用户名: 密码: 验证码:
落叶松IAA受体基因分离与干细胞极性相关miR166及其目标基因功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
落叶松(Larix spp.)是我国北方和西部高山地区具有重要经济和生态价值的针叶树种,而体细胞胚再生体系是进行落叶松分子遗传改良的基础,也是研究裸子植物胚胎发生机制的理想实验材料。受基因型和培养条件的影响,落叶松体细胞胚的诱导经常出现发育畸形,阻碍了实验和生产。生长素及其极性运输在拟南芥等植物胚胎的形态建成中扮演重要角色。已经有研究表明,转录因子HD-ZIP III可能参与生长素的极性运输过程,且HD-ZIP III为miR166的目标基因。但是在裸子植物体细胞胚发育过程中,miR166调控HD-ZIP III,及其与生长素的关系没有相关研究。我们以落叶松体细胞胚为实验材料,研究了生长素极性运输抑制剂N-1-萘基酞氨酸(NPA)和过表达miR166a对体细胞胚发育的影响,分析了2个生长素受体和4个HD-ZIP III家族成员的基因结构和表达模式,并得到以下结果:
     (1)采用NPA处理,模拟生长素极性运输被抑制的突变体,研究生长素极性运输对落叶松体细胞胚发育的影响。结果表明,10mg/L的IAA和3mg/L的NPA处理导致原胚团生长缓慢,胚性胚柄结构消失。成熟培养基中加入3mg/L的NPA,体细胞胚发育出现畸形,子叶融合不展开,顶端呈杯状,胚柄程序化细胞凋亡被延缓,且胚头的生长受到抑制。利用树脂半薄切片观察体细胞胚的显微结构,结果表明NPA处理导致体细胞胚的顶-基胚轴极性无法正常建立,细胞排列紊乱,各组织和器官没有正确有序的进行分化,胚头和胚柄的生长平衡被打破。
     (2)通过同源克隆获得了两个生长素受体基因LaAFB1和LaAFB2,两者都具有典型的LRR和F-box结构域。LaAFB1的3’端具有miR393结合位点,其体内切割产物通过RLM-5’RACE技术得到验证,且切割位点发生在miR393的第10和13位碱基,表明落叶松LaAFB1受到miR393的转录后调控。通过检索体细胞胚和幼苗的小RNA测序文库,发现LaAFB1被切割后能产生次级siRNA,且只存在于幼苗小RNA文库中,而不存在于体细胞胚的小RNA文库中,提示miR393介导LaAFB1切割产生的次级siRNA只在落叶松的胚后发育中发挥功能。采用qRT-PCR检测LaAFB1和LaAFB2在落叶松根茎叶等器官和体细胞胚中的表达模式。发现两个基因的表达规律相似,且在成熟体细胞胚中的表达水平最低,表明削弱生长素的信号转导作用,有利于胚胎的发育和成熟。
     (3)利用同源克隆和RACE技术获得了4个落叶松HD-ZIP III同源基因的全长cDNA,分别命名为LaHDZ31、32、33和34。它们都具有保守的蛋白结构域:HD、START和MEKHLA。在LaHDZ31-34的START中存在miR165/166的核酸互补序列,进一步采用RLM-5’RACE验证了LaHDZ33和34的体内切割产物,且切割位点均位于miR166的第10位碱基,表明在落叶松体细胞胚发生过程中,LaHDZ31-34受到miR165/166的转录后调控。利用qRT-PCR检测了LaHDZ31-34在正常发生和NPA处理的体细胞胚中的表达规律,结果表明LaHDZ31-34在成熟体细胞胚中的表达量高于原胚团中,且表达最高峰发生在后期单胚阶段。在体细胞胚发育早期,NPA处理的体细胞胚中LaHDZ31-34的表达量比对照高;而在发育的后期阶段,LaHDZ31-33在NPA处理的体细胞胚中的表达量比对照低,但LaHDZ34的表达不受影响。表明LaHDZ31-34与落叶松体细胞胚极性的形成密切相关,LaHDZ34在胚胎发育后期及子叶形成中的功能与其他3个基因不同。
     (4)通过qRT-PCR检测了miR166的两个前体基因LaMIR166a和LaMIR166b在落叶松根茎叶、正常发生的体细胞胚和NPA处理的畸形胚中的表达规律,发现两个基因的表达模式明显不同。LaMIR166a在根茎叶中均表达,且在原胚团中的表达水平比成熟体细胞胚中略高;而LaMIR166b在原胚团和叶中不表达,在体细胞胚成熟过程中表达上调。在体细胞胚成熟过程中,miR166及其目标基因存在共表达现象,但是在体细胞胚发育后期,LaMIR166a和LaMIR166b的表达受NPA诱导,其目标基因却受NPA抑制。构建Super启动子驱动LaMIR166a超表达的转化载体,通过农杆菌介导的落叶松胚性细胞的遗传转化,获得了五个抗性细胞系。经PCR检测验证,五个抗性细胞系均为阳性转基因。对过表达LaMIR166a的转基因体细胞胚的表型和显微结构进行观察,结果表明过表达LaMIR166a使胚轴伸长受到抑制,影响子叶的发生和茎顶端分生组织的形态。
     过表达LaMIR166a与NPA处理对落叶松体细胞胚顶端形态发育的影响类似,但NPA处理的体细胞胚顶端比过表达LaMIR166a的表型缺陷严重。过表达LaMIR166a与NPA处理的体细胞胚中顶端分生组织标记基因WOX表达上调,提示miR166与生长素对落叶松体细胞胚的形态建成可能具有共同的调控作用。这些实验结果对于进一步研究针叶树体细胞胚发育的分子机制提供理论依据。
Mainly distributed in northern China and western mountains, Larix spp. is an importantconifer species with highly economic and ecological values. Somatic embryogenesis is anuseful tool to improve genetic traits of larch by molecular methods. It is also an idealexperimental material to study the mechanism behind gymnosperms embryogenesis. However,stable and efficient induction of somatic embryos is affected by various genotypes and cultureconditions, and abnormal embryos were initiated frequently in our experiments. Auxin and itspolar transport play important roles in embryogenic morphogenesis of Arabidopsis and otherplants, and it had been suggested that the HD-ZIP III transcription factors may participate inpolar auxin transport, but it is still largely unknown the functions of auxin and miR166regulation of HD-ZIP III in gymnosperm somatic embryogenesis. Based on the somaticembryogenesis of larch, we had studied the effects of polar auxin transport inhibitor1-N-naphthylphthalamic acid (NPA) and over-expression of miR166a on somatic embryodevelopment of larch, and analyzed the sequence structures and expression patterns of twoauxin receptors and four HD-ZIP III members. The following results were obtained:
     (1) To study polar auxin transport in somatic embryogenesis of larch, somatic embryostreated with NPA was used to mock the larch mutant in which auxin polar transport wasinhibited. As a result, after treated with10mg/L IAA and3mg/L NPA, the pro-embryogenicmass (PEM) grow more slowly, with the polarity destructed.3mg/L NPA-treatment had noeffect on the frequency of induction of somatic embryos, but the NPA-treated somatic embryosformed a cup-sharp apical embryo, cotyledons fused and programmed cell death of suspensorsdelayed. The microstructure of NPA-treated somatic embryos were observed by semithinsection, and the cells in NPA-treated embryos were not organized normally and patternformation was disrupted, indicating that the growth balance between embryo and suspensorwas changed by NPA-treatment.
