用户名: 密码: 验证码:
柑橘硼运输基因CiNIP5和CiNIP6的克隆和功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘是世界范围内普遍种植的一类非常重要的经济作物,而它在中国的主要种植区之一赣南的土壤中严重缺乏硼素,导致柑橘花而不实或者“猴头果”,降低了柑橘产量,从而影响果农的经济收入。硼是植物生长必需的微量元素,它在土壤中存在的主要形式是B(OH)3,并以中性分子的形式为植物所吸收和运输。植物对硼素的浓度适应范围比较窄,硼素浓度过低或过高对植物生长都会造成不利的影响。在雨水过多地方如江西赣南地区,硼素很容易被雨水淋失而使作物出现缺硼症状;而在干旱地区如澳大利亚,因灌溉水含硼量过高或者施用过量硼肥而硼在土壤中累积造成植物硼毒害。虽然硼素对作物的经济价值影响非常大,但是目前人们对硼素的代谢路径尚不清楚。近期的研究表明,植物中特有的一类水通道蛋白—NIP家族蛋白参了硼素的吸收和运输过程,NIP家族基因运输硼、甘油等大分子的功能成为研究热点。目前在拟南芥、水稻、葡萄等作物中已经克隆得到与硼吸收和运输有关的基因,但是在柑橘中还未见报道。
     本研究利用电子克隆、染色体步移等技术,从柑橘砧木枳[Poncirus trifoliata (L.) Raf.]中克隆了两个基因CiNIP5和CiNIP6及他们的启动子,分析了基因编码的氨基酸序列的保守性和多样性,研究了他们在枳壳中组织特异表达模式和缺硼、硼毒害胁迫条件下的时空表达情况以及启动子区域存在的关键元件。为了进一步的证实CiNIP5和CiNIP6与硼吸收和运输的关系,还对这两个基因进行功能验证工作。本研究最终证实了柑橘中CiNIP5和CiNIP6分别参与了植株吸收和运输硼的过程,为通过转基因技术提高柑橘耐硼胁迫环境提供了理论基础。主要结果如下:
     1.采用同源克隆技术从柑橘砧木枳中得到硼运输基因CiNIP5,基因序列包含903bp的开放阅读框,编码300个氨基酸。预测CiNIP5编码蛋白质分子的分子量为31.0kDa,等电点为8.73。多序列比对和系统进化树分析表明,CiNIP5属于水通道蛋白家族中的NIP亚家族,与拟南芥中的AtNIP5;1有高度的相似性。生物信息学分析表明CiNIP5蛋白具有典型的NPA和Ar/R结构域,可以运输比水分子大的中性小分子物质。基因表达分析表明CiNIP5mRNA主要在枳根部表达,在茎和叶中的表达量非常低。低硼胁迫下,CiNIP5mRNA积累量显著升高;在高浓度硼胁迫下,CiNIP5mRNA积累量显著降低。
     2.采用同源克隆技术从柑橘砧木枳中得到硼运输相关基因CiNIP6,基因序列包含915bp的开放阅读框,此开放阅读框包含五个外显子和四个内含子,编码304个氨基酸。预测CiNIP6编码蛋白质分子的分子量为31.2kDa,等电点为8.61。多序列比对和系统进化树分析表明CiNIP6属于水通道蛋白家族中的NIP亚家族,与拟南芥中的AtNIP6;1有高度的相似性。生物信息学分析表明CiNIP6蛋白具有典型的NPA和Ar/R结构域,其中Ar/R组成为T,I,G和R不同于AtNIP6;1的结构,推测CiNIP6具有不同于AtNIP6;1的功能。基因表达分析表明CiNIP6mRNA主要在枳地上部位表达,在根中的表达量非常低。在低硼和高硼浓度胁迫下,CiNIP6mRNA积累量都显著升高,说明CiNIP6参与调节植物体内硼的平衡分布。
     3.应用染色体步移技术克隆得到CiNIP5和CiNIP6基因启动子。生物信息学分析表明这两个基因的启动子都具有典型的TATA box和CAAT box,并含有很多逆境响应元件;如干旱、伤害等,还包含乙烯、赤霉素、生长素、光等激素和环境信号响应元件。
     4.通过生物信息学分析,比对发现CiNIP5的5端UTR和AtNIP5;1的5端UTR具有很高的相似性,都具有两个保守序列:序列1(CAUGUAA)和序列2(UCAAAUCAUGUAA)。这两个序列对于CiNIP5响应环境中硼浓度而上调或下调变化起到决定性作用。
     5.通过转基因技术,将CiNIP5和CiNIP6基因转入烟草中超表达进行功能分析。结果表明转CiNIP5基因植株的细胞耐逆境能力增强,叶片的光合作用增强,根部累积的硼含量显著增加;转CiNIP6基因植株叶片中硼含量显著增加,但是其他生理指标和对照没有显著差异。说明CiNIP5对于植物适应硼浓度的变化有更重要的意义。
Citrus is one of the most important economic crops in the world. The filed where citrus planted in the southern China is serious lack of Boron (B). This leads to reduced product of citrus and economic losses to the farmers. Boron (B) is an essential element for plants. In soil solution, B exists primarily as boric acid [B(OH)3]. It is accepted that plants take up B from soil in the form of boric acid. In agriculture, the range of B concentration between deficiency and toxicity is thought to be narrow. B deficiency is a major problem that impedes crop growth and generally leads to the rapid cessation of root elongation, reduced leaf expansion and reduced fertility, mainly due to reduced cell expansion. On the other hand, B toxity is another problem in food production. Thus, the understanding to the mechanisms that regulate B homeostasis in plants is important with regards to both knowledge of physiology and agricultural practice. Decades of researches showed that, the nodulin26-like intrinsic proteins (NIPs) family, which is a group of highly conserved multifunctional major intrinsic proteins that are unique to plants, trasnsports a variet of uncharged solutes ranging from water to ammonia to glycerol and boric acid. Reacently, some genes involved in boron absorption in Arapbidopsis, rice and grape were cloned, but there was no report in citrus.
     In our research, we tried to make clear how B was absorbed and transported in the citrus and further to solve the B deficient problem in the citrus product. Two genes were cloned from trifoliate orange [(Poncirus trifoliata (L.) Raf.] using in silico cloning and named as CiNIP5and CiNIP6respectively. Their mRNA levels in different tissues were detected. Both genes were compared with their similar genes from other plants. In addition their ectopic expressions in tobacco were conducted. We found that CiNIP5and CiNIP6could increase the capacity of resistance to boron deficiency, while CiNIP5played more important part than CiNIP6did. The main results were in the following:
     1. Based on the sequence of AtNIP5;1, we cloned CiNIP5gene from trifoliate orange, containing an open reading frame (ORF) of903bp which encodes a300amino acids polypeptide with a predicted molecular mass of31.0kDa and an isoelectric point of8.73. Analysis of the putative amino acid sequence suggested that CiNIP5belonged to the NIPII subfamily, and showed highly homology with those proteins from other plants with function of transporting B. Bioinformatics analysis revealed that CiNIP5contained two conserved regions-NPA motif and Ar/R filter, which indicated that CiNIP5could transport small uncharged solutes. Analysis of the expression of CiNIP5showed that it was mainly expressed in roots, and it's expression was upregulted by B deficiency, however, was downregulted by B toxicity.
