qPDH1, is commonly involved in shattering resistance of soybeancultivars. Breeding Sci59(4):435-440
    [129] Yan C-J, Zhou J-H, Yan S, Chen F, Yeboah M, Tang S-Z, Liang G-H, Gu M-H (2007)Identification and characterization of a major QTL responsible for erect panicle trait in japonicarice (Oryza sativa L.). Theor Appl Genet115(8):1093-1100
    [130] Yao J, Wang L, Liu L, Zhao C, Zheng Y (2009) Association mapping of agronomic traits onchromosome2A of wheat. Genetica137(1):67-75
    [131] Yi X, Zhang Z, Zeng S, Tian C, Peng J, Li M, Lu Y, Meng Q, Gu M, Yan C (2011) Introgressionof qPE9-1allele, conferring the panicle erectness, leads to the decrease of grain yield per plantin japonica rice (Oryza sativa L.). J Genet Genomics38(5):217-223
    [132] Zhang D, Zhang H, Wang M, Sun J, Qi Y, Wang F, Wei X, Han L, Wang X, Li Z (2009) Geneticstructure and differentiation of Oryza sativa L. in China revealed by microsatellites. Theor ApplGenet119(6):1105-1117
    [133] Zhang Z, Belcram H, Gornicki P, Charles M, Just J, Huneau C, Magdelenat G, Couloux A, SamainS, Gill BS (2011) Duplication and partitioning in evolution and function of homoeologous Qloci governing domestication characters in polyploid wheat. Proc Natl Acad Sci USA108(46):18737-18742
    [134] Zhou Y, Lu D, Li C, Luo J, Zhu BF, Zhu J, Shangguan Y, Wang Z, Sang T, Han B (2012) Geneticcontrol of seed shattering in rice by the APETALA2transcription factor SHATTERINGABORTION1. Plant Cell24(3):1034-1048

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700