     (2) Two homologues of auxin receptors from larch were identified and designatedLaAFB1and LaAFB2, both of which contained LRR and F-box domains. Identification of thecleavage products of LaAFB1in vivo confirmed that it was regulated by miRNA, and thecleavage sites occurred at10th or13th base of miR393. Secondary siRNAs that were derivedfrom miR393-guided cleavage of LaAFB1were predicted by bioinformatics, and they wereonly found in small RNA transcriptome of seedling, but not in somatic embryos, indicating thatmiR393-guided cleavage of LaAFB1occurs in post-embryogenesis. The expression patterns ofLaAFB1and LaAFB2in PEM, mature somatic embryos, root, stem and leaf were analyzed byqRT-PCR. The results showed that they shared similar expression pattern and both showedlower transcript levels in mature somatic embryos, which suggested that it is required todepress the auxin sensitivity for maturation and development of somatic embryos in larch.
     (3) Four HD-ZIP III homologues from larch were identified and designated LaHDZ31,32,33and34. They all contained HD、START and MEKHLA domains. The occurrence of amiR165/166target sequence in all four cDNA sequences indicated they might be targets ofmiR165/166. Identification of the cleavage products of LaHDZ31and LaHDZ32in vivoconfirmed that they were regulated by miRNA. Their expression patterns during somaticembryogenesis and the effects of NPA on their expressions were investigated. The resultsshowed that the four genes had higher expression levels at mature stages than at theproliferation stage, and that NPA treatment down-regulated the expression of LaHDZ31,32and33at cotyledonary embryo stages, but had no effect on the expression of LaHDZ34. Weconcluded that these four members of Larix HD-ZIP III family might participate in polar auxintransport and the development of somatic embryos.
     (4) Two miR166precursor genes were obtained and designated LaMIR166a andLaMIR166b. Their expression patterns in root, stem, leaf, normal somatic embryos andNPA-treated embryos were studied, and both genes showed very differential expressionpatterns. The transcripts of LaMIR166a could be detected in all organs and developmentalstages of somatic embryos, while the LaMIR166b showed undetectable transcript levels inPEM and leaf. Taken together, miR166and their targets were co-expressed at late stages of somatic embryogenesis, but showed inverse NPA-responses. LaMIR166a was cloned into thepSuper1300+binary vector allowing over-expression under a Super promoter. Subsequently,five hygromycin-resistant embryonic cell lines were obtained by Agrobacteriumtumefaciens-mediated transformation, and they were identified to be positively transgenic byPCR amplification. Study on the phenotypes and microscopic structures of transgenic somaticembryos indicated that over-expression of LaMIR166a inhibited hypocotyl elongation, andaffected the initiation of cotyledons and morphology of stem apical meristem.
     From the research of auxin and miR166in somatic embryogenesis, we found that theeffects of LaMIR166a over-expressing on apical morphogenesis of somatic embryo weresimilar with that of NPA-treatment, although the developmental defects of LaMIR166aover-expressor was slighter than that of NPA-treated somatic embryos. The expression level ofWOX was up-regulated in LaMIR166a over-expressing and NPA-treated somatic embryos,indicating that the miR166and auxin might share common regulatory pathways during somaticembryogenesis of larch. These results provided a theoretical basis for further study of themolecular mechanisms behind conifer somatic embryogenesis.
引文
Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. and Tasaka, M.,1997. Genes involved in organ separation inArabidopsis: an analysis of the cup-shaped cotyledon mutant. The Plant Cell9,841-857.
    Alvarez‐Buylla, E.R., Liljegren, S.J., Pelaz, S., Gold, S.E., Burgeff, C., Ditta, G.S., Vergara‐Silva, F. andYanofsky, M.F.,2000. MADS-box gene evolution beyond flowers: expression in pollen, endosperm,guard cells, roots and trichomes. The Plant Journal24,457-466.
    Alvarez, J.P., Pekker, I., Goldshmidt, A., Blum, E., Amsellem, Z. and Eshed, Y.,2006. Endogenous andsynthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets indiverse species. The Plant Cell18,1134-1151.
    Ariel, F.D., Manavella, P.A., Dezar, C.A. and Chan, R.L.,2007. The true story of the HD-Zip family. TrendsPlant Sci12,419-26.