     2. CiNIP6was cloned from trifoliate orange, containing an open reading frame (ORF) of915bp which encodes a304amino acid polypeptide with a predicted molecular mass of31.2kDa and an isoelectric point of8.61. Analysis of the putative amino acid sequence suggested that CiNIP6belonged to the NIPII subfamily, and showed highly homology with other B transporter proteins. Bioinformatics analysis revealed that CiNIP6contained two conserved regions-NPA motif and Ar/R filter. The ar/R filter of CiNIP6consists of Thr (T), Ile (I), Gly (G) and Arg (R), which is different from that of AtNIP6;1. Those changes indicated that CiNIP6might have different functions from AtNIP6;1. Analysis of gene expression revealed that CiNIP6mainly existed in leaves and stems. Both in B deficient and toxic condition, the transcripts of CiNIP6were up-regulated, especially in the toxic situation. This result suggested that CiNIP6participated in the regulation of B homeostasis in citrus.
     3. The promoter regions of CiNIP5and CiNIP6were cloned by genomic walking PCR. Bioinformatic analysis showed that they both contained typical TATA box and CAAT box, and many stress responsing elements, such as dehydration, wounding, hormone and stress:ethylene, gibberellin, auxin, light and so on.
     4. By bioinformatics analysis, we found that the5'UTR between CiNIP5and AtNIP5;1were highly similar, they both contained two conserved sequences:1(CAUGUAA) and2(UCAAAUCAUGUAA), which are important for NIP5B-dependent degradation under B toxic condition.
     5. The transgenic tobacco overexpressing CiNIP5contained more B and had enhanced photosynthetic intensity than in the wild type plants, implicating the overexression of CiNIP5has the ability to enhance the resistance to boron deficiency. The transgenic tobacco overexpression CiNIP6contained more B in the leaves but less in the roots than the wild type plants, implicating that it had function of homeostasis of B in the plants.
引文
1.陈欧,王振英.植物WRKY转录因子结构及功能研究进展.生物学通报,2009,43:10-12
    2.鄂志国,王磊.水稻WRKY基因家族功能研究进展.核农学报,2012,6:0750—0755
    3.高世武,郭晋隆,阙友雄,许莉萍,杨颖颖,陈如凯.影响根癌农杆菌EHA105感受态细胞转化效率因素的研究.热带生物学报,2012,3:22-27
    4.关军锋.Ca2+对苹果果实细胞膜透性,保护酶活性和保护物质含量的影响.植物学通报,1999,16:72-74
    5.韩霜.缺硼对柑橘生理生化的影响.福建农林大学,2007
    6.姜存仓,王运华,刘桂东,夏颖,彭抒昂,钟八莲,曾庆銮.赣南脐橙叶片黄化及施硼效应研究.植物营养与肥料学报,2009,15:656-661
    7.姜勇,麻彤辉NPA motif在水通道蛋白AQP1表达和转水功能中的重要性.科学通报,2007,52(4):426-31
    8.李明才,何韶衡.一种高效、快速的大肠杆菌感受态细胞制备及质粒转化方法.汕头大学医学院学报,2005,18(4):228-241
    9.李士榜,关静.苹果树施硼效果及硼的营养诊断研究初报.北方果树,1982,4:002
    10.李文雄,桂明珠,赵妮珊,曾寒冰,李辰仁,曲维政,王承林.小麦大面积不结实原因的研究.东北农学院学报,1978,3:19
    11.梁成真,张锐,郭三堆.染色体步移技术研究进展.生物技术通报,2009,75-82
    12.梁和,马国瑞.硼钙营养对胡柚果实品质的影响.广东微量元素科学,2001,8:21-26
    13.梁和,马国瑞.硼钙营养对不同品种柑桔糖代谢的影响.土壤通报,2002,33:377-380
    14.梁和,石伟勇,马国瑞,杨玉爱.叶面喷硼对胡柚和温州蜜柑生理特性的影响.广西农业生物科学,2005,24:118-122
    15.梁火娣,王惠珍,萧洪东,喻敏.短期缺硼对豌豆根系生长的影响.华中农业大学学报,2007,26:480-481
    16.粱和,马国瑞,伟勇,杨玉爱,张上隆.钙硼营养与果实生理及耐贮性.土壤通报,2000,31(4):187-190
    17.廖红,严小龙.高级植物营养学.科学出版社,北京,2003
    18.刘积述,陈智君.甘兰型油菜缺硼症状与喷硼试验.福建农业科技,1979,5:006
    19.刘霞,彭抒昂,郭文武.三种柑橘实生砧木及其两种体细胞杂种根系解剖结构的比较.园艺学报,2008,35:1249-1254
    20.陆景陵.植物营养学.中国农业大学出版社,2003
    21.盛鸥,严翔,彭抒昂,邓秀新,方贻文.纽荷尔脐橙果实发育期叶片不同形态硼含量与缺硼的关系.园艺学报,2007,34:1103-1110
    22.田生科,李廷轩,杨肖娥,卢玲丽,彭红云.植物对铜的吸收运输及毒害机理研究进展.土壤通报,2006,37:387-394
    23.王世伟,李旭业,张伟伟.优化感受态细胞制备方法提高转化效率的研究.齐齐哈尔大学学报:自然科学版,2009,25:86-90
    24.魏琦超,畅丽萍.根癌农杆菌感受态细胞的制备及保存方法研究.安徽农业科学,2009,37:6342-6343
    25.吴兴明,李健,施清,谢文龙,谢钟琛.纽荷尔脐橙叶脉木栓化症病因诊断.福建果树,2009,5-10
    26.肖家欣,严翔,彭抒昂,邓秀新,方贻文.纽荷尔脐橙缺硼表现与其硼,糖含量年变化的关系.园艺学报,2006,33:356-359
    27.肖家欣,严翔,彭抒昂,方贻文.赣南华盛顿脐橙果实发育中几种矿质营养含量动态的研究.中国生态农业学报,2008,16:134-138
    28.徐慧妮,王康,李昆志.植物Dof转录因子及其生物学功能.生物技术通报,2010,19-23
    29.许祥明,叶和春,李国凤.植物抗盐机理的研究进展.应用与环境生物学报,2000,6:379-387
    30.姚益云,张德远.硼,锌在温州蜜柑上的应用研究.江西农业大学学报,1996,18:282-286
    31.赵晓玲,佘文琴,赖钟雄.果树钙硼营养研究进展.福建省科协第五届学术年会提高海峡西岸经济区农业综合生产能力分会场论文集,2005
    32.周世恭.硼与植物开花结果.生命世界,1980,6:017
    33.周世恭.缺硼对黄瓜根尖分生组织细胞核仁液泡的影响.中西医结合植物学杂志,1984,3:017
    34.朱锦辉,权军利,何玉科,陈耀锋,郭东伟,李春莲,曹团武,曹新有.根癌农杆菌感受态细胞的制备以及质粒ProkⅡ对其转化的研究.西北农林科技大学学报(自然科学版),2006,34:91-95
    35. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K Role of arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. The Plant Cell,1997,9:1859-1868
    36. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S. Aquaporin water channels-from atomic structure to clinical medicine. The Journal of physiology,2004,542:3-16
    37. Agre P, Kozono D. Aquaporin water channels:molecular mechanisms for human diseases. FEBS letters,2003,555:72-78
    38. Alloway BJ. Zinc in soils and crop nutrition. International Zinc Association, Brussels,2004,130
    39. Anderson MB, Folta K, Warpeha KM, Gibbons J, Gao J, Kaufman LS. Blue Light-Directed Destabilization of the Pea Lhcbl*4 Transcript Depends on Sequences within the 5'Untranslated Region. The Plant Cell,1999,11:1579-1589
    40. Arias A, Martinez-Drets G. Glycerol metabolism in Rhizobium. Canadian Journal of Microbiology,1976,22:150-153
    41. Badawi M, Reddy YV, Agharbaoui Z, Tominaga Y, Danyluk J, Sarhan F, Houde M.2008, Structure and functional analysis of wheat ICE. inducer of CBF expression, genes. Plant and cell physiology 49:1237-1249
    42. Baluska F, Hlavacka A, Samaj J, Palme K, Robinson DG, Matoh T, McCurdy DW, Menzel D, Volkmann D. F-actin-dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments. Plant physiology,2002,130:422-431
    43. Bansal A, Sankararamakrishnan R. Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis:comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters. BMC structural biology,2007, 7:27
    44. Bassil E, Hu H, Brown PH. Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant physiology,2004,136:3383-3395
    45. Bastias E, Gonzalez-Moro M, Gonzalez-Murua C. ZeamaysL. amylacea from the Lluta Valley. Arica-Chile, tolerates salinity stress when high levels of boron are available. Plant and Soil,2004,267:73-84
    46. Bate N, Twell D. Functional architecture of a late pollen promoter:pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Molecular Biology,1998,37:859-869
    47. Baumann K, De Paolis A, Costantino P, Gualberti G. The DN A binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. The Plant Cell,1999,11:323-333
    48. Beitz E, Wu B, Holm LM, Schultz JE, Zeuthen T. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons. Proceedings of the National Academy of Sciences of the United States of America,2006,103:269-274