    Aukerman, M.J. and Sakai, H.,2003. Regulation of flowering time and floral organ identity by a microRNAand its APETALA2-like target genes. The Plant Cell15,2730-2741.
    Baima, S., Nobili, F., Sessa, G., Lucchetti, S., Ruberti, I. and Morelli, G.,1995. The expression of the Athb-8homeobox gene is restricted to provascular cells in Arabidopsis thaliana. Development121,4171-4182.
    Baima, S., Possenti, M., Matteucci, A., Wisman, E., Altamura, M.M., Ruberti, I. and Morelli, G.,2001. TheArabidopsis ATHB-8HD-zip protein acts as a differentiation-promoting transcription factor of thevascular meristems. Plant Physiology126,643-655.
    Baker, C.C., Sieber, P., Wellmer, F. and Meyerowitz, E.M.,2005. The early extra petals1mutant uncovers arole for microRNA miR164c in regulating petal number in Arabidopsis. Current Biology15,303-315.
    Bapat, V. and Rao, P.,1984. Regulatory factors forin vitro multiplication of sandalwood tree (Santalumalbum Linn.) I. Shoot bud regeneration and somatic embryogenesis in hypocotyl cultures. Proceedings:Plant Sciences93,19-27.
    Bartel, D.P.,2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116,281-297.
    Barton, M.K. and Poethig, R.S.,1993. Formation of the shoot apical meristem in Arabidopsis thaliana: ananalysis of development in the wild type and in the shoot meristemless mutant. Development119,823-831.
    Bazzini, A.A. and Giraldez, A.J.,2011. MicroRNAs Sculpt Gene Expression in Embryonic Development:New Insights from Plants. Developmental Cell20,3-4.
    Benjamins, R., Quint, A., Weijers, D., Hooykaas, P. and Offringa, R.,2001. The PINOID protein kinaseregulates organ development in Arabidopsis by enhancing polar auxin transport. Development128,4057-4067.
    Benková, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertová, D., Jürgens, G. and Friml, J.,2003.Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell115,591-602.
    Bennett, S.R., Alvarez, J., Bossinger, G. and Smyth, D.R.,1995. Morphogenesis in pinoid mutants ofArabidopsis thaliana. The Plant Journal8,505-520.
    Black, C., Campbell, W., Chen, T. and Dittrich, P.,1973. The monocotyledons: their evolution andcomparative biology:3. Pathways of carbon metabolism related to net carbon dioxide assimilation bymonocotyledons. Quart. Rev. Biol48,299-313.
    Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K. andScheres, B.,2005. The PIN auxin efflux facilitator network controls growth and patterning inArabidopsis roots. Nature433,39-44.
    Boualem, A., Laporte, P., Jovanovic, M., Laffont, C., Plet, J., Combier, J.P., Niebel, A., Crespi, M. andFrugier, F.,2008. MicroRNA166controls root and nodule development in Medicago truncatula. Plant J54,876-87.
    Bowman, J.L. and Floyd, S.K.,2008. Patterning and polarity in seed plant shoots. Annu. Rev. Plant Biol.59,67-88.
    Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M. and Simon, R.,2000. Dependence of stem cell fate inArabidopsis on a feedback loop regulated by CLV3activity. Science Signaling289,617.
    Buhtz, A., Springer, F., Chappell, L., Baulcombe, D.C. and Kehr, J.,2008. Identification and characterizationof small RNAs from the phloem of Brassica napus. The Plant Journal53,739-749.
    Cairney, J. and Pullman, G.S.,2007. The cellular and molecular biology of conifer embryogenesis. NewPhytologist176,511-536.
    Chan, R.L., Gago, G.M., Palena, C.M. and Gonzalez, D.H.,1998. Homeoboxes in plant development.Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression1442,1-19.
    Chen, X.,2004. A microRNA as a translational repressor of APETALA2in Arabidopsis flower development.Science Signaling303,2022.
    Cheng, Y., Dai, X. and Zhao, Y.,2007. Auxin synthesized by the YUCCA flavin monooxygenases is essentialfor embryogenesis and leaf formation in Arabidopsis. The Plant Cell19,2430-2439.
    Cheng, Y., Qin, G., Dai, X. and Zhao, Y.,2008. NPY genes and AGC kinases define two key steps inauxin-mediated organogenesis in Arabidopsis. Proceedings of the National Academy of Sciences105,21017-21022.
    Chitwood, D.H., Nogueira, F.T., Howell, M.D., Montgomery, T.A., Carrington, J.C. and Timmermans, M.C.,2009. Pattern formation via small RNA mobility. Genes Dev23,549-554.
    Chitwood, D.H. and Timmermans, M.C.,2010. Small RNAs are on the move. Nature467,415-419.
    Chuck, G., Candela, H. and Hake, S.,2009. Big impacts by small RNAs in plant development. Curr OpinPlant Biol12,81-86.
    Chuck, G., Cigan, A.M., Saeteurn, K. and Hake, S.,2007. The heterochronic maize mutant Corngrass1results from overexpression of a tandem microRNA. Nat Genet39,544-549.
    Cote, C.L., Boileau, F., Roy, V., Ouellet, M., Levasseur, C., Morency, M.J., Cooke, J.E., Seguin, A. andMacKay, J.J.,2010. Gene family structure, expression and functional analysis of HD-Zip III genes inangiosperm and gymnosperm forest trees. BMC Plant Biol10,273.
    Crisp, M.D. and Cook, L.G.,2011. Cenozoic extinctions account for the low diversity of extantgymnosperms compared with angiosperms. New Phytologist192,997-1009.
    Cui, K., Little, C. and Sundberg, B.,1992. The cambial activity and on which the effects of exogenous iaa inthe stem of Pinus sylvestris L. Acta Botanica Sinica34.
    Dharmasiri, N., Dharmasiri, S. and Estelle, M.,2005a. The F-box protein TIR1is an auxin receptor. Nature435,441-445.
    Dharmasiri, N., Dharmasiri, S., Weijers, D., Lechner, E., Yamada, M., Hobbie, L., Ehrismann, J.S., Jürgens,G. and Estelle, M.,2005b. Plant development is regulated by a family of auxin receptor F box proteins.Developmental Cell9,109-119.
    Dhonukshe, P., Aniento, F., Hwang, I., Robinson, D.G., Mravec, J., Stierhof, Y.-D. and Friml, J.,2007.Clathrin-Mediated Constitutive Endocytosis of PIN Auxin Efflux Carriers in Arabidopsis. CurrentBiology17,520-527.
    Dhonukshe, P., Tanaka, H., Goh, T., Ebine, K., M h nen, A.P., Prasad, K., Blilou, I., Geldner, N., Xu, J. andUemura, T.,2008. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fatedecisions. Nature456,962-966.
    Emery, J.F., Floyd, S.K., Alvarez, J., Eshed, Y., Hawker, N.P., Izhaki, A., Baum, S.F. and Bowman, J.L.,2003a. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol13,1768-74.
    Emery, J.F., Floyd, S.K., Alvarez, J., Eshed, Y., Hawker, N.P., Izhaki, A., Baum, S.F. and Bowman, J.L.,2003b. Radial Patterning of Arabidopsis Shoots by Class III HD-ZIP and KANADI Genes. CurrentBiology13,1768-1774.
    Eshed, Y., Baum, S.F., Perea, J.V. and Bowman, J.L.,2001. Establishment of polarity in lateral organs ofplants. Current Biology11,1251-1260.
    Eshed, Y., Izhaki, A., Baum, S.F., Floyd, S.K. and Bowman, J.L.,2004. Asymmetric leaf development andblade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development131,2997-3006.
    Ewald, D., Kretzschmar, U. and Chen, Y.,1997. Continuous micropropagation of juvenile larch fromdifferent species via adventitious bud formation. Biologia plantarum39,321-329.
    Ewald, D., Weckwerth, W., Naujoks, G. and Zocher, R.,1995. Formation of embryo-like structures in tissuecultures of different yew species. J Plant Physiol147,139-143.
    Filonova, L.H., Bozhkov, P.V., Brukhin, V.B., Daniel, G., Zhivotovsky, B. and von Arnold, S.,2000a. Twowaves of programmed cell death occur during formation and development of somatic embryos in thegymnosperm, Norway spruce. J Cell Sci113,4399-4411.
    Filonova, L.H., Bozhkov, P.V. and von Arnold, S.,2000b. Developmental pathway of somatic embryogenesisin Picea abies as revealed by time-lapse tracking. Journal of experimental botany51,249-264.
    Floyd, S.K. and Bowman, J.L.,2004. Gene regulation: ancient microRNA target sequences in plants. Nature428,485-486.
    Floyd, S.K., Zalewski, C.S. and Bowman, J.L.,2006. Evolution of class III homeodomain-leucine zippergenes in streptophytes. Genetics173,373-88.
    Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R. and Jurgens, G.,2003.Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature426,147-53.
    Friml, J., Yang, X., Michniewicz, M., Weijers, D., Quint, A., Tietz, O., Benjamins, R., Ouwerkerk, P.B.,Ljung, K. and Sandberg, G.,2004. A PINOID-dependent binary switch in apical-basal PIN polartargeting directs auxin efflux. Science Signaling306,862.
    Furutani, M., Vernoux, T., Traas, J., Kato, T., Tasaka, M. and Aida, M.,2004. PIN-FORMED1and PINOIDregulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development131,5021-5030.
    Gagne, J.M., Downes, B.P., Shiu, S.-H., Durski, A.M. and Vierstra, R.D.,2002. The F-box subunit of theSCF E3complex is encoded by a diverse superfamily of genes in Arabidopsis. Proceedings of theNational Academy of Sciences99,11519-11524.
    Gandikota, M., Birkenbihl, R.P., H hmann, S., Cardon, G.H., Saedler, H. and Huijser, P.,2007. ThemiRNA156/157recognition element in the3′UTR of the Arabidopsis SBP box gene SPL3preventsearly flowering by translational inhibition in seedlings. The Plant Journal49,683-693.
    Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano,A. and Jurgens, G.,2003. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxintransport, and auxin-dependent plant growth. Cell112,219-230.
    Gray, W.M., Kepinski, S., Rouse, D., Leyser, O. and Estelle, M.,2001. Auxin regulates SCFTIR1-dependentdegradation of AUX/IAA proteins. Nature414,271-276.
    Gupta, P., Dandekar, A. and Durzan, D.,1988. Somatic proembryo formation and transient expression of aluciferase gene in Douglas fir and loblolly pine protoplasts. Plant Science58,85-92.
    Hadfi, K., Speth, V. and Neuhaus, G.,1998. Auxin-induced developmental patterns in Brassica junceaembryos. Development125,879-887.
    Hakman, I., Fowke, L.C., Von Arnold, S. and Eriksson, T.,1985. The development of somatic embryos intissue cultures initiated from immature embryos of Picea abies (Norway Spruce). Plant Science38,53-59.
    Hakman, I., Hallberg, H. and Palovaara, J.,2009. The polar auxin transport inhibitor NPA impairs embryomorphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abiessomatic embryo development. Tree Physiology29,483-496.
    Itoh, J.-I., Kitano, H., Matsuoka, M. and Nagato, Y.,2000. SHOOT ORGANIZATION genes regulate shootapical meristem organization and the pattern of leaf primordium initiation in rice. The Plant Cell12,2161-2174.
    Itoh, J.I., Hibara, K.I., Sato, Y. and Nagato, Y.,2008. Developmental Role and Auxin Responsiveness ofClass III Homeodomain Leucine Zipper Gene Family Members in Rice. Plant Physiology147,1960-1975.