    49. Bellaloui N, Brown PH, Dandekar AM. Manipulation of in vivo sorbitol production alters boron uptake and transport in tobacco. Plant physiology,1999,119:735-742
    50. Ben-Gal A, Shani U. Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. Plant and Soil,2002,247:211-221
    51. Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA. Arabidopsis AUX1 gene:a permease-like regulator of root gravitropism. Science,1996,273:948
    52. Bienert GP, Thorsen M, Schussler MD, Nilsson HR, Wagner A, Tamas MJ, Jahn TP. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. Bmc Biology,2008,6:26
    53. Blaser-Grill J, Knoppik D, Amberger A, Goldbach H. Influence of boron on the membrane potential in Elodea densa and Helianthus annuus roots and H+ extrusion of suspension cultured Daucus carota cells. Plant physiology,1989,90:280-284
    54. Boaretto A, Boaretto R, Muraoka T, Nascimento Filho V, Tiritan C, Mourao Filho F. Foliar micronutrient application effects on citrus fruit yield, soil and leaf Zn concentrations and 65Zn mobilization within the plant. International Symposium on Foliar Nutrition of Perennial Fruit Plants,2001,594, pp 203-209
    55. Boaretto RM, Quaggio JA, Mattos Jr D, Muraoka T, Boaretto AE. Boron uptake and distribution in field grown citrus trees. Journal of Plant Nutrition,2011,34: 839-849
    56. Bolanos L, Lukaszewski K, Bonilla I, Blevins D. Why boron? Plant Physiology and Biochemistry,2004a,42:907-912
    57. Bolanos L, Redondo-Nieto M, Rivilla R, Brewin NJ, Bonilla I. Cell surface interactions of Rhizobium bacteroids and other bacterial strains with symbiosomal and peribacteroid membrane components from pea nodules. Molecular plant-microbe interactions,2004b,17:216-223
    58. Bolanos L, Redondo-Nieto M, Bonilla I, Wall LG. Boron requirement in the Discaria trinervis., Rhamnaceae, and Frankia symbiotic relationship. Its essentiality for Frankia BCU 110501 growth and nitrogen fixation. Physiologia Plantarum,2002, 115:563-570
    59. Bonilla I, El-Hamdaoui A, Bolanos L. Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant and Soil,2004, 267:97-107
    60. Brown P, Bellaloui N, Wimmer M, Bassil E, Ruiz J, Hu H, Pfeffer H, Dannel F, Romheld V. Boron in plant biology. Plant biology,2008,4:205-223
    61. Brown PH, Bellaloui N, Hu H, Dandekar A. Transgenically enhanced sorbitol synthesis facilitates phloem boron transport and increases tolerance of tobacco to boron deficiency. Plant physiology,1999,119:17-20
    62. BROWN PH, Hu H. Phloem mobility of boron is species dependent:evidence for phloem mobility in sorbitol-rich species. Annals of Botany,1996,77:497-506
    63. Brown PH, Shelp BJ. Boron mobility in plants. Plant and Soil,1997,193:85-101
    64. Cabello-Hurtado F, Ramos J. Isolation and functional analysis of the glycerol permease activity of two new nodulin-like intrinsic proteins from salt stressed roots of the halophyte Atriplex nummularia. Plant Sci.,2004,166:633-640
    65. Cakmak I, Kurz H, Marschner H. Short-term effects of boron, germanium and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiologia Plantarum,1995,95:11-18
    66. Cakmak I, Romheld V. Boron deficiency-induced impairments of cellular functions in plants. Plant and Soil,1997,193:71-83
    67. Camacho-Cristobal JJ, Anzellotti D, Gonzalez-Fontes A. Changes in phenolic metabolism of tobacco plants during short-term boron deficiency. Plant Physiology and Biochemistry,2002,40:997-1002
    68. Camacho-Cristobal JJ, Gonzalez-Fontes A. Boron deficiency decreases plasmalemma H+-ATPase expression and nitrate uptake, and promotes ammonium assimilation into asparagine in tobacco roots. Planta,2007,226:443-451
    69. Camacho-Cristobal JJ, Herrera-Rodriguez MB, Beato VM, Rexach J, Navarro-Gochicoa MT, Maldonado JM, Gonzalez-Fontes A. The expression of several cell wall-related genes in Arabidopsis roots is down-regulated under boron deficiency. Environmental and Experimental Botany,2008,63:351-358
    70. Camacho-Cristobal JJ, Lunar L, Lafont F, Baumert A, Gonzalez-Fontes A. Boron deficiency causes accumulation of chlorogenic acid and caffeoyl polyamine conjugates in tobacco leaves. Journal of plant physiology,2004,161:879-881
    71. Camacho-Cristobal JJ, Maldonado JM, Gonzalez-Fontes A. Boron deficiency increases putrescine levels in tobacco plants. Journal of plant physiology,2005, 162:921-928
    72. Cara FA, Sanchez E, Ruiz JM, Romero L. Is phenol oxidation responsible for the short-term effects of boron deficiency on plasma-membrane permeability and function in squash roots? Plant Physiology and Biochemistry,2002,40:853-858
    73. Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ. Auxin transport promotes Arabidopsis lateral root initiation. The Plant Cell,2001,13:843-852
    74. Chakrabarti N, Roux B, Pomes R. Structural determinants of proton blockage in aquaporins. Journal of molecular biology,2004,343:493
    75. Chaumont F, Barrieu F, Jung R, Chrispeels MJ. Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiology,2000,122:1025-1034
    76. Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, Pruijn GJM, Stoecklin G, Moroni C, Mann M, Karin M. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell,2001,107:451-464
    77. Cheng YJ, Guo WW, Yi HL, Pang XM, Deng X. An efficient protocol for genomic DNA extraction from Citrus species. Plant Molecular Biology Reporter,2003,21: 177-178
    78. Chiba Y, Mitani N, Yamaji N, Ma JF. HvLsil is a silicon influx transporter in barley. The Plant Journa,2008,157:810-818
    79. Choi WG, Roberts DM. Arabidopsis NIP2; 1, a major intrinsic protein transporter of lactic acid induced by anoxic stress. Journal of Biological Chemistry,2007,282: 24209-24218
    80. Ciavatta VT, Morillon R, Pullman GS, Chrispeels MJ, Cairney J. An aquaglyceroporin is abundantly expressed early in the development of the suspensor and the embryo proper of loblolly pine. Plant Physiology,2001,127:1556-1567
    81. Cooper WC, Gorton B, Olson E. Ionic accumulation in citrus as influenced by rootstock and scion and concentration of salts and boron in the substrate. Plant Physiology,1952,27:191
    82. Cooper WC, Peynado A. Chloride and boron tolerance of young-line citrus trees on various rootstocks. J. Rio Grande Valley Hort. Soc,1959,13:89-96
    83. Cosgrove DJ. Enzymes and other agents that enhance cell wall extensibility. Annual review of plant biology,1999,50:391-417