    Izhaki, A. and Bowman, J.L.,2007. KANADI and class III HD-Zip gene families regulate embryo patterningand modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell19,495-508.
    Jackson, D., Veit, B. and Hake, S.,1994. Expression of maize KNOTTED1related homeobox genes in theshoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development120,405-413.
    Jenik, P.D. and Barton, M.K.,2005. Surge and destroy: the role of auxin in plant embryogenesis.Development132,3577-3585.
    Jones-Rhoades, M.W.,2010. Prediction of plant miRNA genes, Plant MicroRNAs. Springer, pp.19-30.
    Juarez, M.T., Kui, J.S., Thomas, J., Heller, B.A. and Timmermans, M.C.,2004. microRNA-mediatedrepression of rolled leaf1specifies maize leaf polarity. Nature428,84-88.
    Jung, J.-H., Seo, Y.-H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.-H. and Park, C.-M.,2007. TheGIGANTEA-regulated microRNA172mediates photoperiodic flowering independent of CONSTANSin Arabidopsis. The Plant Cell19,2736-2748.
    Jung, J.H. and Park, C.M.,2007. MIR166/165genes exhibit dynamic expression patterns in regulating shootapical meristem and floral development in Arabidopsis. Planta225,1327-38.
    Kepinski, S. and Leyser, O.,2005. The Arabidopsis F-box protein TIR1is an auxin receptor. Nature435,446-451.
    Kerstetter, R.A., Bollman, K., Taylor, R.A., Bomblies, K. and Poethig, R.S.,2001. KANADI regulates organpolarity in Arabidopsis. Nature411,706-709.
    Kidner, C.A. and Martienssen, R.A.,2004. Spatially restricted microRNA directs leaf polarity throughARGONAUTE1. Nature428,81-84.
    Kim, J., Jung, J.H., Reyes, J.L., Kim, Y.S., Kim, S.Y., Chung, K.S., Kim, J.A., Lee, M., Lee, Y., Narry Kim,V., Chua, N.H. and Park, C.M.,2005. microRNA-directed cleavage of ATHB15mRNA regulatesvascular development in Arabidopsis inflorescence stems. Plant J42,84-94.
    Kleine-Vehn, J., Dhonukshe, P., Sauer, M., Brewer, P.B., Wi niewska, J., Paciorek, T., Benková, E. and Friml,J.,2008. ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis.Current biology: CB18,526.
    Kobayashi, K., Otegui, M.S., Krishnakumar, S., Mindrinos, M. and Zambryski, P.,2007. INCREASED SIZEEXCLUSION LIMIT2encodes a putative DEVH box RNA helicase involved in plasmodesmatafunction during Arabidopsis embryogenesis. The Plant Cell19,1885-1897.
    Kutter, C., Sch b, H., Stadler, M., Meins, F. and Si-Ammour, A.,2007. MicroRNA-mediated regulation ofstomatal development in Arabidopsis. The Plant Cell19,2417-2429.
    Larsson, E., Sitbon, F., Ljung, K. and von Arnold, S.,2008. Inhibited polar auxin transport results in aberrantembryo development in Norway spruce. New Phytol177,356-66.
    Larsson, E., Sitbon, F. and von Arnold, S.,2012a. Differential regulation of Knotted1-like genes duringestablishment of the shoot apical meristem in Norway spruce (Picea abies). Plant Cell Rep31,1053-60.
    Larsson, E., Sundstr m, J.F., Sitbon, F. and von Arnold, S.,2012b. Expression of PaNAC01, a Picea abiesCUP-SHAPED COTYLEDON orthologue, is regulated by polar auxin transport and associated withdifferentiation of the shoot apical meristem and formation of separated cotyledons. Ann Bot110,923-934.
    Li, H., Xu, L., Wang, H., Yuan, Z., Cao, X., Yang, Z., Zhang, D., Xu, Y. and Huang, H.,2005. The putativeRNA-dependent RNA polymerase RDR6acts synergistically with ASYMMETRIC LEAVES1and2torepress BREVIPEDICELLUS and microRNA165/166in Arabidopsis leaf development. The Plant Cell17,2157-2171.
    Li, W.-F., Zhang, S.-G., Han, S.-Y., Wu, T., Zhang, J.-H. and Qi, L.-W.,2012. Regulation of LaMYB33bymiR159during maintenance of embryogenic potential and somatic embryo maturation in Larixkaempferi (Lamb.) Carr. Plant Cell, Tissue and Organ Culture (PCTOC).
    Lin, S.-I., Chiang, S.-F., Lin, W.-Y., Chen, J.-W., Tseng, C.-Y., Wu, P.-C. and Chiou, T.-J.,2008. Regulatorynetwork of microRNA399and PHO2by systemic signaling. Plant Physiology147,732-746.
    Liu, B., Chen, Z., Song, X., Liu, C., Cui, X., Zhao, X., Fang, J., Xu, W., Zhang, H. and Wang, X.,2007.Oryza sativa dicer-like4reveals a key role for small interfering RNA silencing in plant development.The Plant Cell19,2705-2718.
    Liu, C., Xu, Z. and Chua, N.-H.,1993. Auxin polar transport is essential for the establishment of bilateralsymmetry during early plant embryogenesis. The Plant Cell5,621-630.
    Manavella, P.A., Weigel, D. and Wu, L.,2011. Argonaute10as a miRNA Locker. Cell145,173-174.
    Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jürgens, G. and Laux, T.,1998. Role of WUSCHEL inRegulating Stem Cell Fate in the Arabidopsis Shoot Meristem. Cell95,805-815.
    Mayer, U., Buttner, G. and Jurgens, G.,1993. Apical-basal pattern formation in the Arabidopsis embryo:studies on the role of the gnom gene. Development117,149-162.
    McConnell, J.R. and Barton, M.K.,1998. Leaf polarity and meristem formation in Arabidopsis.Development125,2935-2942.