    84. Dannel F, Pfeffer H, Romheld V. Compartmentation of boron in roots and leaves of sunflower as affected by boron supply. Journal of Plant Physiology,1998,153: 615-622
    85. Dannel F, Pfeffer H, Romheld V. Characterization of root boron pools, boron uptake and boron translocation in sunflower using the stable isotopes 10 B and 11 B. Functional Plant Biology,2000,27:397-405
    86. Dannel F, Pfeffer H, Walch-Liu P, Romheld V. Characteristics of boron uptake in roots of sunflower by a putative boron transporter. Plant Nutrition,2002,162-163
    87. de Groot BL, Engel A, Grubmuller H. The structure of the aquaporin-1 water channel:a comparison between cryo-electron microscopy and X-ray crystallography. Journal of molecular biology,2003,325:485-493
    88. de Groot BL, Grubmuller H. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science,2001,294:2353-2357
    89. de Groot BL, Grubmuller H. The dynamics and energetics of water permeation and proton exclusion in aquaporins. Current opinion in structural biology,2005,15: 176-183
    90. de Groot BL, Heymann JB, Engel A, Mitsuoka K, Fujiyoshi Y, Grubmuller H. The fold of human aquaporin 1. Journal of molecular biology,2000,300:987-994
    91. Dean RM, Rivers RL, Zeidel ML, Roberts DM. Purification and functional reconstitution of soybean nodulin 26. An aquaporin with water and glycerol transport properties. Biochemistry,1999,38:347-353
    92. Dela Fuente R, Tang P, Guzman C, Bopp M. The requirement for calcium and boron in auxin transport. Plant Growth Substances,1986,1985:227-246
    93. Dell B, Huang L. Physiological response of plants to low boron. Plant and Soil, 1997,193:103-120
    94. Devirian TA, Volpe SL. The physiological effects of dietary boron,2003,43(2): 219-231
    95. Dexter S, Tottingham W, Graber L. Preliminary results in measuring the hardiness of plants. Plant Physiology,1930,5:215
    96. Domingues DS, Leite SMM, Farro APC, Coscrato VE, Mori ES, Furtado EL, Wilcken CF, Velini ED, Guerrini IA, Maia IG. Boron transport in Eucalyptus.2. Identification in silico of a putative boron transporter for xylem loading in eucalypt. Genet Mol Biol,2005,28:625-629
    97. Dordas C, Brown P. Permeability of boric acid across lipid bilayers and factors affecting it. Journal of Membrane Biology,2000,175:95-105
    98. Dordas C, Brown P. Permeability and channel-mediated transport of boric acid across plant membranes. An explanation for differential B uptake in plants. Plant Nutrition, 2002,190-191
    99. Dordas C, Brown PH. Evidence for channel mediated transport of boric acid in squash (Cucurbitapepo). Plant and Soil,2001,235:95-103
    100.Dordas C, Chrispeels MJ, Brown PH. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiology, 2000,124:1349-1362
    101.Dyar JJ, Webb KL. A relationship between boron & auxin in C14 translocation in bean plants. Plant Physiology,1961,36(5):672-676
    102.Eaton FM. Interrelations in the effects of boron and indoleacetic acid on plant growth. Botanical Gazette,1940,101(3):700-705
    103.Edelstein M, Ben-Hur M, Cohen R, Burger Y, Ravina I. Boron and salinity effects on grafted and non-grafted melon plants. Plant and Soil,2005,269:273-284
    104.E1-Hamdaoui A, Redondo-Nieto M, Torralba B, Rivilla R, Bonilla I, Bolanos L. Influence of boron and calcium on the tolerance to salinity of nitrogen-fixing pea plants. Plant and Soil,2003,251:93-103
    105.EL-Hamdaoui A, Redondo-Nieto M, Rivilla R, Bonilla I, Bolanos L. Effects of boron and calcium nutrition on the establishment of the Rhizobium leguminosarum-pea., Pisum sativum, symbiosis and nodule development under salt stress. Plant, Cell & Environment,2003,26:1003-1011
    106.Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends in Plant Science,2000,5:199-206
    107.Ferrol N, Donaire JP. Effect of boron on plasma membrane proton extrusion and redox activity in sunflower cells. Plant Science,1992,86:41-47
    108.Fleischer A, O'Neill MA, Ehwald R. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonanll. Plant physiology,1999,121:829-838
    109.Fortin MG, Morrison NA, Verma DPS. Nodulin-26, a peribacteroid membrane nodulin is expressed independently of the development of the peribacteroid compartment. Nucleic acids research,1987,15:813-824
    110.FujiwaraA T, TanakaA M, MiwaB K. Optimisation of nutrient transport processes by plants-boron transport as an example.19th World Congress of Soil Science,2010
    111.Garcia-Gonzalez M, Mateo P, Bonilla I. Effect of boron deficiency on photosynthesis and reductant sources and their relationship with nitrogenase activity in Anabaena PCC7119. Plant physiology,1990,93:560-565
    112.Gil P, Green PJ. Multiple regions of the Arabidopsis SAUR-AC1 gene control transcript abundance:the 3'untranslated region functions as an mRNA instability determinant. The EMBO journal,1996,15:1678
    113.Goldbach HE, Wimmer MA. Boron in plants and animals:Is there a role beyond cell-wall structure? Journal of Plant Nutrition and Soil Science,2007,170:39-48
    114.Goldbach HE, Wimmer MA, Findeklee P. Discussion Paper:Boron-How can the Critical Level be Defined? Journal of Plant Nutrition and Soil Science,2000,163: 115-121
    115.Goldbach HE, Yu Q, Wingender R, Schulz M, Wimmer M, Findeklee P, Baluska F. Rapid response reactions of roots to boron deprivation. Journal of Plant Nutrition and Soil Science,2001,164:173-181
    116.Gonen T, Sliz P, Kistler J, Cheng Y, Walz T. Aquaporin-0 membrane junctions reveal the structure of a closed water pore. Nature,2004,429:193-197
    117.Gonzalez-Fontes A, Rexach J, Navarro-Gochicoa MT, Herrera-Rodriguez MB, Beato VM, Maldonado JM, Camacho-Cristobal JJ. Is boron involved solely in structural roles in vascular plants? Plant signaling & behavior,2008,3:24
    118.GOOR BJ, LUNE P. Redistribution of potassium, boron, iron, magnesium and calcium in apple trees determined by an indirect method. Physiologia Plantarum, 1980,48:21-26
    119.Green PJ. Control of mRNA stability in higher plants. Plant Physiology,1993,102: 1065
    120.Guenther JF, Roberts DM. Water-selective and multifunctional aquaporins from Lotus japonicus nodules. Planta,2000,210:741-748
    121.Haas A, Klotz L. Further evidence on the necessity of boron for health in citrus. Botanical Gazette,1931,92(1):94-100
    122.Han S, Chen LS, Jiang HX, Smith BR, Yang LT, Xie CY. Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. Journal of Plant Physiology,2008,165:1331-1341
    123.Hanaoka H, Fujiwara T. Channel-mediated boron transport in rice. Plant and Cell Physiology,2007a,48:S227-S227
    124.Hanaoka H, Fujiwara T. Channel-mediated boron transport in rice. Plant Cell Physiol,2007b,48:S227
    125.Hanson E J. Movement of boron out of tree fruit leaves. HortScience,1991,26: 271-273
    126.Harries WEC, Akhavan D, Miercke LJW, Khademi S, Stroud RM. The channel architecture of aquaporin 0 at a 2.2-A resolution. Proceedings of the National Academy of Sciences of the United States of America,2004,101:14045-14050
    127.Hepler PK. Calcium:a central regulator of plant growth and development. The Plant Cell,2005,17:2142-2155
    128.Heyl A, Ramireddy E, Brenner WG, Riefler M, Allemeersch J, Schmulling T. The transcriptional repressor ARR1-SRDX suppresses pleiotropic cytokinin activities in Arabidopsis. Plant Physiology,2008,147:1380-1395
    129.Heymann JB, Agre P, Engel A. Progress on the structure and function of aquaporin 1. Journal of structural biology,1998,121:191-206
    130.Heymann JB, Engel A. Structural clues in the sequences of the aquaporins. Journal of molecular biology,2000,295:1039-1053
    131.Hu H, Perm SG, Lebrilla CB, Brown PH. Isolation and characterization of soluble boron complexes in higher plants (the mechanism of phloem mobility of boron). Plant physiology,1997,113:649-655
    132.Huang L, Bell RW, Dell B. Boron supply into wheat (Triticum aestivum L. cv. Wilgoyne) ears whilst still enclosed within leaf sheaths. Journal of Experimental Botany,2001,52:1731-1738
    133.Huang L, Bell RW, Dell B. Evidence of phloem boron transport in response to interrupted boron supply in white lupin., Lupinus albus L. cv. Kiev Mutant, at the reproductive stage. Journal of Experimental Botany,2008,59:575-583
    134.Ioio RD, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S. A genetic framework for the control of cell division and differentiation in the root meristem. Science Signalling,2008,322:1380
    135.Isayenkov SV, Maathuis FJM. The Arabidopsis thaliana aquaglyceroporin AtNIP7; 1 is a pathway for arsenite uptake. FEBS letters,2008,582:1625-1628
    136.Iwai H, Hokura A, Oishi M, Chida H, Ishii T, Sakai S, Satoh S. The gene responsible for borate cross-linking of pectin Rhamnogalacturonan-Ⅱ is required for plant reproductive tissue development and fertilization. Proceedings of the National Academy of Sciences,2006,103:16592-16597
    137.Jahn TP, Moller ALB, Zeuthen T, Holm LM, Klaerke DA, Mohsin B, Kuhlbrandt W, Schjoerring JK. Aquaporin homologues in plants and mammals transport ammonia. FEBS letters,2004,574:31-36
    138.Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig AR, Kjellbom P. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology,2001,126:1358-1369
    139.Kaldenhoff R. Besides water:Functions of plant membrane intrinsic proteins and aquaporins. Progress in Botany,2006,67:206-218
    140.Kamiya T, Tanaka M, Mitani N, Ma JF, Maeshima M, Fujiwara T. NIP1; 1, an aquaporin homolog, determines the arsenite sensitivity of Arabidopsis thaliana. Journal of Biological Chemistry,2009,284:2114-2120
    141.Karioti A, Chatzopoulou A, Bilia AR, Liakopoulos G, Stavrianakou S, Skaltsa H. Novel secoiridoid glucosides in Olea europaea leaves suffering from boron deficiency. Bioscience, biotechnology, and biochemistry,2006,70:1898-1903
    142.Kasajima I, Fujiwara T. Identification of novel Arabidopsis thaliana genes which are induced by high levels of boron. Plant biotechnology,2007,24:355-360
    143.Kisu Y, Ono T, Shimofurutani N, Suzuki M, Esaka M. Characterization and expression of a new class of zinc finger protein that binds to silencer region of ascorbate oxidase gene. Plant and Cell Physiology,1998,39:1054-1064
    144.Klebl F, Wolf M, Sauer N. A defect in the yeast plasma membrane urea transporter Dur3p is complemented by CpNIPl, a Nod26-like protein from zucchini., Cucurbita pepo L.), and by Arabidopsis thaliana [delta]-TIP or [gamma]-TIP. Febs Letters, 2003,547:69-74
    145.Kleine-Vehn J, Friml J. Polar targeting and endocytic recycling in auxin-dependent plant development. Annual review of cell and developmental biology,2008,24: 447-473
    146.Kobayashi M, Matoh T, Azuma J. Two chains of rhamnogalacturonan Ⅱ are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiology, 1996,110:1017-1020
    147.Kobayashi M, Mutoh T, Matoh T. Boron nutrition of cultured tobacco BY-2 cells. IV. Genes induced under low boron supply. Journal of experimental botany, 2004,55:1441-1443
    148.Kropat J, Tottey S, Birkenbihl RP, Depege N, Huijser P, Merchants. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proceedings of the National Academy of Sciences of the United States of America,2005,102:18730-18735
    149.Lauchli A. Functions of boron in higher plants:recent advances and open questions. Plant biology,2002,4:190-192
    150.Lam E, Chua NH. ASF-2:a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. The Plant Cell,1989,1: 1147-1156
    151.Lam E, Chua NH. GT-1 binding site confers light responsive expression in transgenic tobacco. Science,1990,248(4954):471-474
    152.Langthasa S, Bhattacharyya R. NPK contents of Assam lemon leaf affected by foliar zinc sprays. Annals of Agricultural Research, New Delhi,1995,16:493-494
    153.Le Gourrierec J, Li YF, Zhou DX. Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA-TBP-TATA complex. The Plant Journal, 2002,18:663-668
    154.Liu Q, Wang H, Zhang Z, Wu J, Feng Y, Zhu Z. Divergence in function and expression of the NOD26-like intrinsic proteins in plants. BMC genomics,2009, 10:313
    155.Liu Q, Zhu Z. Functional divergence of the NIP III subgroup proteins involved altered selective constraints and positive selection. BMC plant biology,2010,10: 256
    156.Loque D, Ludewig U, Yuan L, Von Wiren N. Tonoplast intrinsic proteins AtTIP2; 1 and AtTIP2; 3 facilitate NH3 transport into the vacuole. Plant physiology,2005, 137:671-680
    157.Lukaszewski KM, Blevins DG. Root growth inhibition in boron-deficient or aluminum-stressed squash may be a result of impaired ascorbate metabolism. Plant physiology,1996,112:1135-1140
    158.Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M. A silicon transporter in rice. Nature,2006,440:688-691