    McConnell, J.R., Emery, J., Eshed, Y., Bao, N., Bowman, J. and Barton, M.K.,2001. Role of PHABULOSAand PHAVOLUTA in determining radial patterning in shoots. Nature411,709-713.
    McHale, N.A. and Koning, R.E.,2004. MicroRNA-directed cleavage of Nicotiana sylvestris PHAVOLUTAmRNA regulates the vascular cambium and structure of apical meristems. The Plant Cell16,1730-1740.
    Michniewicz, M., Zago, M.K., Abas, L., Weijers, D., Schweighofer, A., Meskiene, I., Heisler, M.G., Ohno,C., Zhang, J. and Huang, F.,2007. Antagonistic regulation of PIN phosphorylation by PP2A andPINOID directs auxin flux. Cell130,1044-1056.
    Moller, B. and Weijers, D.,2009. Auxin control of embryo patterning. Cold Spring Harb Perspect Biol1,a001545.
    Moose, S.P. and Sisco, P.H.,1996. Glossy15, an APETALA2-like gene from maize that regulates leafepidermal cell identity. Genes Dev10,3018-27.
    Muday, G.K. and DeLong, A.,2001. Polar auxin transport: controlling where and how much. Trends in PlantScience6,535-542.
    Mukherjee, K. and Burglin, T.R.,2006. MEKHLA, a novel domain with similarity to PAS domains, is fusedto plant homeodomain-leucine zipper III proteins. Plant Physiol140,1142-50.
    Murphy, A.S., Hoogner, K.R., Peer, W.A. and Taiz, L.,2002. Identification, purification, and molecularcloning of N-1-naphthylphthalmic acid-binding plasma membrane-associated aminopeptidases fromArabidopsis. Plant Physiology128,935-950.
    Nagasaki, H., Itoh, J.-i., Hayashi, K., Hibara, K.-i., Satoh-Nagasawa, N., Nosaka, M., Mukouhata, M.,Ashikari, M., Kitano, H. and Matsuoka, M.,2007. The small interfering RNA production pathway isrequired for shoot meristem initiation in rice. Proceedings of the National Academy of Sciences104,14867-14871.
    Nakamura, M., Katsumata, H., Abe, M., Yabe, N., Komeda, Y., Yamamoto, K.T. and Takahashi, T.,2006.Characterization of the class IV homeodomain-leucine zipper gene family in Arabidopsis. PlantPhysiology141,1363-1375.
    Nikovics, K., Blein, T., Peaucelle, A., Ishida, T., Morin, H., Aida, M. and Laufs, P.,2006. The balancebetween the MIR164A and CUC2genes controls leaf margin serration in Arabidopsis. The Plant Cell18,2929-2945.
    Nogueira, F.T., Madi, S., Chitwood, D.H., Juarez, M.T. and Timmermans, M.C.,2007. Two small regulatoryRNAs establish opposing fates of a developmental axis. Genes Dev21,750-755.
    Noh, B., Murphy, A.S. and Spalding, E.P.,2001. Multidrug resistance-like genes of Arabidopsis required forauxin transport and auxin-mediated development. The Plant Cell13,2441-2454.
    Ochando, I., Jover-Gil, S., Ripoll, J.J., Candela, H., Vera, A., Ponce, M.R., Martínez-Laborda, A. and Micol,J.L.,2006. Mutations in the microRNA complementarity site of the INCURVATA4gene perturbmeristem function and adaxialize lateral organs in Arabidopsis. Plant Physiology141,607-619.
    Oh, T.J., Wartell, R.M., Cairney, J. and Pullman, G.S.,2008. Evidence for stage‐specific modulation ofspecific microRNAs (miRNAs) and miRNA processing components in zygotic embryo and femalegametophyte of loblolly pine (Pinus taeda). New Phytologist179,67-80.
    Ohashi-Ito, K., Kubo, M., Demura, T. and Fukuda, H.,2005. Class III homeodomain leucine-zipper proteinsregulate xylem cell differentiation. Plant and Cell Physiology46,1646-1656.
    Ori, N., Cohen, A.R., Etzioni, A., Brand, A., Yanai, O., Shleizer, S., Menda, N., Amsellem, Z., Efroni, I. andPekker, I.,2007. Regulation of LANCEOLATE by miR319is required for compound-leaf developmentin tomato. Nat Genet39,787-791.
    Otsuga, D., DeGuzman, B., Prigge, M.J., Drews, G.N. and Clark, S.E.,2001. REVOLUTA regulatesmeristem initiation at lateral positions. The Plant Journal25,223-236.
    Pant, B.D., Buhtz, A., Kehr, J. and Scheible, W.R.,2008. MicroRNA399is a long-distance signal for theregulation of plant phosphate homeostasis. The Plant Journal53,731-738.
    Parry, G., Calderon-Villalobos, L., Prigge, M., Peret, B., Dharmasiri, S., Itoh, H., Lechner, E., Gray, W.,Bennett, M. and Estelle, M.,2009. Complex regulation of the TIR1/AFB family of auxin receptors.Proceedings of the National Academy of Sciences106,22540-22545.
    Ponting, C.P. and Aravind, L.,1999. START: a lipid-binding domain in StAR, HD-ZIP and signallingproteins. Trends Biochem Sci24,130-2.
    Prigge, M.J.,2005. Class III Homeodomain-Leucine Zipper Gene Family Members Have Overlapping,Antagonistic, and Distinct Roles in Arabidopsis Development. The Plant Cell17,61-76.
    Prigge, M.J. and Clark, S.E.,2006. Evolution of the class III HD-Zip gene family in land plants. Evol Dev8,350-61.
    Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B. and Bartel, D.P.,2002. MicroRNAs in plants.Genes Dev16,1616-1626.
    Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B. and Bartel, D.P.,2002. Prediction of plantmicroRNA targets. Cell110,513-520.