    159.Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ. Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences,2008,105:9931-9935
    160.Marschner H. Mineral nutrition of higher plants.,2nd edn., Academic Press: London),1995
    161.Martin-Rejano EM, Camacho-Cristobal JJ, Herrera-Rodriguez MB, Rexach J, Navarro-Gochicoa MT, Gonzalez-Fontes A. Auxin and ethylene are involved in the responses of root system architecture to low boron supply in Arabidopsis seedlings. Physiologia Plantarum,2011,142:170-178
    162.Martinez-Ballesta MC, Bastias E, Zhu C, Schaffner AR, Gonzalez-Moro B, Gonzalez-Murua C, Carvajal M. Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake. Physiologia Plantarum,2008, 132:479-490
    163.Mateo P, Bonilla I,Fernandez-Valiente E, Sanchez-Maeso E. Essentiality of boron for dinitrogen fixation in Anabaena sp. PCC 7119. Plant physiology,1986,81: 430-433
    164.Matoh T, Ishigaki K, Ohno K, Azuma J. Isolation and characterization of a boron-polysaccharide complex from radish roots. Plant and Cell Physiology,1993, 34:639-642
    165.Matoh T, Ochiai K. Distribution and partitioning of newly taken-up boron in sunflower. Plant and Soil,2005,278:351-360
    166.Maurel C. Plant aquaporins:novel functions and regulation properties. Febs Letters, 2007,581:2227-2236
    167.Maurel C, Reizer J, Schroeder л, Chrispeels MJ. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. The EMBO journal, 1993,12:2241
    168.Mitani N, Yamaji N, Ma JF. Characterization of substrate specificity of a rice silicon transporter, Lsil. Pfliigers Archiv European Journal of Physiology,2008,456: 679-686
    169.Mitsuda N, Enami K, Nakata M, Takeyasu K, Sato MH. Novel type Arabidopsis thaliana H+-PPase is localized to the Golgi apparatus. Febs Letters,2001,488:29-33
    170.Miwa K, Takano J, Fujiwara T. Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, in Arabidopsis thaliana. The Plant Journal,2006,46:1084-1091
    171.Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T. Plants tolerant of high boron levels. Science,2007,318:1417-1417
    172.Mizutani M, Watanabe S, Nakagawa T, Maeshima M. Aquaporin NIP2; 1 is mainly localized to the ER membrane and shows root-specific accumulation in Arabidopsis thaliana. Plant and cell physiology,2006,47:1420-1426
    173.Nable RO, Banuelos GS, Paull JG. Boron toxicity. Plant and Soil,1997,193: 181-198
    174.Nable RO, Cartwright B, Lance R. Genotypic differences in boron accumulation in barley:relative susceptibilities to boron deficiency and toxicity. Genetic Aspects of Plant Mineral Nutrition. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990,243:251
    175.Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T. Cell-type specificity of the expression of OsBORl, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. The Plant Cell,2007,19:2624-2635
    176.Nakaseko Y, Adachi Y, Funahashi S, Niwa O, Yanagida M. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. The EMBO journal,1986,5(5):1011-1021
    177.O'Neill MA, Eberhard S, Albersheim P, Darvill AG. Requirement of borate cross-linking of cell wall rhamnogalacturonan Ⅱ for Arabidopsis growth. Science, 2001,294:846-849
    178.O'Neill MA, Ishii T, Albersheim P, Darvill AG. Rhamnogalacturonan II:structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol.,2004,55:109-139
    179.Ohme-Takagi M, Taylor CB, Newman TC, Green PJ. The effect of sequences with high AU content on mRNA stability in tobacco. Proceedings of the National Academy of Sciences,1993,90:11811-11815
    180.Perez-Amador MA, Lidder P, Johnson MA, Landgraf J, Wisman E, Green PJ. New molecular phenotypes in the dst mutants of Arabidopsis revealed by DNA microarray analysis. The Plant Cell,2001,13:2703-2717
    181.Perez-Castro R, Kasai K, Gainza-Cortes F, Ruiz-Lara S, Casaretto JA, Pena-Cortes H, Tapia J, Fujiwara T, Gonzalez E. VvBORl, the Grapevine Ortholog of AtBORl, Encodes an Efflux Boron Transporter That is Differentially Expressed Throughout Reproductive Development of Vitis vinifera L. Plant and Cell Physiology,2012,53: 485-494
    182.Pfeffer H, Dannel F, Romheld V. Are there connections between phenol metabolism, ascorbate metabolism and membrane integrity in leaves of boron-deficient sunflower plants? Physiologia Plantarum,1998,104:479-485
    183.Pfeffer H, Dannel F, Romheld V. Are there two mechanisms for boron uptake in sunflower? Journal of plant physiology,1999,155:34-40
    184.Picchioni G, Weinbaum S, Brown P. Retention and the kinetics of uptake and export of foliage-applied, labeled boron by apple, pear, prune, and sweet cherry leaves. Journal of the American Society for Horticultural Science,1995,120:28-35
    185.Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ. From genome to function: the Arabidopsis aquaporins. Genome Biol,2002,3:1-17
    186.Quinn JM, Barraco P, Eriksson M, Merchant S. Coordinate Copper-and Oxygen-responsive Cyc6 andCpx1 Expression in Chlamydomonas Is Mediated by the Same Element. Journal of Biological Chemistry,2000,275:6080-6089
    187.Quinn JM, Eriksson M, Moseley JL, Merchant S. Oxygen deficiency responsive gene expression in Chlamydomonas reinhardtii through a copper-sensing signal transduction pathway. Science Signalling,2002,128:463
    188.Quinn JM, Merchant S. Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. The Plant Cell,1995,7:623-628
    189.Rajaie M, Ejraie A, Owliaie H, Tavakoli A. Effect of zinc and boron interaction on growth and mineral composition of lemon seedlings in a calcareous soil. Int. J. Plant Prod,2009,3:39-50
    190.Raven J. Short-and long-distance transport of boric acid in plants. New Phytologist, 1980,84:231-249
    191.Redondo-Nieto M, Rivilla R, El-Hamdaoui A, Bonilla I, Bolanos L. Research Note: Boron deficiency affects early infection events in the pea-Rhizobium symbiotic interaction. Functional Plant Biology,2001,28:819-823
    192.Redondo-Nieto M, Pulido L, Reguera MIA, Bonilla I, BolaNOs L. Developmentally regulated membrane glycoproteins sharing antigenicity with rhamnogalacturonan II are not detected in nodulated boron deficient Pisum sativum. Plant, Cell & Environment,2007,30:1436-1443
    193.Reid RJ. Update on boron toxicity and tolerance in plants. Advances in plant and Animal Nutrition. Springer,2007,