    Robert-Seilaniantz, A., MacLean, D., Jikumaru, Y., Hill, L., Yamaguchi, S., Kamiya, Y. and Jones, J.D.,2011.The microRNA miR393re-directs secondary metabolite biosynthesis away from camalexin and towardsglucosinolates. Plant J67,218-31.
    Robischon, M., Du, J., Miura, E. and Groover, A.,2011. The Populus class III HD ZIP, popREVOLUTA,influences cambium initiation and patterning of woody stems. Plant Physiology155,1214-1225.
    Ruegger, M., Dewey, E., Gray, W.M., Hobbie, L., Turner, J. and Estelle, M.,1998. The TIR1protein ofArabidopsis functions in auxin response and is related to human SKP2and yeast Grr1p. Genes Dev12,198-207.
    Ruegger, M., Dewey, E., Hobbie, L., Brown, D., Bernasconi, P., Turner, J., Muday, G. and Estelle, M.,1997.Reduced naphthylphthalamic acid binding in the tir3mutant of Arabidopsis is associated with areduction in polar auxin transport and diverse morphological defects. The Plant Cell9,745-757.
    Satoh, N., Hong, S.-K., Nishimura, A., Matsuoka, M., Kitano, H. and Nagato, Y.,1999. Initiation of shootapical meristem in rice: characterization of four SHOOTLESS genes. Development126,3629-3636.
    Satoh, N., Itoh, J.-I. and Nagato, Y.,2003. The SHOOTLESS2and SHOOTLESS1genes are involved inboth initiation and maintenance of the shoot apical meristem through regulating the number ofindeterminate cells. Genetics164,335-346.
    Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jürgens, G. and Laux, T.,2000. The Stem Cell Populationof Arabidopsis Shoot Meristems Is Maintained by a Regulatory Loop between the CLAVATA andWUSCHEL Genes. Cell100,635-644.
    Schwab, R., Palatnik, J.F., Riester, M., Schommer, C., Schmid, M. and Weigel, D.,2005. Specific effects ofmicroRNAs on the plant transcriptome. Developmental Cell8,517-527.
    Sessa, G., Steindler, C., Morelli, G. and Ruberti, I.,1998. The Arabidopsis Athb-8,-9and-14genes aremembers of a small gene family coding for highly related HD-ZIP proteins. Plant Mol Biol38,609-22.
    Si-Ammour, A., Windels, D., Arn-Bouldoires, E., Kutter, C., Ailhas, J., Meins, F., Jr. and Vazquez, F.,2011.miR393and secondary siRNAs regulate expression of the TIR1/AFB2auxin receptor clade andauxin-related development of Arabidopsis leaves. Plant Physiol157,683-91.
    Sieber, P., Wellmer, F., Gheyselinck, J., Riechmann, J.L. and Meyerowitz, E.M.,2007. Redundancy andspecialization among plant microRNAs: role of the MIR164family in developmental robustness.Development134,1051-1060.
    Skopelitis, D.S., Husbands, A.Y. and Timmermans, M.C.,2012. Plant small RNAs as morphogens. Currentopinion in cell biology24,217-224.
    Smith, Z.R. and Long, J.A.,2010. Control of Arabidopsis apical-basal embryo polarity by antagonistictranscription factors. Nature464,423-6.
    Stepanova, A.N., Robertson-Hoyt, J., Yun, J., Benavente, L.M., Xie, D.-Y., Dole al, K., Schlereth, A.,Jürgens, G. and Alonso, J.M.,2008. TAA1-Mediated Auxin Biosynthesis Is Essential for HormoneCrosstalk and Plant Development. Cell133,177-191.
    Su, Y.H. and Zhang, X.S.,2009. Auxin gradients trigger de novo formation of stem cells during somaticembryogenesis. Plant Signaling&Behavior4,574-576.
    Suarez, M.F., Filonova, L.H., Smertenko, A., Savenkov, E.I., Clapham, D.H., von Arnold, S., Zhivotovsky, B.and Bozhkov, P.V.,2004. Metacaspase-dependent programmed cell death is essential for plantembryogenesis. Current biology: CB14, R339.
    Sunkar, R. and Zhu, J.-K.,2004. Novel and stress-regulated microRNAs and other small RNAs fromArabidopsis. Science Signaling16,2001.
    Talbert, P.B., Adler, H.T., Parks, D.W. and Comai, L.,1995. The REVOLUTA gene is necessary for apicalmeristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana.Development121,2723-2735.
    Tan, X., Calderon-Villalobos, L.I.A., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M. and Zheng, N.,2007. Mechanism of auxin perception by the TIR1ubiquitin ligase. Nature446,640-645.
    Tanaka, H., Dhonukshe, P., Brewer, P. and Friml, J.,2006. Spatiotemporal asymmetric auxin distribution: ameans to coordinate plant development. Cellular and Molecular Life Sciences CMLS63,2738-2754.
    Tang, G., Reinhart, B.J., Bartel, D.P. and Zamore, P.D.,2003. A biochemical framework for RNA silencing inplants. Genes Dev17,49-63.
    Tao, Y., Ferrer, J.-L., Ljung, K., Pojer, F., Hong, F., Long, J.A., Li, L., Moreno, J.E., Bowman, M.E. andIvans, L.J.,2008. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required forshade avoidance in plants. Cell133,164-176.
    Timmermans, M., Schultes, N.P., Jankovsky, J.P. and Nelson, T.,1998. Leafbladeless1is required fordorsoventrality of lateral organs in maize. Development125,2813-2823.
    Tron, A.E., Bertoncini, C.W., Chan, R.L. and Gonzalez, D.H.,2002. Redox regulation of plant homeodomaintranscription factors. Journal of Biological Chemistry277,34800-34807.