    194.Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD. A critical analysis of the causes of boron toxicity in plants. Plant, Cell & Environment,2004,27:1405-1414
    195.Reyes JC, Muro-Pastor MI, Florencio FJ. The GATA family of transcription factors in Arabidopsis and rice. Plant Physiology,2004,134:1718-1732
    196.Rivers RL, Dean RM, Chandy G, Hall JE, Roberts DM, Zeidel ML. Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. Journal of Biological Chemistry,1997,272:16256-16261
    197.Roessner U, Patterson JH, Forbes MG, Fincher GB, Langridge P, Bacic A. An investigation of boron toxicity in barley using metabolomics. Plant physiology, 2006,142:1087-1101
    198.Ross CA, Liu Y, Shen QJ. The WRKY gene family in rice., Oryza sativa,. Journal of Integrative Plant Biology,2007,49:827-842
    199.Rouge P, Barre A. A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants. Biochemical and Biophysical Research Communications,2008,367:60-66
    200.Roy S, Jauh GY, Hepler PK, Lord EM. Effects of Yariv phenylglycoside on cell wall assembly in the lily pollen tube. Planta,1998,204:450-458
    201.Ruiz JM, Bretones G, Baghour M, Ragala L, Belakbir A, Romero L. Relationship between boron and phenolic metabolism in tobacco leaves. Phytochemistry,1998, 48:269-272
    202.Ruiz JM, Garcia PC, Rivero RM, Romero L. Response of phenolic metabolism to the application of carbendazim plus boron in tobacco. Physiologia Plantarum,2002, 106:151-157
    203.Ryden P, Sugimoto-Shirasu K, Smith AC, Findlay K, Reiter WD, McCann MC. Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan Ⅱ-borate complexes. Plant physiology,2003,132:1033-1040
    204.Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A. ARR1, a transcription factor for genes immediately responsive to cytokinins. Science Signalling,2001,294:1519
    205.Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M. Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant and Cell Physiology,2005,46:1568-1577
    206.Sarkar B, Xi Q, He C, Schneider RJ. Selective degradation of AU-rich mRNAs promoted by the p37 AUF1 protein isoform. Molecular and cellular biology,2003, 23:6685-6693
    207.Savage DF, Egea PF, Robles-Colmenares Y, O'Connell Ⅲ JD, Stroud RM. Architecture and selectivity in aquaporins:2.5 A X-ray structure of aquaporin Z. PLoS biology,2003,1:E72
    208.Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV. PlantProm:a database of plant promoter sequences. Nucleic Acids Research, 2003,31:114-117
    209.Shelp B. Physiology and biochemistry of boron in plants. Boron and its role in crop production,1993, Ed. UC Gupta, pp 53-85. CRC Press, Boca Raton, FL, USA
    210.Shelp B, Vivekanandan P, Vanderpool R, Kitheka A. Translocation and effectiveness of foliar-fertilized boron in broccoli plants of varying boron status. Plant and Soil, 1996,183:309-313
    211.Shelp BJ, Marentes E, Kitheka AM, Vivekanandan P. Boron mobility in plants. Physiologia Plantarum,1995,94:356-361
    212.Shorrocks VM. The occurrence and correction of boron deficiency. Plant and Soil, 1997,193:121-148
    213.Shyamala V, Ames GFL. Genome walking by single-specific-primer polymerase chain reaction:SSP-PCR. Gene,1989,84:1-8
    214.Stangoulis JCR, Brown PH, Bellaloui N, Reid RJ, Graham RD. The efficiency of boron utilisation in canola. Functional Plant Biology,2001a,28:1109-1114
    215.Stangoulis JCR, Reid RJ, Brown PH, Graham RD. Kinetic analysis of boron transport in Chara. Planta,2001b,213:142-146
    216.Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B. Subgenome chromosome walking in wheat:a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proceedings of the National Academy of Sciences,2000,97:13436-13441
    217.Stoces S, Karlicka M, Fellner M. Boron and blue light reduce responsiveness of Arabidopsis hypocotyls to exogenous auxins. Plant Growth Regulation,2012,66: 293-301
    218.Stroud RM, Savage D, Miercke LJW, Lee JK, Khademi S, Harries W. Selectivity and conductance among the glycerol and water conducting aquaporin family of channels. FEBS letters,2003,555:79-84
    219.Sui H, Han BG, Lee JK, Walian P, Jap BK. Structural basis of water-specific transport through the AQP1 water channel. Nature,2001,414:872-878
    220.Swietlik D. Interaction between zinc deficiency and boron toxicity on growth and mineral nutrition of sour orange seedlings. Journal of Plant Nutrition,1995,18: 1191-1207
    221.Swietlik D. Zinc nutrition in horticultural crops. Horticultural reviews,1999,23: 109-180
    222.Swietlik D, LaDuke JV. Productivity, growth, and leaf mineral composition of orange and grapefruit trees foliar-sprayed with zinc and manganese. Journal of Plant Nutrition,1991,14:129-142
    223.Tajkhorshid E, Nollert P, Jensen M0, Miercke LJW, O'Connell J, Stroud RM, Schulten K. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science,2002,296:525-530
    224.Takano J, Miwa K, Yuan L, von Wiren N, Fujiwara T. Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proceedings of the National Academy of Sciences of the United States of America,2005,102:12276-12281
    225.Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T. Arabidopsis boron transporter for xylem loading. Nature,2002,420:337-340
    226.Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K, Fuji K, Onouchi H, Naito S, Fujiwara T. Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proceedings of the National Academy of Sciences,2010,107:5220
    227.Takano J, Wada M, Ludewig U, Schaaf G, Von Wiren N, Fujiwara T. The Arabidopsis major intrinsic protein NIP5; 1 is essential for efficient boron uptake and plant development under boron limitation. The Plant Cell,2006a,18:1498-1509
    228.Takano J, Wada M, Ludewig U, Schaaf G, von Wiren N, Fujiwara T. The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell,2006b,18:1498-1509
    229.Takano J, Yamagami M, Noguchi K, Hayashi H, Fujiwara T. Preferential translocation of boron to young leaves in Arabidopsis thaliana regulated by the BOR1 gene. Soil science and plant nutrition,2001,47:345-357
    230.Tanaka M, Fujiwara T. Physiological roles and transport mechanisms of boron: perspectives from plants. Pflugers Archiv European Journal of Physiology,2008, 456:671-677
    231.Tanaka M, Takano J, Chiba Y, Lombardo F, Ogasawara Y, Onouchi H, Naito S, Fujiwara T. Boron-Dependent Degradation of NIP5;1 mRNA for Acclimation to Excess Boron Conditions in Arabidopsis. Plant Cell,2011a,23:3547-3559
    232.Tanaka M, Takano J, Chiba Y, Lombardo F, Ogasawara Y, Onouchi H, Naito S, Fujiwara T. Boron-dependent degradation of NIP5; 1 mRNA for acclimation to excess boron conditions in Arabidopsis. The Plant Cell,2011b,23:3547-3559
    233.Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T. NIP6;1 Is a Boric Acid Channel for Preferential Transport of Boron to Growing Shoot Tissues in Arabidopsis. Plant Cell,2008a,20:2860-2875
    234.Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T. NIP6; 1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. The Plant Cell,2008b,20:2860-2875
    235.Tang PM. Boron and calcium sites involved in indole-3-acetic acid transport in sunflower hypocotyl segments. Plant Physiology,1986,81:651-655
    236.Tang PM, Dela Fuente RK. The transport of indole-3-acetic acid in boron-and calcium-deficient sunflower hypocotyl segments. Plant Physiology,1986,81: 646-650
    237.Taniguchi M, Sasaki N, Tsuge T, Aoyama T, Oka A. ARR1 directly activates cytokinin response genes that encode proteins with diverse regulatory functions. Plant and Cell Physiology,2007,48:263-277
    238.Teakle GR, Manfield IW, Graham JF, Gilmartin PM. Arabidopsis thaliana GATA factors:organisation, expression and DNA-binding characteristics. Plant Molecular Biology,2002,50:43-56
    239.Tripler E, Ben-Gal A, Shani U. Consequence of salinity and excess boron on growth, evapotranspiration and ion uptake in date palm., Phoenix dactylifera L., cv. Medjool,. Plant and Soil,2007,297:147-155
    240.Twell D. The diversity and regulation of gene expression in the pathway of male gametophyte development. Cambridge University Press,1994, pp 83-83
    241.Twell D, Yamaguchi J, Wing R, Ushiba J, McCormick S. Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes & development,1991, 5:496-507
    242.Tyerman SD, Niemietz C, Bramley H. Plant aquaporins:multifunctional water and solute channels with expanding roles. Plant, Cell & Environment,2002,25:173-194
    243.Udvardi MK, Day DA. Metabolite transport across symbiotic membranes of legume nodules. Annual review of plant biology,1997,48:493-523
    244.Uluisik I, Kaya A, Unlu ES, Avsar K, Karakaya HC, Yalcin T, Koc A. Genome-wide identification of genes that play a role in boron stress response in yeast. Genomics, 2011,97:106-111
    245.Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. The Plant Cell,1993,5:1529-1539
    246.Verkman A, Mitra AK. Structure and function of aquaporin water channels. American Journal of Physiology-Renal Physiology,2000,278:F13-F28
    247.Virgilio L, Isobe M, Narducci MG, Carotenuto P, Camerini B, Kurosawa N, Croce CM, Russo G. Chromosome walking on the TCL1 locus involved in T-cell neoplasia. Proceedings of the National Academy of Sciences,1993,90:9275-9279
    248. Wallace IS, Choi WG, Roberts DM. The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochimica et Biophysica Acta-Biomembranes,2006,1758:1165-1175
    249.Wallace IS, Roberts DM. Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiology,2004,135:1059-1068
    250.Wallace IS, Roberts DM. Distinct transport selectivity of two structural subclasses of the nodulin-like intrinsic protein family of plant aquaglyceroporin channels. Biochemistry,2005,44:16826-16834
    251.Wallace IS, Wills DM, Guenther JF, Roberts DM. Functional selectivity for glycerol of the nodulin 26 subfamily of plant membrane intrinsic proteins. FEBS letters, 2002,523:109-112
    252. Wang G, Romheld V, Li C, Bangerth F. Involvement of auxin and CKs in boron deficiency induced changes in apical dominance of pea plants (Pisum sativum L.). Journal of Plant Physiology,2006,163:591-600
    253.Wang Z, Shi L, Wang L, Xu F. Proteomic alterations of Brassica napus root in response to boron deficiency. Plant Molecular Biology,2010,74:265-278
    254.Wang Z, Tang Y, Zhang F, Wang H. Effect of boron and low temperature on membrane integrity of cucumber leaves. Journal of plant nutrition,1999,22:543-550
    255.Warington K. The effect of boric acid and borax on the broad bean and certain other plants. Ann. Bot,1923,37:629-672
    256.Weig A, Deswarte C, Chrispeels MJ. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant physiology,1997,114:1347-1357
    257.Weig AR, Jakob C. Functional identification of the glycerol permease activity of Arabidopsis thaliana NLM1 and NLM2 proteins by heterologous expression in Saccharomyces cerevisiae. Febs Letters,2000,481:293-298
    258.Yamaji N, Mitatni N, Ma JF. A transporter regulating silicon distribution in rice shoots. The Plant Cell,2008,20:1381-1389
    259.Yang XD, Sun SQ, Li YQ. Boron deficiency causes changes in the distribution of major poly saccharides of pollen tube wall. Acta Bot Sin,1999,41:1169-1176
    260.Yermiyahu U, Ben-Gal A, Keren R, Reid RJ. Combined effect of salinity and excess boron on plant growth and yield. Plant and Soil,2008,304:73-87
    261.Yermiyahu U, Ben-Gal A, Sarig P, Zipilevitch E. Boron toxicity in grapevine (Vitis vinifera L.) in conjunction with salinity and rootstock effects. Journal of Horticultural Science and Biotechnology,2007,82:547-554
    262.Yu Q, Baluska F, Jasper F, Menzel D, Goldbach HE. Short-term boron deprivation enhances levels of cytoskeletal proteins in maize, but not zucchini, root apices. Physiologia Plantarum,2003,117:270-278
    263.Yu Q, Hlavacka A, Matoh T, Volkmann D, Menzel D, Goldbach HE, Baluska F. Short-term boron deprivation inhibits endocytosis of cell wall pectins in meristematic cells of maize and wheat root apices. Plant physiology,2002,130: 415-421
    264.Yu Q, Wingender R, Schulz M, Baluska F, Goldbach H. Short-Term Boron Deprivation Induces Increased Levels of Cytoskeletal Proteins in Arabidopsis Roots. Plant biology,2001,3:335-340
    265.Zardoya R. Phylogeny and evolution of the major intrinsic protein family. Biology of the Cell,2005,97:397-414
    266.Zhang JZ, Li ZM, Liu L, Mei L, Yao JL, Hu CG. Identification of early-flower-related ESTs in an early-flowering mutant of trifoliate orange., Poncirus trifoliata, by suppression subtractive hybridization and macroarray analysis. Tree physiology,2008,28:1449-1457
    267.Zhou DX. Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends in Plant Science,1999,4:210-214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700