    Vaucheret, H., Mallory, A.C. and Bartel, D.P.,2006. AGO1Homeostasis Entails Coexpression of MIR168and AGO1and Preferential Stabilization of miR168by AGO1. Molecular cell22,129-136.
    Vogel, G.,2005. How does a single somatic cell become a whole plant? Science309,86-86.
    Voinnet, O.,2009. Origin, biogenesis, and activity of plant microRNAs. Cell136,669-687.
    Weijers, D. and Jürgens, G.,2005. Auxin and embryo axis formation: the ends in sight? Curr Opin Plant Biol8,32-37.
    Wenkel, S., Emery, J., Hou, B.-H., Evans, M.M. and Barton, M.,2007. A feedback regulatory moduleformed by LITTLE ZIPPER and HD-ZIPIII genes. The Plant Cell19,3379-3390.
    Williams, L., Grigg, S.P., Xie, M., Christensen, S. and Fletcher, J.C.,2005. Regulation of Arabidopsis shootapical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes.Development132,3657-3668.
    Willmann, M.R. and Poethig, R.S.,2005. Time to grow up: the temporal role of smallRNAs in plants. CurrOpin Plant Biol8,548-552.
    Willmann, M.R. and Poethig, R.S.,2007. Conservation and evolution of miRNA regulatory programs inplant development. Curr Opin Plant Biol10,503-511.
    Wu, G. and Poethig, R.S.,2006. Temporal regulation of shoot development in Arabidopsis thaliana bymiR156and its target SPL3. Development133,3539-3547.
    Yoo, B.-C., Kragler, F., Varkonyi-Gasic, E., Haywood, V., Archer-Evans, S., Lee, Y.M., Lough, T.J. andLucas, W.J.,2004. A systemic small RNA signaling system in plants. The Plant Cell16,1979-2000.
    Zhang, B., Pan, X., Cobb, G.P. and Anderson, T.A.,2006. Plant microRNA: A small regulatory moleculewith big impact. Developmental Biology289,3-16.
    Zhang, J., Zhang, S., Han, S., Wu, T., Li, X., Li, W. and Qi, L.,2012a. Genome-wide identification ofmicroRNAs in larch and stage-specific modulation of11conserved microRNAs and their targets duringsomatic embryogenesis. Planta236,647-57.
    Zhang, S., Zhou, J., Han, S., Yang, W., Li, W., Wei, H., Li, X. and Qi, L.,2010. Four abiotic stress-inducedmiRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues ofLarix leptolepis. Biochem Biophys Res Commun398,355-360.
    Zhang, Y., Zhang, S., Han, S., Li, X. and Qi, L.,2012b. Transcriptome profiling and in silico analysis ofsomatic embryos in Japanese larch (Larix leptolepis). Plant Cell Rep31,1637-57.
    Zhong, R., Taylor, J.J. and Ye, Z.-H.,1997. Disruption of interfascicular fiber differentiation in anArabidopsis mutant. The Plant Cell9,2159-2170.
    Zhong, R. and Ye, Z.-H.,1999. IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis,encodes a homeodomain-leucine zipper protein. The Plant Cell11,2139-2152.
    Zhong, R. and Ye, Z.-H.,2004. Amphivasal vascular bundle1, a gain-of-function mutation of the IFL1/REVgene, is associated with alterations in the polarity of leaves, stems and carpels. Plant and CellPhysiology45,369-385.
    Zhong, R. and Ye, Z.H.,2001. Alteration of auxin polar transport in the Arabidopsis ifl1mutants. PlantPhysiol126,549-63.
    Zhong, R. and Ye, Z.H.,2007. Regulation of HD-ZIP III Genes by MicroRNA165. Plant Signal Behav2,351-3.
    Zhou, G.-K., Kubo, M., Zhong, R., Demura, T. and Ye, Z.-H.,2007. Overexpression of miR165affects apicalmeristem formation, organ polarity establishment and vascular development in Arabidopsis. Plant andCell Physiology48,391-404.
    Zhu, H., Hu, F., Wang, R., Zhou, X., Sze, S.H., Liou, L.W., Barefoot, A., Dickman, M. and Zhang, X.,2011.Arabidopsis Argonaute10specifically sequesters miR166/165to regulate shoot apical meristemdevelopment. Cell145,242-56.
    郭奕明,杨映根,郭毅等,2003.落叶松体细胞的胚胎发生.植物生理学通讯39,531-535.
    蒋丽,齐兴云,龚化勤等,2007.被子植物胚胎发育的分子调控.植物学通报24,389-398.
    栗婷,朱彩虹,齐力旺等,2011.落叶松体细胞胚胎全长cDNA文库构建及初步分析.分子植物育种9.
    皮冬梅,刘悦萍,2011.植物生长素受体蛋白研究现状.生物技术通报6,7-11.
    齐力旺,2000.华北落叶松体细胞胚胎发生与遗传转化系统建立的研究.中国林业科学研究院林业研究所博士毕业论文.
    齐力旺,李玲,韩一凡等, D.,2001.落叶松不同类型胚性和非胚性愈伤组织的生理生化差异.林业科学.
    王战,1992.中国落叶松林.北京,中国林业出版社.
    吴涛,张俊红,韩素英等,2012.日本落叶松小RNA文库构建及其microRNA鉴定.林业科学研究25,677-684.
    张蕾,齐力旺,韩素英.,2008.落叶松体细胞胚原胚团阶段差异表达基因文库的构建与分析.分子植物育种(4).
    张蕾,齐力旺,韩素英.,2009.落叶松体细胞胚成熟阶段差异表达的基因及部分基因的表达谱分析.遗传31,540-545.
    朱彩虹,2011.基于干细胞模型的落叶松遗传转化体系的建立及优化.中国林业科学研究院林业研究所硕士学位论文.
    朱彩虹,栗婷,韩素英等,2010.三种抗生素对落叶松胚性细胞系生长的影响.分子植物育种8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700